
A Question Answering System Supported by Information
Extraction∗∗∗∗

Rohini Srihari
Cymfony Inc.

5500 Main Street
Williamsville, NY14221

rohini@cymfony.com

Wei Li
Cymfony Inc.

5500 Main Street
Williamsville, NY14221

wei@cymfony.com

∗ This work was supported in part by the SBIR grants F30602-98-C-0043 and F30602-99-C-0102 from Air Force
Research Laboratory (AFRL)/IFED.

Abstract

This paper discusses an information
extraction (IE) system, Textract, in natural
language (NL) question answering (QA) and
examines the role of IE in QA application.
It shows: (i) Named Entity tagging is an
important component for QA, (ii) an NL
shallow parser provides a structural basis for
questions, and (iii) high-level domain
independent IE can result in a QA
breakthrough.

Introduction

With the explosion of information in Internet,
Natural language QA is recognized as a
capability with great potential. Traditionally,
QA has attracted many AI researchers, but most
QA systems developed are toy systems or games
confined to lab and a very restricted domain.
More recently, Text Retrieval Conference
(TREC-8) designed a QA track to stimulate the
research for real world application.

Due to little linguistic support from text
analysis, conventional IR systems or search
engines do not really perform the task of
information retrieval; they in fact aim at only
document retrieval. The following quote from
the QA Track Specifications
(www.research.att.com/
~singhal/qa-track-spec.txt) in the TREC
community illustrates this point.

Current information retrieval systems allow
us to locate documents that might contain

the pertinent information, but most of them
leave it to the user to extract the useful
information from a ranked list. This leaves
the (often unwilling) user with a relatively
large amount of text to consume. There is an
urgent need for tools that would reduce the
amount of text one might have to read in
order to obtain the desired information. This
track aims at doing exactly that for a special
(and popular) class of information seeking
behavior: QUESTION ANSWERING.
People have questions and they need
answers, not documents. Automatic question
answering will definitely be a significant
advance in the state-of-art information
retrieval technology.

Kupiec (1993) presented a QA system

MURAX using an on-line encyclopedia. This
system used the technology of robust shallow
parsing but suffered from the lack of basic
information extraction support. In fact, the most
siginifcant IE advance, namely the NE (Named
Entity) technology, occured after Kupiec
(1993), thanks to the MUC program (MUC-7
1998). High-level IE technology beyond NE has
not been in the stage of possible application until
recently.

AskJeeves launched a QA portal
(www.askjeeves.com). It is equipped with a
fairly sophisticated natural language question
parser, but it does not provide direct answers to
the asked questions. Instead, it directs the user
to the relevant web pages, just as the traditional
search engine does. In this sense, AskJeeves has
only done half of the job for QA.

http://www.research.att.com/
http://www.askjeeves.com/

We believe that QA is an ideal test bed for
demonstrating the power of IE. There is a
natural co-operation between IE and IR; we
regard QA as one major intelligence which IE
can offer IR.

An important question then is, what type of
IE can support IR in QA and how well does it
support it? This forms the major topic of this
paper. We structure the remaining part of the
paper as follows. In Section 1, we first give an
overview of the underlying IE technology
which our organization has been developing.
Section 2 discusses the QA system. Section 3
describes the limitation of the current system.
Finally, in Section 4, we propose a more
sophisticated QA system supported by three
levels of IE.

1 Overview of Textract IE

The last decade has seen great advance and
interest in the area of IE. In the US, the DARPA
sponsored Tipster Text Program [Grishman
1997] and the Message Understanding
Conferences (MUC) [MUC-7 1998] have been
the driving force for developing this technology.
In fact, the MUC specifications for various IE
tasks have become de facto standards in the IE
research community. It is therefore necessary to
present our IE effort in the context of the MUC
program.

MUC divides IE into distinct tasks,
namely, NE (Named Entity), TE (Template
Element), TR (Template Relation), CO (Co-
reference), and ST (Scenario Templates)
[Chinchor & Marsh 1998]. Our proposal for
three levels of IE is modelled after the MUC
standards using MUC-style representation.
However, we have modified the MUC IE task
definitions in order to make them more useful
and more practical. More precisely, we propose
a hierarchical, 3-level architecture for
developing a kernel IE system which is domain-
independent throughout.

