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Abstract 
It is fairly common that different people are 
associated with the same name. In tracking 
person entities in a large document pool, it is 
important to determine whether multiple 
mentions of the same name across documents 
refer to the same entity or not.  Previous 
approach to this problem involves measuring 
context similarity only based on co-occurring 
words. This paper presents a new algorithm 
using information extraction support in 
addition to co-occurring words. A learning 
scheme with minimal supervision is developed 
within the Bayesian framework. Maximum 
entropy modeling is then used to represent the 
probability distribution of context similarities 
based on heterogeneous features.  Statistical 
annealing is applied to derive the final entity 
coreference chains by globally fitting the 
pairwise context similarities. Benchmarking 
shows that our new approach significantly 
outperforms the existing algorithm by 25 
percentage points in overall F-measure. 

1 Introduction 

Cross document name disambiguation is 
required for various tasks of knowledge discovery 
from textual documents, such as entity tracking, 
link discovery, information fusion and event 
tracking.  This task is part of the co-reference task: 
if two mentions of the same name refer to same 
(different) entities, by definition, they should 
(should not) be co-referenced. As far as names are 
concerned, co-reference consists of two sub-tasks: 
(i) name disambiguation to handle the problem of 
different entities happening to use the same name; 
(ii) alias association to handle the problem of the 
same entity using multiple names (aliases). 
Message Understanding Conference (MUC) 
community has established within-document co-
reference standards [MUC-7 1998]. Compared 
with within-document name disambiguation which 
can leverage highly reliable discourse heuristics 
such as one sense per discourse [Gale et al 1992], 

cross-document name disambiguation is a much 
harder problem. 

Among major categories of named entities (NEs, 
which in this paper refer to entity names, excluding 
the MUC time and numerical NEs), company and 
product names are often trademarked or uniquely 
registered, and hence less subject to name 
ambiguity. This paper focuses on cross-document 
disambiguation of person names. 

Previous research for cross-document name 
disambiguation applies vector space model (VSM) 
for context similarity, only using co-occurring 
words [Bagga & Baldwin 1998]. A pre-defined 
threshold decides whether two context vectors are 
different enough to represent two different entities. 
This approach faces two challenges: i) it is difficult 
to incorporate natural language processing (NLP) 
results in the VSM framework; 1 ii) the algorithm 
focuses on the local pairwise context similarity, 
and neglects the global correlation in the data: this 
may cause inconsistent results, and hurts the 
performance. 

This paper presents a new algorithm that 
addresses these problems. A learning scheme with 
minimal supervision is developed within the 
Bayesian framework. Maximum entropy modeling 
is then used to represent the probability 
distribution of context similarities based on 
heterogeneous features covering both co-occurring 
words and natural language information extraction 
(IE) results.  Statistical annealing is used to derive 
the final entity co-reference chains by globally 
fitting the pairwise context similarities. 

Both the previous algorithm and our new 
algorithm are implemented, benchmarked and 

                                                      
1 Based on our experiment, only using co-occurring 

words often cannot fulfill the name disambiguation task. 
For example, the above algorithm identifies the 
mentions of Bill Clinton as referring to two different 
persons, one represents his role as U. S. president, and 
the other is strongly associated with the scandal, 
although in both mention clusters, Bill Clinton has been 
mentioned as U.S. president. Proper name 
disambiguation calls for NLP/IE support which may 
have extracted the key person’s identification 
information from the textual documents. 



compared.  Significant performance enhancement 
up to 25 percentage points in overall F-measure is 
observed with the new approach. The generality of 
this algorithm ensures that this approach is also 
applicable to other categories of NEs. 

The remaining part of the paper is structured as 
follows. Section 2 presents the algorithm design 
and task definition. The name disambiguation 
algorithm is described in Sections 3, 4 and 5, 
corresponding to the three key aspects of the 
algorithm, i.e. minimally supervised learning 
scheme, maximum entropy modeling and 
annealing-based optimization. Benchmarks are 
shown in Section 6, followed by Conclusion in 
Section 7. 

