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Abstract  

This paper discusses an information 
extraction (IE) system, Textract, in natural 
language (NL) question answering (QA) and 
examines the role of IE in QA application.  
It shows: (i) Named Entity tagging is an 
important component for QA, (ii) an NL 
shallow parser provides a structural basis for 
questions, and (iii) high-level domain 
independent IE can result in a QA 
breakthrough. 

Introduction 

With the explosion of information in Internet, 
Natural language QA is recognized as a 
capability with great potential.   Traditionally, 
QA has attracted many AI researchers, but most 
QA systems developed are toy systems or games 
confined to lab and a very restricted domain.  
More recently, Text Retrieval Conference 
(TREC-8) designed a QA track to stimulate the 
research for real world application. 

Due to little linguistic support from text 
analysis, conventional IR systems or search 
engines do not really perform the task of 
information retrieval; they in fact aim at only 
document retrieval. The following quote from 
the QA Track Specifications 
(www.research.att.com/ 
~singhal/qa-track-spec.txt) in the TREC 
community illustrates this point. 

 
Current information retrieval systems allow 
us to locate documents that might contain 

the pertinent information, but most of them 
leave it to the user to extract the useful 
information from a ranked list. This leaves 
the (often unwilling) user with a relatively 
large amount of text to consume. There is an 
urgent need for tools that would reduce the 
amount of text one might have to read in 
order to obtain the desired information. This 
track aims at doing exactly that for a special 
(and popular) class of information seeking 
behavior: QUESTION ANSWERING. 
People have questions and they need 
answers, not documents. Automatic question 
answering will definitely be a significant 
advance in the state-of-art information 
retrieval technology. 
 
Kupiec (1993) presented a QA system 

MURAX using an on-line encyclopedia.    This 
system used the technology of robust shallow 
parsing but suffered from the lack of basic 
information extraction support.  In fact, the most 
siginifcant IE advance, namely the NE (Named 
Entity) technology, occured after  Kupiec 
(1993), thanks to the MUC program (MUC-7 
1998).  High-level IE technology beyond NE has 
not been in the stage of possible application until 
recently. 

AskJeeves launched a QA portal 
(www.askjeeves.com).  It is equipped with a 
fairly sophisticated natural language question 
parser, but it does not provide direct answers to 
the asked questions.  Instead, it directs the user 
to the relevant web pages, just as the traditional 
search engine does.  In this sense, AskJeeves has 
only done half of the job for QA. 

http://www.research.att.com/
http://www.askjeeves.com/


We believe that QA is an ideal test bed for 
demonstrating the power of IE.  There is a 
natural co-operation between IE and IR; we 
regard QA as one major intelligence which IE 
can offer IR. 

An important question then is, what type of 
IE can support IR in QA and how well does it 
support it?  This forms the major topic of this 
paper.  We structure the remaining part of the 
paper as follows. In Section 1, we first give an 
overview of  the underlying IE technology 
which our organization has been developing.  
Section 2 discusses the QA system.  Section 3 
describes the limitation of the current system.  
Finally, in Section 4, we propose a more 
sophisticated QA system supported by three 
levels of IE.   

1 Overview of Textract IE 

The last decade has seen great advance and 
interest in the area of IE.  In the US, the DARPA 
sponsored Tipster Text Program [Grishman 
1997] and the Message Understanding 
Conferences (MUC) [MUC-7 1998] have been 
the driving force for developing this technology.  
In fact, the MUC specifications for various IE 
tasks have become de facto standards in the IE 
research community.  It is therefore necessary to 
present our IE effort in the context of the MUC 
program. 

MUC divides IE into distinct tasks, 
namely, NE (Named Entity), TE (Template 
Element), TR (Template Relation), CO (Co-
reference), and ST (Scenario Templates) 
[Chinchor & Marsh 1998].  Our proposal for 
three levels of IE is modelled after the MUC 
standards using MUC-style representation.  
However, we have modified the MUC IE task 
definitions in order to make them more useful 
and more practical.  More precisely, we propose 
a hierarchical, 3-level architecture for 
developing a kernel IE system which is domain-
independent throughout. 