The core of this system is a state-of-the-art
NE tagger [Srihari 1998], named Textract 1.0.
The Textract NE tagger has achieved speed and
accuracy comparable to that of the few deployed
NE systems, such as NetOwl [Krupka &
Hausman 1998] and Nymble [Bikel et al 1997].

It is to be noted that in our definition of NE,
we significantly expanded the type of

information to be extracted. In addition to all
the MUC defined NE types (person,
organization, location, time, date, money and
percent), the following types/sub-types of
information are also identified by the
TextractNE module:

• duration, frequency, age
• number, fraction, decimal, ordinal, math

equation
• weight, length, temperature, angle, area,

capacity, speed, rate
• product, software
• address, email, phone, fax, telex, www
• name (default proper name)

Sub-type information like company,

government agency, school (belonging to the
type organization) and military person, religious
person (belonging to person) are also identified.
These new sub-types provide a better foundation
for defining multiple relationships between the
identified entities and for supporting question
answering functionality. For example, the key
to a question processor is to identify the asking
point (who, what, when, where, etc.). In many
cases, the asking point corresponds to an NE
beyond the MUC definition, e.g. the
how+adjective questions: how long (duration or
length), how far (length), how often (frequency),
how old (age), etc.

Level-2 IE, or CE (Correlated Entity), is
concerned with extracting pre-defined multiple
relationships between the entities. Consider the
person entity as an example; the TextractCE
prototype is capable of extracting the key
relationships such as age, gender, affiliation,
position, birth_time, birth_place, spouse,
parents, children, where_from, address, phone,
fax, email, descriptors. As seen, the information
in the CE represents a mini-CV or profile of the
entity. In general, the CE template integrates
and greatly enriches the information contained
in MUC TE and TR.

The final goal of our IE effort is to further
extract open-ended general events (GE, or level
3 IE) for information like who did what (to
whom) when (or how often) and where. By
general events, we refer to argument structures
centering around verb notions plus the
associated information of time/frequency and

location. We show an example of our defined
GE extracted from the text below:

Julian Hill, a research chemist whose
accidental discovery of a tough, taffylike
compound revolutionized everyday life after
it proved its worth in warfare and courtship,
died on Sunday in Hockessin, Del.

[1] <GE_TEMPLATE> :=
 PREDICATE: die
 ARGUMENT1: Julian Hill
 TIME: Sunday
 LOCATION: Hockessin, Del

Figure 1 is the overall system architecture

for the IE system Textract that our organization
has been developing.

Kernel IE Modules Linguistic Modules

GE

CE

NE

Pragmatic
Filtering

POS

CO

QA: Question Answering
BR: Intelligent Browsing
AS: Automatic Summarization

O
ut

pu
t

(I
E

D
at

ab
as

e)

QA BR
Application Modules

Shallow
Parsing

Full
Parsing

NE: Named Entity Tagging
CE: Correlated Entity Extraction
GE: General Event Extraction
CO: Co-referenc ing Nominal Signs

Tokenizer

Input

AS

 Figure 1: Textract IE System Architecture

The core of the system consists of three
kernel IE modules and six linguistic modules.
The multi-level linguistic modules serve as an
underlying support system for different levels of
IE. The IE results are stored in a database which
is the basis for IE-related applications like QA,

BR (Browsing, threading and visualization) and
AS (Automatic Summarization). The approach
to IE taken here, consists of a unique blend of
machine learning and FST (finite state
transducer) rule-based system [Roche & Schabes
1997]. By combining machine learning with an
FST rule-based system, we are able to exploit
the best of both paradigms while overcoming
their respective weaknesses [Srihari 1998, Li &
Srihari 2000].

2 NE-Supported QA

This section presents the QA system based on
Named Entity tagging. Out of the 200
questions that comprised the TREC-8 QA track
competition, over 80% asked for an NE, e.g.
who (PERSON), when (TIME | DATE), where
(LOCATION), how far (LENGTH). Therefore,
the NE tagger has been proven to be very
helpful. Of course, the NE of the targeted type
is only necessary but not complete in answering
such questions because NE by nature only
extracts isolated individual entities from the text.
Nevertheless, using even crude methods like
"the nearest NE to the queried key words" or
"the NE and its related key words within the
same line (or same paragraph, etc.)", in most
cases, the QA system was able to extract text
portions which contained answers in the top five
list.

Figure 2 illustrates the system design of
TextractQA Prototype. There are two
components for the QA prototype: Question
Processor and Text Processor. The Text
Matcher module links the two processing results
and tries to find answers to the processed
question. Matching is based on keywords, plus
the NE type and their common location within a
same sentence.