2 Task Definition and Algorithm Design 

Given n  name mentions, we first introduce the 
following symbols. iC  refers to the context of the  
i -th mention. iP  refers to the entity for the i -th 
mention. iName  refers to the name string of the i  
-th mention. jiCS ,  refers to the context similarity 
between the i -th mention and the j -th mention, 
which is a subset of the predefined context 
similarity features. αf  refers to theα -th 
predefined context similarity feature. So jiCS ,  
takes the form of { }αf . 

The name disambiguation task is defined as hard 
clustering of the multiple mentions of the same 
name. Its final solution is represented as { }MK ,  
where K refers to the number of distinct entities, 
and M represents the many-to-one mapping (from 
mentions to a cluster) such that 

( ) K]. [1,j n],[1,i j,iM ∈∈=  
One way of combining natural language IE 

results with traditional co-occurring words is to 
design a new context representation scheme and 
then define the context similarity measure based on 
the new scheme.  The challenge to this approach 
lies in the lack of a proper weighting scheme for 
these high-dimensional heterogeneous features. In 
our research, the algorithm directly models the 
pairwise context similarity. 

For any given context pair, a set of predefined 
context similarity features are defined. Then with n 

mentions of a same name, 
2

)1( −nn  context 

similarities [ ] [ )( )ijniCS ji ,1,,1 , ∈∈  are 
computed. The name disambiguation task is 
formulated as searching for { }MK ,  which 
maximizes the following conditional probability:  

{ }( ) [ ] [ )( )ijniCSMK ji ,1,,1       }{,Pr , ∈∈  

Based on Bayesian Equity, this is equivalent to 
maximizing the following joint probability 
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Eq. (1) contains a prior probability distribution 

of name disambiguation { }( )MK ,Pr . Because 
there is no prior knowledge available about what 
solution is preferred, it is reasonable to take an 
equal distribution as the prior probability 
distribution. So the name disambiguation is 
equivalent to searching for { }MK ,  which 
maximizes Expression (2). 
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To learn the conditional probabilities 
( )jiji PPCS =|Pr ,  and ( )jiji PPCS ≠|Pr ,  in Eq. 

(3), we use a machine learning scheme which only 
requires minimal supervision. Within this scheme, 
maximum entropy modeling is used to combine 
heterogeneous context features. With the learned 
conditional probabilities in Eq. (3), for a given 
{ }MK ,  candidate, we can compute the conditional 
probability of Expression (2).  In the final step, 
optimization is performed to search for { }MK ,  
that maximizes the value of Expression (2). 

To summarize, there are three key elements in 
this learning scheme: (i) the use of automatically 
constructed corpora to estimate conditional 
probabilities of Eq. (3); (ii) maximum entropy 
modeling for combining heterogeneous context 
similarity features; and (iii) statistical annealing for 
optimization. 

3 Learning Using Automatically Constructed 
Corpora 

This section presents our machine learning 
scheme to estimate the conditional probabilities 

( )jiji PPCS =|Pr ,  and ( )jiji PPCS ≠|Pr ,  in Eq. 
(3). Considering jiCS ,  is in the form of { }αf , we 
re-formulate the two conditional probabilities as 



{ }( )ji PPf =|Pr α  and { }( )ji PPf ≠|Pr α . 
The learning scheme makes use of automatically 

constructed large corpora. The rationale is 
illustrated in the figure below. The symbol + 
represents a positive instance, namely, a mention 
pair that refers to the same entity.  The symbol – 
represents a negative instance, i.e. a mention pair 
that refers to different entities. 

 
Corpus I  Corpus II 

+++++---++++++         ---------------------- 
+-----+++--+++++           --+------------------ 

   ++++++++++--++           --------------+------ 
   +++++++---++++         ----------------------- 
   +++----++++++++         --------+------------- 
 
As shown in the figure, two training corpora are 

automatically constructed. Corpus I contains 
mention pairs of the same names; these are the 
most frequently mentioned names in the document 
pool. It is observed that frequently mentioned 
person names in the news domain are fairly 
unambiguous, hence enabling the corpus to contain 
mainly positive instances.2 Corpus II contains 
mention pairs of different person names, these 
pairs overwhelmingly correspond to negative 
instances (with statistically negligible exceptions). 
Thus, typical patterns of negative instances can be 
learned from Corpus II. We use these patterns to 
filter away the negative instances in Corpus I. The 
purified Corpus I can then be used to learn patterns 
for positive instances. The algorithm is formulated 
as follows. 