The core of this system is a state-of-the-art 
NE tagger [Srihari 1998], named Textract 1.0.   
The Textract NE tagger has achieved speed and 
accuracy comparable to that of the few deployed 
NE systems, such as NetOwl [Krupka & 
Hausman 1998] and Nymble [Bikel et al 1997]. 

It is to be noted that in our definition of NE, 
we significantly expanded the type of 

information to be extracted.  In addition to all 
the MUC defined NE types (person, 
organization, location, time, date, money and 
percent), the following types/sub-types of 
information are also identified by the 
TextractNE module: 

 
• duration, frequency, age 
• number, fraction, decimal, ordinal, math 

equation 
• weight, length, temperature, angle, area, 

capacity, speed, rate 
• product, software  
• address, email, phone, fax, telex, www 
• name (default proper name) 

 
Sub-type information like company, 

government agency, school (belonging to the 
type organization) and military person, religious 
person (belonging to person) are also identified.  
These new sub-types provide a better foundation 
for defining multiple relationships between the 
identified entities and for supporting question 
answering functionality.  For example,  the key 
to a question processor is to identify the asking 
point (who, what, when, where, etc.).  In many 
cases, the asking point corresponds to an NE 
beyond the MUC definition, e.g. the 
how+adjective questions:  how long (duration or 
length), how far (length), how often (frequency), 
how old (age), etc. 

Level-2 IE, or CE (Correlated Entity), is 
concerned with extracting pre-defined multiple 
relationships between the entities.  Consider the 
person entity as an example;  the TextractCE 
prototype is capable of extracting the key 
relationships such as age, gender, affiliation, 
position, birth_time, birth_place, spouse, 
parents, children, where_from, address, phone, 
fax, email, descriptors.  As seen, the information 
in the CE represents a mini-CV or profile of the 
entity.  In general, the CE template integrates 
and greatly enriches the information contained 
in MUC TE and TR. 

The final goal of our IE effort is to further 
extract open-ended general events (GE, or level 
3 IE) for information like who did what (to 
whom) when (or how often) and where.  By 
general events, we refer to argument structures 
centering around verb notions plus the 
associated information of time/frequency and 



location.  We show an example of our defined 
GE extracted from the text below: 

 
Julian Hill, a research chemist whose 
accidental discovery of a tough, taffylike 
compound revolutionized everyday life after 
it proved its worth in warfare and courtship, 
died on Sunday in Hockessin, Del. 
 
[1] <GE_TEMPLATE> :=  
 PREDICATE:   die 
 ARGUMENT1:  Julian Hill 
 TIME:   Sunday 
 LOCATION:  Hockessin, Del 
 
Figure 1 is the overall system architecture 

for the IE system Textract that our organization 
has been developing. 
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 Figure 1: Textract IE System Architecture 

The core of the system consists of three 
kernel IE modules and six linguistic modules.  
The multi-level linguistic modules serve as an 
underlying support system for different levels of 
IE.  The IE results are stored in a database which 
is the basis for IE-related applications like QA,  

BR (Browsing, threading and visualization) and 
AS (Automatic Summarization).  The approach 
to IE taken here, consists of a unique blend of 
machine learning and FST (finite state 
transducer) rule-based system [Roche & Schabes 
1997].  By combining machine learning with an 
FST rule-based system, we are able to exploit 
the best of both paradigms while overcoming 
their respective weaknesses [Srihari 1998, Li & 
Srihari 2000]. 

2 NE-Supported QA 

This section presents the QA system based on 
Named Entity tagging.   Out of the 200 
questions that comprised the TREC-8 QA track 
competition, over 80% asked for an NE, e.g. 
who (PERSON), when (TIME | DATE), where 
(LOCATION), how far (LENGTH).  Therefore, 
the NE tagger has been proven to be very 
helpful.  Of course, the NE of the targeted type 
is only necessary but not complete in answering 
such questions because NE by nature only 
extracts isolated individual entities from the text.  
Nevertheless, using even crude methods like 
"the nearest NE to the queried key words" or 
"the NE and its related key words within the 
same line (or same paragraph, etc.)",  in most 
cases, the QA system was able to extract text 
portions which contained answers in the top five 
list. 