Question Processor

Asking Point
Determination

Search Engine

NE Tagger

Text
Matcher

NE Database

Question
Expansion

Text Processor

Question Answer

Document
Pool

 Figure 2: Textract/QA 1.0 Prototype Architecture

The general algorithm for question
answering is as follows:

Process Question
 Shallow parse question
 Determine Asking Point
 Question expansion (using word lists)
Process Documents
 Tokenization, POS tagging, NE

Indexing
 Shallow Parsing (not yet utilized)
Text Matcher
 Intersect search engine results with NE
 rank answers

2.1 Question Processing

The Question Processing results are a list of
keywords plus the information for asking point.
For example, the question:

[2] Who won the 1998 Nobel Peace Prize?

contains the following keywords: won, 1998,
Nobel, Peace, Prize. The asking point Who
refers to the NE type person. The output before
question expansion is a simple 2-feature
template as shown below:

[3] asking_point: PERSON
 key_word: {won, 1998, Nobel,

 Peace, Prize}

The following is an example where the
asking point does not correspond to any type of
NE in our definition.

[3] Why did David Koresh ask the FBI for a
word processor?

The system then maps it to the following

question template :

[4] asking_point: REASON
 key_word: {ask, David, Koresh,

 FBI, word, processor }

The question processor scans the question to
search for question words (wh-words) and maps
them into corresponding NE types/sub-types or
pre-defined notions like REASON.

We adopt two sets of pattern matching rules
for this purpose: (i) structure based pattern
matching rules; (ii) simple key word based
pattern matching rules (regarded as default
rules). It is fairly easy to exhaust the second set
of rules as interrogative question words/phrases
form a closed set. In comparison, the
development of the first set of rules are
continuously being fine-tuned and expanded.
This strategy of using two set of rules leads to
the robustness of the question processor.

The first set of rules are based on shallow
parsing results of the questions, using Cymfony
FST based Shallow Parser. This parser
identifies basic syntactic constructions like
BaseNP (Basic Noun Phrase), BasePP (Basic
Prepositional Phrase) and VG (Verb Group).

The following is a sample of the first set of
rules:

[6] Name NP (city | country | company) -->

CITY|COUNTRY|COMPANY
[7] Name NP(person_w) --> PERSON
[8] Name NP(org_w) -->

ORGANIZATION
[9] Name NP(NOT person_w, NOT org_w)

--> NAME

Rule [6] checks the head word of the NP. It
covers cases like VG[Name] NP[a country] that
VG[is developing] NP[a magnetic levitation
railway system]. Rule [7] works for cases like
VG[Name] NP[the first private citizen] VG[to
fly] PP[in space] as citizen belongs to the word
class person_w. Rule [9] is a catch-all rule: if
the NP is not of class person (person_w) or

organization (org_w), then the asking point is a
proper name (default NE), often realized in
English in capitalized string of words.
Examples include Name a film that has won the
Golden Bear in the Berlin Film Festival.

The word lists org_w and person_w are
currently manually maintained based on
inspection of large volumes of text. An effort is
underway to automate the learning of such word
lists by utilizing machine learning techniques.

We used the following pattern
transformations to expand our ruleset:

 (Please) name NP[X]
--> what/which Aux(be) (the name of)

NP[X]
--> NP(what/which...X)

In other words, the four rules are expanded

to 12 rules. For example, Rule [10] below
corresponds to Rule [6]; Rule [11] is derived
from Rule [7].

[10] what/which Aux(be) NP (city | country |

 company) -->
 CITY | COUNTRY | COMPANY

[11] NP(what/which ... person_w) -->
 PERSON

Rule [10] extracts the asking point from

cases like NP[What] Aux[is] NP[the largest
country] PP[in the world]. Rule [11] covers the
following questions: NP[What costume
designer] VG[decided] that NP[Michael
Jackson] VG[should only wear] NP[one glove],
NP[Which former Ku Klux Klan member]
VG[won] NP[an elected office] PP[in the U.S.],
NP[What Nobel laureate] VG[was expelled]
PP[from the Philippines] PP[before the
conference] PP[on East Timor], NP[What
famous communist leader] VG[died] PP[in
Mexico City], etc.