Following the observation that different names 
usually refer to different entities, it is safe to derive 
Eq. (4).  

 
( ) ( )2121 }{Pr}{Pr namenamefPPf ≠=≠ αα   

(4) 
 
For ( )21}{Pr PPf =α , we can derive the 

following relation (Eq. 5): 
 

                                                      
2 Based on our data analysis, there is no observable 

difference in linguistic expressions involving frequently 
mentioned vs. occasionally occurring person names.  
Therefore, the use of frequently mentioned names in the 
corpus construction process does not affect the 
effectiveness of the learned model to be applicable to all 
the person names in general. 
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So ( )21}{Pr PPf =α  can be determined if 
( ))()(}{Pr 21 PnamePnamef =α , 
( ))()(}{Pr 21 PnamePnamef ≠α , and 
( ))()(Pr 2121 PnamePnamePP ==  are all known. 
By using Corpus I and Corpus II to estimate the 

above three probabilities, we achieve Eq. (6.1) and 
Eq. (6.2) 

 
( )21}{Pr PPf =α  

( ) ( ) ( )
X

Xff −−
=

1*}{Pr}{Pr maxEnt
II

maxEnt
I αα .                  

     (6.1) 
 

( ) })({Pr}{Pr maxEnt
II21 αα fPPf =≠            (6.2) 

 
where ( )}{Pr maxEnt

I αf  denotes the maximum 
entropy model of ( ))()(}{Pr 21 PnamePnamef =α  

using Corpus I,  ( )}{Pr maxEnt
II αf  denotes the 

maximum entropy model of 
( ))()(}{Pr 21 PnamePnamef ≠α  using Corpus II, 

and X  stands for the Maximum Likelihood 
Estimation (MLE) of 

( ))()(Pr 2121 PnamePnamePP ==  using Corpus I. 
Maximum entropy modeling is used here due to its 
strength of combining heterogeneous features. 

It is worth noting that ( )}{Pr maxEnt
I αf  and 

( )}{Pr maxEnt
II αf  can be automatically computed 

using Corpus I and Corpus II. Only X requires 
manual truthing. Because X is context 
independent, the required truthing is very limited 
(in our experiment, only 100 truthed mention pairs 
were used). The details of corpus construction and 
truthing will be presented in the next section. 

4 Maximum Entropy Modeling 

This section presents the definition of context 
similarity features }{ αf , and how to estimate the 
maximum entropy model of  ( )}{Pr maxEnt

I αf  and 
( )}{Pr maxEnt

II αf . 
First, we describe how Corpus I and Corpus II 

are constructed. Before the person name 



disambiguation learning starts, a large pool of 
textual documents are processed by an IE engine 
InfoXtract [Srihari et al 2003]. The InfoXtract 
engine contains a named entity tagger, an aliasing 
module, a parser and an entity relationship 
extractor. In our experiments, we used ~350,000 
AP and WSJ news articles (a total of ~170 million 
words) from the TIPSTER collection. All the 
documents and the IE results are stored into an IE 
Repository. The top 5,000 most frequently 
mentioned multi-token person names are retrieved 
from the repository. For each name, all the 
contexts are retrieved while the context is defined 
as containing three categories of features: 

 
(i)     The surface string sequence centering around 

a key person name (or its aliases as identified 
by the aliasing module) within a predefined 
window size equal to 50  
tokens to both sides of the key name. 

 
(ii)  The automatically tagged entity names co 

occurring with the key name (or its aliases) 
within the same predefined window as in (i). 

 
(iii) The automatically extracted relationships 

associated with the key name (or its aliases). 
The relationships being utilized are listed 
below: 

 
Age, Where-from, Affiliation, Position, 
Leader-of, Owner-of, Has-Boss, Boss-of, 
Spouse-of, Has-Parent, Parent-of, Has-
Teacher, Teacher-of, Sibling-of, Friend-of, 
Colleague-of, Associated-Entity, Title, 
Address, Birth-Place, Birth-Time, Death-
Time, Education, Degree, Descriptor, 
Modifier, Phone, Email, Fax. 