Figure 2 illustrates the system design of 
TextractQA Prototype.  There are two 
components for the QA prototype: Question 
Processor and Text Processor.  The Text 
Matcher module links the two processing results 
and tries to find answers to the processed 
question.  Matching is  based on keywords, plus 
the NE type and their common location within a 
same sentence. 
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 Figure 2: Textract/QA 1.0 Prototype Architecture 

The general algorithm for question 
answering is as follows: 

 
Process Question 
 Shallow parse question  
 Determine Asking Point 
 Question expansion (using word lists) 
Process Documents 
 Tokenization, POS tagging, NE 

Indexing 
 Shallow Parsing (not yet utilized) 
Text Matcher 
 Intersect search engine results with NE 
 rank answers 

2.1 Question Processing 

The Question Processing results are a list of 
keywords plus the information for asking point.  
For example, the question: 
 

[2] Who won the 1998 Nobel Peace Prize? 
 
contains the following keywords: won, 1998, 
Nobel, Peace, Prize. The asking point Who 
refers to the NE type person.  The output before 
question expansion is a simple 2-feature 
template as shown below: 
 

[3] asking_point:  PERSON 
 key_word:  {won, 1998, Nobel,  

  Peace, Prize} 
 

The following is an example where the 
asking point does not correspond to any type of 
NE in our definition.  

 
[3] Why did David Koresh ask the FBI for a 
word processor? 
 
The system then maps it to the following 

question template : 
 
[4] asking_point:  REASON 
 key_word:  {ask, David, Koresh,  

  FBI, word, processor } 
 

The question processor scans the question to 
search for question words (wh-words) and maps 
them into corresponding NE types/sub-types or 
pre-defined notions like REASON.   

We adopt two sets of pattern matching rules 
for this purpose:  (i) structure based pattern 
matching rules;  (ii) simple key word based 
pattern matching rules (regarded as default 
rules).  It is fairly easy to exhaust the second set 
of rules as interrogative question words/phrases 
form a closed set.  In comparison, the 
development of the first set of rules are 
continuously being fine-tuned and expanded.  
This strategy of using two set of rules leads to 
the robustness of the question processor.   

The first set of rules are based on shallow 
parsing results of the questions, using Cymfony 
FST based Shallow Parser.  This parser 
identifies basic syntactic constructions like 
BaseNP (Basic Noun Phrase), BasePP (Basic 
Prepositional Phrase) and VG (Verb Group). 

The following is a sample of the first set of 
rules: 

 
[6] Name NP (city | country | company) -->  

CITY|COUNTRY|COMPANY 
[7] Name NP(person_w) --> PERSON  
[8] Name NP(org_w) --> 

ORGANIZATION 
[9] Name NP(NOT person_w, NOT org_w)  

--> NAME 
 

Rule [6] checks the head word of the NP.  It 
covers cases like VG[Name] NP[a country] that 
VG[is developing] NP[a magnetic levitation 
railway system].  Rule [7] works for cases like 
VG[Name] NP[the first private citizen] VG[to 
fly] PP[in space] as citizen belongs to the word 
class person_w.  Rule [9] is a catch-all rule:  if 
the NP is not of class person (person_w) or 



organization (org_w), then the asking point is a 
proper name (default NE), often realized in 
English in capitalized string of words.  
Examples include Name a film that has won the 
Golden Bear in the Berlin Film Festival. 

The word lists org_w and person_w are 
currently manually maintained based on 
inspection of large volumes of text.  An effort is 
underway to automate the learning of such word 
lists by utilizing machine learning techniques. 

We used the following pattern 
transformations to expand our ruleset: 

 
 (Please) name NP[X]  
--> what/which Aux(be) (the name of) 

NP[X]  
--> NP(what/which...X)    

   
In other words, the four rules are expanded 

to 12 rules.  For example, Rule [10] below 
corresponds to Rule [6];  Rule [11] is derived 
from Rule [7]. 