As seen, shallow parsing helps us to capture
a variety of natural language question
expressions. However, there are cases where
some simple key word based pattern matching
would be enough to capture the asking point.
That is our second set of rules. These rules are
used when the first set of rules has failed to
produce results. The following is a sample of
such rules:

[12] who/whom --> PERSON
[13] when --> TIME/DATE
[14] where/what place --> LOCATION
[15] what time (of day) --> TIME
[16] what day (of the week) --> DAY
[17] what/which month --> MONTH
[18] what age/how old --> AGE
[19] what brand --> PRODUCT
[20] what --> NAME
[21] how far/tall/high --> LENGTH
[22] how large/big/small --> AREA
[23] how heavy --> WEIGHT
[24] how rich --> MONEY
[25] how often --> FREQUENCY
[26] how many --> NUMBER
[27] how long --> LENGTH/DURATION
[28] why/for what --> REASON

In the stage of question expansion, the

template in [4] would be expanded to the
template shown in [29]:

[29] asking_point: {because|because of|
 due to|thanks to|since|
 in order|to VB}

 key_word: {ask|asks|asked|asking,
 David,Koresh,FBI,
 word, processor}

The last item in the asking_point list

attempts to find an infinitive by checking the
word to followed by a verb (with the part-of-
speech tag VB). As we know, infinitive verb
phrases are often used in English to explain a
reason for some action.
2.2 Text Processing

On the text processing side, we first send the
question directly to a search engine in order to
narrow down the document pool to the first n,
say 200, documents for IE processing.
Currently, this includes tokenization, POS
tagging and NE tagging. Future plans include
several levels of parsing as well; these are
required to support CE and GE extraction. It
should be noted that all these operations are
extremely robust and fast, features necessary for
large volume text indexing. Parsing is
accomplished through cascaded finite state
transducer grammars.

2.3 Text Matching

The Text Matcher attempts to match the
question template with the processed documents
for both the asking point and the key words.
There is a preliminary ranking standard built-in
the matcher in order to find the most probable
answers. The primary rank is a count of how
many unique keywords are contained within a
sentence. The secondary ranking is based on the
order that the keywords appear in the sentence
compared to their order in the question. The
third ranking is based on whether there is an
exact match or a variant match for the key verb.

In the TREC-8 QA track competition,
Cymfony QA accuracy was 66.0%. Considering
we have only used NE technology to support
QA in this run, 66.0% is a very encouraging
result.

3 Limitation

The first limitation comes from the types of
questions. Currently only wh-questions are
handled although it is planned that yes-no
questions will be handled once we introduce CE
and GE templates to support QA. Among the
wh-questions, the why-question and how-
question1 are more challenging because the
asking point cannot be simply mapped to the NE
types/sub-types.

The second limitation is from the nature of
the questions. Questions like Where can I find
the homepage for Oscar winners or Where can I
find info on Shakespeare’s works might be
answerable easily by a system based on a well-
maintained data base of home pages. Since our
system is based on the processing of the
underlying documents, no correct answer can be
provided if there is no such an answer (explicitly
expressed in English) in the processed
documents. In TREC-8 QA, this is not a
problem since every question is guaranteed to
have at least one answer in the given document
pool. However, in the real world scenario such
as a QA portal, it is conceived that the IE results
based on the processing of the documents should
be complemented by other knowledge sources

1 For example, How did one make a chocolate cake?
How+Adjective questions (e.g. how long, how big,
how old, etc.) are handled fairly well.

such as e-copy of yellow pages or other
manually maintained and updated data bases.

The third limitation is the lack of linguistic
processing such as sentence-level parsing and
cross-sentential co-reference (CO). This
problem will be gradually solved when high-
level IE technology is introduced into the
system.

4 Future Work: Multi-level IE Supported
QA

A new QA architecture is under development; it
will exploit all levels of the IE system, including
CE and GE.

The first issue is how much CE can
contribute to a better support of QA. It is found
that there are some frequently seen questions
which can be better answered once the CE
information is provided. These questions are of
two types: (i) what/who questions about an NE;
(ii) relationship questions.

Questions of the following format require
CE templates as best answers: who/what is NE?
For example, Who is Julian Hill? Who is Bill
Clinton? What is Du Pont? What is Cymfony?
To answer these questions, the system can
simply retrieve the corresponding CE template
to provide an “assembled” answer, as shown
below.