 
A recent manual benchmarking of the InfoXtract 

relationship extraction in the news domain is 86% 
precision and 67% recall (75% F-measure).    

To construct Corpus I, a person name is 
randomly selected from the list of the top 5,000 
frequently mentioned multi-token names. For each 
selected name, a pair of contexts are extracted, and 
inserted into Corpus I. This process repeats until 
10,000 pairs of contexts are selected. 

It is observed that, in the news domain, the top 
frequently occurring multi-token names are highly 
unambiguous. For example, Bill Clinton 
exclusively stands for the previous U.S. president 
although in real life, although many other people 
may also share this name. Based on manually 
checking 100 sample pairs in Corpus I, we have 

( ) 95.0Pr 21 ≈== PPX I , which means for the 100 
sample pairs mentioning the same person name, 

only 5 pairs are found to refer to different person 
entities. Note that the value of X−1  represents the 
estimation of the noise in Corpus I, which is used 
in Eq (6.1) to correct the bias caused by the noise 
in the corpus.  

To construct Corpus II, two person names are 
randomly selected from the same name list. Then a 
context for each of the two names is extracted, and 
this context pair is inserted into Corpus II. This 
process repeats until 10,000 pairs of contexts are 
selected.  

Based on the above three categories of context 
features, four context similarity features are 
defined:  
 
(1)  VSM-based context similarity using co-

occurring words  
 

The surface string sequence centering around the 
key name is represented as a vector, and the word i 
in context j is weighted as follows. 
 

)(
log*),(),(

idf
Djitfjiweight =   (7) 

 
where ),( jitf is the frequency of word i in the  
j-th surface string sequence; D is the number of 
documents in the pool; and )(idf  is the number of 
documents containing the word i. Then, the cosine 
of the angle between the two resulting vectors is 
used as the context similarity measure.  
 
(2) Co-occurring NE Similarity 
 

The latent semantic analysis (LSA) [Deerwester 
et al 1990] is used to compute the co-occurring NE 
similarities.  LSA is a technique to uncover the 
underlining semantics based on co-occurrence 
data. The first step of LSA is to construct word-
vs.-document co-occurrence table. We use 100,000 
documents from the TIPSTER corpus, and select 
the following types of top n most frequently 
mentioned words as base words: 

 
top 20,000 common nouns 
top 10,000 verbs 
top 10,000 adjectives 
top 2,000 adverbs 
top 10,000 person names 
top 15,000 organization names 
top 6,000 location names 
top 5,000 product names 

 
Then, a word-vs.-document co-occurrence table 

Matrix  is built so that 



)(
log*),(

idf
DjitfMatrixij = . The second step of 

LSA is to perform singular value decomposition 
(SVD) on the co-occurrence matrix.  SVD yields 
the following Matrix  decomposition:  

 
TDSTMatrix 000=    (8)  

 
where T  and D are orthogonal matrices (the row 
vector is called singular vectors), and S  is a 
diagonal matrix with the diagonal elements (called 
singular values) sorted decreasingly. 

The key idea of LSA is to reduce noise or 
insignificant association patterns by filtering the 
insignificant components uncovered by SVD. This 
is done by keeping only top k singular values. In 
our experiment, k is set to 200, following the 
practice reported in [Deerwester et al. 1990] and 
[Landauer & Dumais, 1997]. This procedure yields 
the following approximation to the co-occurrence 
matrix: 

TTSDMatrix ≈    (9) 
 
where S  is attained from 0S by deleting non-top k 
elements,  and T ( D ) is obtained from 0T ( 0D ) by 
deleting the corresponding columns. 

It is believed that the approximate matrix is more 
proper to induce underlining semantics than the 
original one. In the framework of LSA, the co-
occurring NE similarities are computed as follows: 
suppose the first context in the pair contains NEs 
{ }it0 , and the second context in the pair contains 
NEs { }it1 . Then the similarity is computed as 
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10 where iw0 and iw1 are 

term weights defined in Eq (7). 
 