 
[10] what/which Aux(be) NP (city | country |  

 company) -->  
 CITY | COUNTRY | COMPANY  

[11] NP(what/which ... person_w) -->  
 PERSON   

 
Rule [10] extracts the asking point from 

cases like NP[What] Aux[is] NP[the largest 
country] PP[in the world].  Rule [11] covers the 
following questions:  NP[What costume 
designer] VG[decided] that NP[Michael 
Jackson] VG[should only wear] NP[one glove],  
NP[Which former Ku Klux Klan member] 
VG[won] NP[an elected office] PP[in the U.S.],  
NP[What Nobel laureate] VG[was expelled] 
PP[from the Philippines] PP[before the 
conference] PP[on East Timor],  NP[What 
famous communist leader] VG[died] PP[in 
Mexico City], etc. 

As seen, shallow parsing helps us to capture 
a variety of natural language question 
expressions.  However, there are cases where 
some simple key word based pattern matching 
would be enough to capture the asking point.  
That is our second set of rules.  These rules are 
used when the first set of rules has failed to 
produce results.  The following is a sample of 
such rules: 

 
[12] who/whom --> PERSON   
[13] when --> TIME/DATE   
[14] where/what place --> LOCATION  
[15] what time (of day) --> TIME  
[16] what day (of the week) --> DAY  
[17] what/which month --> MONTH  
[18] what age/how old --> AGE  
[19] what brand --> PRODUCT   
[20] what --> NAME     
[21] how far/tall/high  --> LENGTH  
[22] how large/big/small --> AREA   
[23] how heavy --> WEIGHT 
[24] how rich --> MONEY 
[25] how often --> FREQUENCY 
[26] how many --> NUMBER 
[27] how long --> LENGTH/DURATION  
[28] why/for what --> REASON 

 
In the stage of question expansion, the 

template in [4] would be expanded to the 
template shown in [29]: 

[29] asking_point: {because|because of| 
 due to|thanks to|since| 
 in order|to VB} 

  key_word:  {ask|asks|asked|asking,  
  David,Koresh,FBI, 
  word, processor} 

 
The last item in the asking_point list 

attempts to find an infinitive by checking the 
word to followed by a verb (with the part-of-
speech tag VB).  As we know, infinitive verb 
phrases are often used in English to explain a 
reason for some action. 
2.2 Text Processing 

On the text processing side, we first send the 
question directly to a search engine in order to 
narrow down the document pool to the first n, 
say 200, documents for IE processing.  
Currently, this includes tokenization, POS 
tagging and NE tagging.  Future plans include 
several levels of parsing as well; these are 
required to support CE and GE extraction.  It 
should be noted that all these operations are 
extremely robust and fast, features necessary for 
large volume text indexing.  Parsing is 
accomplished through cascaded finite state 
transducer grammars. 



2.3 Text Matching 

The Text Matcher attempts to match the 
question template with the processed documents 
for both the asking point and the key words.  
There is a preliminary ranking standard built-in 
the matcher in order to find the most probable 
answers.  The primary rank is a count of how 
many unique keywords are contained within a 
sentence.  The secondary ranking is based on the 
order that the keywords appear in the sentence 
compared to their order in the question.  The 
third ranking is based on whether there is an 
exact match or a variant match for the key verb.      

In the TREC-8 QA track competition,  
Cymfony QA accuracy was 66.0%.  Considering 
we have only used NE technology to support 
QA in this run, 66.0% is a very encouraging 
result.   

3 Limitation 

The first limitation comes from the types of 
questions.  Currently only wh-questions are 
handled although it is planned that yes-no 
questions will be handled once we introduce CE 
and GE templates to support QA.  Among the 
wh-questions, the why-question and how-
question1 are more challenging because the 
asking point cannot be simply mapped to the NE 
types/sub-types.   

The second limitation is from the nature of 
the questions.  Questions like Where can I find 
the homepage for Oscar winners or Where can I 
find info on Shakespeare’s works might be 
answerable easily by a system based on a well-
maintained data base of home pages.  Since our 
system is based on the processing of the 
underlying documents, no correct answer can be 
provided if there is no such an answer (explicitly 
expressed in English) in the processed 
documents.  In TREC-8 QA, this is not a 
problem since every question is guaranteed to 
have at least one answer in the given document 
pool.  However, in the real world scenario such 
as a QA portal, it is conceived that the IE results 
based on the processing of the documents should 
be complemented by other knowledge sources 

                                                      
1 For example, How did one make a chocolate cake? 
How+Adjective questions (e.g. how long, how big, 
how old, etc.) are handled fairly well. 

such as e-copy of yellow pages or other 
manually maintained and updated data bases.  