Q: Who is Julian Hill?
A: name: Julian Werner Hill
 type: PERSON
 age: 91
 gender: MALE
 position: research chemist
 affiliation: Du Pont Co.
 education: Washington University;
 MIT

Q: What is Du Pont?
A: name: Du Pont Co.
 type: COMPANY
 staff: Julian Hill; Wallace Carothers.

Questions specifically about a CE

relationship include: For which company did
Julian Hill work? (affiliation relationship) Who
are employees of Du Pont Co.? (staff
relationship) What does Julian Hill do?
(position/profession relationship) Which

university did Julian Hill graduate from?
(education relationship), etc.2

The next issue is the relationships between
GE and QA. It is our belief that the GE
technology will result in a breakthrough for QA.

In order to extract GE templates, the text
goes through a series of linguistic processing as
shown in Figure 1. It should be noted that the
question processing is designed to go through
parallel processes and share the same NLP
resources until the point of matching and
ranking.

The merging of question templates and GE
templates in Template Matcher are fairly
straightforward. As they both undergo the same
NLP processing, the resulting semantic
templates are of the same form. Both question
templates and GE templates correspond to fairly
standard/predictable patterns (the PREDICATE
value is open-ended, but the structure remains
stable). More precisely, a user can ask questions
on general events themselves (did what) and/or
on the participants of the event (who, whom,
what) and/or the time, frequency and place of
events (when, how often, where). This addresses
by far the most types of general questions of a
potential user.

For example, if a user is interested in
company acquisition events, he can ask
questions like: Which companies ware acquired
by Microsoft in 1999? Which companies did
Microsoft acquire in 1999? Our system will
then parse these questions into the templates as
shown below:

[31] <Q_TEMPLATE> :=
 PREDICATE: acquire
 ARGUMENT1: Microsoft
 ARGUMENT2: WHAT(COMPANY)
 TIME: 1999

If the user wants to know when some

acquisition happened, he can ask: When was
Netscape acquired? Our system will then
translate it into the pattern below:

2 An alpha version of TextractQA supported by both
NE and CE has been implemented and is being
tested.

[32] <Q_TEMPLATE> :=
 PREDICATE: acquire
 ARGUMENT1: WHO
 ARGUMENT2: Netscape
 TIME: WHEN

Note that WHO, WHAT, WHEN above are

variable to be instantiated. Such question
templates serve as search constraints to filter the
events in our extracted GE template database.
Because the question templates and the extracted
GE template share the same structure, a simple
merging operation would suffice. Nevertheless,
there are two important questions to be
answered: (i) what if a different verb with the
same meaning is used in the question from the
one used in the processed text? (ii) what if the
question asks about something beyond the GE
(or CE) information? These are issues that we
are currently researching.

References

Bikel D.M. et al. (1997) Nymble: a High-
Performance Learning Name-finder. “Proceedings
of the Fifth Conference on Applied Natural
Language Processing”, Morgan Kaufmann
Publishers, pp. 194-201

Chinchor N. and Marsh E. (1998) MUC-7
Information Extraction Task Definition (version
5.1), “Proceedings of MUC-7”.

Grishman R. (1997) TIPSTER Architecture Design
Document Version 2.3. Technical report, DARPA

Krupka G.R. and Hausman K. (1998) IsoQuest Inc.:
Description of the NetOwl (TM) Extractor System
as Used for MUC-7, “Proceedings of MUC-7”.

Kupiec J. (1993) MURAX: A Robust Linguistic
Approach For Question Answering Using An On-
Line Encyclopaedia, “Proceedings of SIGIR-93
93” Pittsburgh, Penna.

Li, W & Srihari, R. 2000. Flexible Information
Extraction Learning Algorithm, Final Technical
Report, Air Force Research Laboratory, Rome
Research Site, New York

MUC-7 (1998) Proceedings of the Seventh Message
Understanding Conference (MUC-7), published on
the website http://www.muc.saic.com/

Roche E. and Schabes Y. (1997) Finite-State
Language Processing, MIT Press, Cambridge, MA

Srihari R. (1998) A Domain Independent Event
Extraction Toolkit, AFRL-IF-RS-TR-1998-152

http://www.muc.saic.com/

Final Technical Report, Air Force Research
Laboratory, Rome Research Site, New York

	A
	Abstract
	Introduction
	1	Overview of Textract IE
	2	NE-Supported QA
	2.1	Question Processing
	2.2	Text Processing
	2.3	Text Matching

	3	Limitation
	4	Future Work: Multi-level IE Supported QA
	References