(3) Relationship Similarity 
 

We define four different similarity values based 
on entity relationship sharing: (i) sharing no 
common relationships, (ii) relationship conflicts 
only, (iii) relationship with consistence and 
conflicts, and (iv) relationship with consistence 
only. The  consistency checking between extracted 
relationships is supported by the InfoXtract 
number normalization and time normalization as 
well as entity aliasing procudures. 
 
(4) Detailed Relationship Similarity 
 

For each  relationship type, four different 
similarity values are defined based on sharing of 
that specific relationship i: (i) no sharing of 

relationship i, (ii) conflicts for relationship i, (iii) 
consistence and conflicts for relationship i, and 
(iv) consistence for relationship i. 

 
To facilitate the maximum entropy modeling in 

the later stage, the values of the first and second 
categories of similarity measures are discretized 
into integers. The number of integers being used 
may impact the final performance of the system. If 
the number is too small, significant information 
may be lost during the discretization process. On 
the other hand, if the number is too large, the 
training data may become too sparse. We trained a 
conditional maximum entropy model to 
disambiguate context pairs between Corpus I and 
Corpus II. The performance of this model is used 
to select the optimal number of integers. There is 
no significant  performance change when the 
integer number is within the range of [5,30], with 
12 as the optimal number. 

Now the context similarity for a context pair is a 
vector of similarity features, e.g.  

 
{VSM_Similairty_equal_to_2, 
NE_Similarity_equal_to_1, 
Relationship_Conflicts_only, 
No_Sharing_for_Age, 

   Conflict_for_Affiliation}. 

Besides the four categories of basic context 
similarity features defined above, we define 
induced context similarity features by combining 
basic context similarity features using the logical 
AND operator. With induced features, the context 
similarity vector in the previous example is 
represented as 

{VSM_Similairty_equal_to_2, 
NE_Similarity_equal_to_1, 
Relationship_Conflicts_only, 
No_Sharing_for_Age, 
Conflict_for_Affiliation,  
[VSM_Similairty_equal_to_2 and 
NE_Similarity_equal_to_1], 
[VSM_Similairty=2 and 
Relationship_Conflicts_only],  
……  
[VSM_Similairty_equal_to_2 and 
NE_Similarity_equal_to_1 and 
Relationship_Conflicts_only and 
No_Sharing_for_Age and 
Conflict_for_Affiliation] 

  }. 

The induced features provide direct and fine-
grained information, but suffer from less sampling 
space. Combining basic features and induced 



features under a smoothing scheme, maximum 
entropy modeling may achieve optimal 
performance.  

Now the maximum entropy modeling can be 
formulated as follows: given a pairwise context 
similarity vector }{ αf  the probability of }{ αf is 
given as 

 

( )
{ }

∏
∈

=
α

α
ff

fw
Z

f 1}{Pr maxEnt   (10) 

 
where Z is the normalization factor, fw  is the 
weight associated with feature f . The Iterative 
Scaling algorithm combined with Monte Carlo 
simulation [Pietra, Pietra & Lafferty 1995] is used 
to train the weights in this generative model. 
Unlike the commonly used conditional maximum 
entropy modeling which approximates the feature 
configuration space as the training corpus 
[Ratnaparkhi 1998], Monte Carlo techniques are 
required in the generative modeling to simulate the 
possible feature configurations. The exponential 
prior smoothing scheme [Goodman 2003] is 
adopted. The same training procedure is performed 
using Corpus I and Corpus II to estimate 

( )}{Pr maxEnt
I if  and ( )}{Pr maxEnt

II if  respectively. 

5 Annealing-based Optimization  

With the maximum entropy modeling presented 
in the last section, for a given name 
disambiguation candidate solution{ }MK , , we can 
compute the conditional probability of Expression 
(2). Statistical annealing [Neal 1993]-based 
optimization is used to search for { }MK ,  which 
maximizes Expression (2). 

The optimization process consists of two steps. 
First, a local optimal solution { } 0, MK is computed 
by a greedy algorithm. Then by setting { } 0, MK as 
the initial state, statistical annealing is applied to 
search for the global optimal solution. 