The third limitation is the lack of linguistic 
processing such as sentence-level parsing and 
cross-sentential co-reference (CO).  This 
problem will be gradually solved when high-
level IE technology is introduced into the 
system.     

4 Future Work:  Multi-level IE Supported 
QA 

A new QA architecture is under development; it 
will exploit all levels of the IE system, including 
CE and GE.   

The first issue is how much CE can 
contribute to a better support of QA.  It is found 
that there are some frequently seen questions 
which can be better answered once the CE 
information is provided.  These questions are of 
two types:  (i) what/who questions about an NE;  
(ii) relationship questions. 

Questions of the following format require 
CE templates as best answers: who/what is NE?  
For example, Who is Julian Hill?  Who is Bill 
Clinton? What is Du Pont? What is Cymfony?  
To answer these questions, the system can 
simply retrieve the corresponding CE template 
to provide an “assembled” answer, as shown 
below. 

 
Q:   Who is Julian Hill? 
A: name:   Julian Werner Hill 
 type:   PERSON 
 age:   91 
 gender:  MALE 
 position:  research chemist 
 affiliation:  Du Pont Co. 
 education:   Washington University;  
   MIT 
 
Q:   What is Du Pont? 
A:  name:  Du Pont Co. 
 type:  COMPANY 
 staff:  Julian Hill;  Wallace Carothers. 
 
Questions specifically about a CE 

relationship include:  For which company did 
Julian Hill work? (affiliation relationship)  Who 
are employees of Du Pont Co.? (staff 
relationship) What does Julian Hill do? 
(position/profession relationship)  Which 



university did Julian Hill graduate from? 
(education relationship), etc.2   

The next issue is the relationships between 
GE and QA.  It is our belief that the GE 
technology will result in a breakthrough for QA. 

In order to extract GE templates, the text 
goes through a series of linguistic processing as 
shown in Figure 1.  It should be noted that the 
question processing is designed to go through 
parallel processes and share the same NLP 
resources until the point of matching and 
ranking. 

The merging of question templates and GE 
templates in Template Matcher are fairly 
straightforward.  As they both undergo the same 
NLP processing, the resulting semantic 
templates are of the same form.  Both question 
templates and GE templates correspond to fairly 
standard/predictable patterns (the PREDICATE 
value is open-ended, but the structure remains 
stable).  More precisely, a user can ask questions 
on general events themselves (did what) and/or 
on the participants of the event (who, whom, 
what) and/or the time, frequency and place of 
events (when, how often, where).  This addresses 
by far the most types of general questions of a 
potential user. 

For example, if a user is interested in 
company acquisition events, he can ask 
questions like: Which companies ware acquired 
by Microsoft in 1999? Which companies did 
Microsoft acquire in 1999?  Our system will 
then parse these questions into the templates as 
shown below: 

 
[31] <Q_TEMPLATE> :=  
 PREDICATE:  acquire 
 ARGUMENT1: Microsoft 
 ARGUMENT2: WHAT(COMPANY) 
 TIME: 1999 
 
If the user wants to know when some 

acquisition happened, he can ask: When was 
Netscape acquired?  Our system will then 
translate it into the pattern below: 

 

                                                      
2 An alpha version of TextractQA supported by both 
NE and CE has been implemented and is being 
tested. 

[32] <Q_TEMPLATE> :=  
 PREDICATE:  acquire 
 ARGUMENT1: WHO 
 ARGUMENT2: Netscape 
 TIME: WHEN 

 
Note that WHO,  WHAT, WHEN above are 

variable to be instantiated.  Such question 
templates serve as search constraints to filter the 
events in our extracted GE template database.  
Because the question templates and the extracted 
GE template share the same structure, a simple 
merging operation would suffice.  Nevertheless, 
there are two important questions to be 
answered:  (i) what if a different verb with the 
same meaning is used in the question from the 
one used in the processed text?  (ii) what if the 
question asks about something beyond the GE 
(or CE) information?  These are issues that we 
are currently researching. 
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