Given n  same name mentions, assuming the 

input of 
2

)1( −nn  probabilities ( )jiji PPCS =,Pr  

and 
2

)1( −nn  probabilities ( )jiji PPCS ≠,Pr , the 

greedy algorithm performs as follows: 
 

1. Set the initial state { }MK , as nK = , 
and [ ]n1,i  ,)( ∈= iiM ; 

2. Sort ( )jiji PPCS =,Pr  in decreasing  
order; 

3. Scan the sorted probabilities one by one.  

If the current probability is  
( )jiji PPCS =,Pr , )(  )( jMiM ≠ , and  

there exist no such l  and m that  
( ) ( ) ( ) ( )jMmMiMlM == ,  

and ( ) ( )mlmljiji PPCSPPCS ≠<= ,, PrPr  

then update { }MK ,  by merging cluster 
)(iM and )( jM . 

4.   Output { }MK ,  as a local optimal solution. 
 

Using the output { } 0, MK of the greedy 
algorithm as the initial state, the statistical 
annealing is described using the following pseudo-
code:  

 
Set { } { } 0,, MKMK = ; 
for( 1.01β*;ββ ;ββ final0 =<= ) 

   { 
    iterate pre-defined number of times 
    { 

          set { } { }MKMK ,, 1 = ; 
          update { } 1, MK  by randomly changing    
          the  number of clusters K and the    
          content of   each cluster.  

            set 
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           if(x>=1) 
          { 
             set { } { } 1,, MKMK =  
          } 
          else 
         { 
             set { } { } 1,, MKMK =  with probability  
              βx . 
         } 

      if 
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      set { } { }MKMK ,, 0 =  
   } 

} 
output { } 0, MK  as the optimal state. 

6 Benchmarking 
To evaluate the effectiveness of our new 

algorithm, we implemented the previous algorithm 
described in [Bagga & Baldwin 1998] as our 



baseline. The threshold is selected as 0.19 by 
optimizing the pairwise disambiguation accuracy 
using the 80 truthed mention pairs of “John 
Smith”. To clearly benchmark the performance 
enhancement from IE support, we also 
implemented a system using the same weakly 
supervised learning scheme but only VSM-based 
similarity as the pairwise context similarity 
measure. We benchmarked the three systems for 
comparison. The following three scoring measures 
are implemented. 

 
(1) Precision (P): 

�=
iN

P
i  ofcluster  output   in the  mentions of #

i  ofcluster  output   in the  mentionscorrect   of #1  

 
(2) Recall (R): 

�=
iN

P
i  ofcluster  key    in  the  mentions of #

i   ofcluster  output    in  the  mentionscorrect   of #1  

 
(3) F-measure (F): 

RP
RPF

+
= *2  

 
The name co-reference precision and recall used 

here is adopted from the B_CUBED scoring 
scheme used in [Bagga & Baldwin 1998], which is 
believed to be an appropriate benchmarking 
standard for this task.  

Traditional benchmarking requires manually 
dividing person name mentions into clusters, 
which is labor intensive and difficult to scale up. In 
our experiments, an automatic corpus construction 
scheme is used in order to perform large-scale 
testing for reliable benchmarks. 

The intuition is that in the general news domain, 
some multi-token names associated with mass 
media celebrities is highly unambiguous. For 
example, “Bill Gates”, “Bill Clinton”, etc. 
mentioned in the news almost always refer to 
unique entities. Therefore, we can retrieve contexts 
of these unambiguous names, and mix them 
together. The name disambiguation algorithm 
should recognize mentions of the same name. The 
capability of recognizing mentions of an 
unambiguous name is equivalent to the capability 
of disambiguating ambiguous names. 

For the purpose of benchmarking, we 
automatically construct eight testing datasets 
(Testing Corpus I), listed in Table 1. 

Table 1. Constructed Testing Corpus I 

# of Mentions Name 
Set 1a Set 1b 

Mikhail S. Gorbachev 20 50
Dick Cheney 20 10
Dalai Lama 20 10
Bill Clinton 20 10

 Set 2a Set 2b 
Bob Dole 20 50
Hun Sen 20 10
Javier Perez de Cuellar 20 10
Kim Young Sam 20 10

 Set 3a Set 3b 
Jiang Qing 20 10
Ingrid Bergman 20 10
Margaret Thatcher 20 50
Aung San Suu Kyi 20 10

 Set 4a Set 4b 
Bill Gates 20 10
Jiang Zemin 20 10
Boris Yeltsin 20 50
Kim Il Sung 20 10
  

Table 2.  Testing Corpus I Benchmarking 

 P R F P R F 
 Set 1a Set 1b 
Baseline 0.79 0.37 0.58 0.78 0.34 0.56 

VSMOnly 0.86 0.33 0.60 0.78 0.23 0.51 

Full 0.98 0.75 0.86 0.90 0.79 0.85 

  Set 2a Set 2b 
Baseline 0.82 0.58 0.70 0.94 0.50 0.72 

VSMOnly 0.90 0.54 0.72 0.98 0.45 0.71 

Full 0.93 0.84 0.88 1.00 0.93 0.96 

 Set 3a Set 3b 
Baseline 0.84 0.69 0.77 0.80 0.34 0.57 

VSMOnly 0.95 0.72 0.83 0.93 0.29 0.61 

Full 0.95 0.86 0.90 0.98 0.57 0.77 

 Set 4a Set 4b 
Baseline 0.88 0.74 0.81 0.80 0.49 0.64 

VSMOnly 0.93 0.77 0.85 0.88 0.42 0.65 

Full 0.95 0.93 0.94 0.98 0.84 0.91 

Overall P R F 
Baseline 0.83 0.51 0.63 
VSMOnly 0.90 0.47 0.69 
Full 0.96 0.82 0.88 
 
Table 2 shows the benchmarks for each dataset, 

using the three measures just defined. The new 
algorithm when only using VSM-based similarity 
(VSMOnly) outperforms the existing algorithm 
(Baseline) by 5%. The new algorithm using the full 
context similarity measures including IE features 
(Full) significantly outperforms the existing 
algorithm (Baseline) in every test:  the overall F-



measure jumps from 64% to 88%, with 25 
percentage point enhancement.  This performance 
breakthrough is mainly due to the additional 
support from IE, in addition to the optimization 
method used in our algorithm. 

We have also manually truthed an additional 
testing corpus of two datasets containing mentions 
associated with the same name (Testing Corpus II). 
Truthed Dataset 5a contains 25 mentions of Peter 
Sutherland and Truthed Dataset 5b contains 68 
mentions of John Smith. John Smith is a highly 
ambiguous name. With its 68 mentions, they 
represent totally 29 different entities. On the other 
hand, all the mentions of Peter Sutherland are 
found to refer to the same person. The benchmark 
using this corpus is shown below. 

Table 3. Testing Corpus II Benchmarking 

 P R F P R F 
 Set 5a Set 5b 
Baseline 0.96 0.92 0.94 0.62 0.57 0.60 

VSMOnly 0.96 0.92 0.94 0.75 0.51 0.63 

Full 1.00 0.92 0.96 0.90 0.81 0.85 

 
Based on these benchmarks, using either 

manually truthed corpora or automatically 
constructed corpora, using either ambiguous 
corpora or unambiguous corpora, our algorithm 
consistently and significantly outperforms the 
existing algorithm. In particular, our system 
achieves a very high precision (0.96 precision). 
This shows the effective use of IE results which 
provide much more fine-grained evidence than co-
occurring words. It is interesting to note that the 
recall enhancement is greater than the precision 
enhancement (0.31 recall enhancement vs. 0.13 
precision enhancement). This demonstrates the 
complementary nature between evidence from the 
co-occurring words and the evidence carried by IE 
results. The system recall can be further improved 
once the recall of the currently precision-oriented 
IE engine is enhanced over time. 

7 Conclusion 

We have presented a new person name 
disambiguation algorithm which demonstrates a 
successful use of natural language IE support in 
performance enhancement. Our algorithm is 
benchmarked to outperform the previous algorithm 
by 25 percentage points in overall F-measure, 
where the effective use of IE contributes to 20 
percentage points. The core of this algorithm is a 
learning system trained on automatically 
constructed large corpora, only requiring minimal 
supervision in estimating a context-independent 
probability.   
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