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This paper presents a new bootstrapping approach to relationship extraction from raw 
text. The bootstrapping procedure consists of two learning phases. First, symbolic  
relationship extraction rules are learned after three levels of processing, namely, post-
Named-Entity-tagging, post-shallow-parsing, and post-deep-parsing. Then, a Hidden 
Markov Model (HMM) classifier is trained to identify the targeted relationship from the 
post-shallow-parsing context. The HMM training utilizes a corpus automatically tagged 
by the symbolic rules learned in the first phase. The resulting HMM is in effect a  
generalization of the recognized post-shallow-parsing contexts, hence it achieves higher 
recall. Benchmarking shows that this new bootstrapping method approaches supervised 
learning methods in performance. The contributions of different levels of contexts are 
also evaluated.  
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1 INTRODUCTION 

Detecting relationships between entities is one major task in Information Extraction (IE)  
beyond Named Entity (NE) tagging.  Relationships are major building blocks for entity profiles 
(EPs) whose extraction is an intermediate level IE task with great potential in applications (Li et 
al. 2003).  The Message Understanding Conference (MUC) has defined three relationships as  
targets for extraction in its Template Relation (TR) task (Chinchor & Marsh 1998):  
(i) the LOCATION_OF relationship from an organization (ORG) entity to a location (LOC) entity,  
(ii) the EMPLOYEE_OF relationship from an ORG entity to a person entity, and (iii) the 
PRODUCT_OF relationship from an ORG entity to a product entity. 

Research on relationship extraction uses various techniques, including handcrafted rules 
(Aone & Ramos-Santacruz 2000) (Li et al. 2003), and supervised machine learning, such as the 
shallow parsing-based kernel method (Zelenko et al. 2002).  Rule-based systems and supervised 
learning systems achieve state-of-the-art performance for relationship extraction.  However, both 
approaches face a serious knowledge bottleneck.  Rule-based systems require a significant amount 
of skilled labor.  Supervised learning needs a sizable manually truthed training corpus to cover the 
variety of the contexts representing the relationship.  This knowledge bottleneck makes it difficult 
to do rapid domain porting and to support user-defined relationship extraction.  This motivates the 
relationship extraction research using unsupervised machine learning that only requires a raw  
corpus from a given domain. 
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Riloff (1996) described a system which automatically generates parsing-based information  
extraction patterns from an untagged corpus.  This system requires document classification.  
Agichtein & Gravano (2000) proposed a bootstrapping approach for relationship extraction which 
only requires a few relationship instances (facts)1 as initial seeds.  Ravichandran & Hovy (2002) 
uses a bootstrapping method that extracts relationships from the web in order to enhance their 
Question-Answering system.  Unlike Zelenko et al. (2002), these two bootstrapping systems only 
use surface text patterns.  Due to the lack of parsing support and a pattern generalization  
mechanism, Ravichandran & Hovy (2002)’s system suffers from limited extraction recall.  To  
improve recall, Agichtein & Gravano (2000) implemented a clustering algorithm to model impor-
tant features of the targeted surface token sequences. 

Bootstrapping approaches have also been explored in Natural Language Processing (NLP)/IE 
tasks other than relationship extraction.  Collins & Singer (1999) used co-training for NE  
classification.  Cucerzan & Yarowsky (1999) described a bootstrapping technique for language-
independent NE tagging based on two orthogonal evidence sources, namely, context evidence and 
morphology evidence.  Yarowsky (1995) presented a bootstrapping approach for word sense  
disambiguation.  

This paper presents a new bootstrapping approach to relationship extraction following our 
successful application of two-step learning to NE classification (Niu et al. 2003).  It consists of 
two learning phases. First, precision-oriented symbolic rules are learned at three structural levels: 
post-Named-Entity-tagging (post-NE), post-shallow-parsing (post-SP), and post-deep-parsing 
(post-DP).  To improve the system recall, a Hidden Markov Model (HMM) is trained to classify 
whether the incoming post-SP contexts express the targeted relationship.  The training of the 
HMM uses the corpus automatically tagged by the symbolic rules learned in the first learning 
phase.  The novelty of this research lies in three aspects: (i) the exploration of multi-level  
structural contexts; (ii) the separation of the pattern generalization process from the pattern  
extraction process: targeted patterns are extracted during bootstrapped iterative learning, and the 
learned patterns are subsequently generalized by statistical modeling; (iii) formulating the pattern 
generalization task as a language modeling task.  

The remaining text is structured as follows.  The system design is presented in Section 2.   
Section 3 describes the bootstrapped symbolic rule learning using multi-level contexts.  Section 4 
presents the training of the HMM as a post-SP context classifier.  Section 5 shows the experiment 
procedure and  benchmarks, followed by the conclusion in Section 6. 

2 SYSTEM DESIGN 

2.1 System Architecture 
Although an infinite number of relationships can occur between entities, there are certain  

relations that are more predictable and relatively permanent, with respect to Temporal Granularity 
(Hobbs & Israel 1994), than others.  Such relations are targets for relationship extraction, in  
contrast to event extraction, which aims at capturing more dynamic relations (actions) and the  
related roles involving entities.  

The above nature of relationships between entities is critical for the feasibility of bootstrapped 
relationship learning from raw text.  If a relationship is not subject to constant changes (e.g. 
LOCATION_OF, BIRTHDAY_OF), the mention of the same entity pair in a sentence usually 
represents this relationship.  The context redundancy in the multiple mentions of a given relation-
ship instance is the key for effective unsupervised relationship learning (Agichtein & Gravano 
2000). 

                                                           
1 Relationship instance refers to a unique entity pair that holds a targeted relationship.  Note that there may be 
multiple mentions of the same relationship instance in a corpus.   



Figure 1 shows the system architecture for our bootstrapped relationship learning.  A large raw 
corpus is first parsed by our InfoXtract parser (Srihari et al. 2003), which consists of a pipeline of 
components, mainly, an NE Tagger, Shallow Parser and Deep Parser.  The original text and its 
associated processing results - including NEs, SP units, and DP dependency trees - are stored in an 
indexed repository which supports high speed retrieval. 

The bootstrapping starts with the input of a few seeds in the form of entity pairs that hold the 
targeted relationship, e.g. {Microsoft, Redmond} for the LOCATION_OF relationship, 
{[Abraham Lincoln], [February 12, 1809]} for the BIRTHDAY_OF relationship.  The learning 
system then retrieves all sentences containing the entity pairs as contexts.  Three levels of context 
are retrieved: (i) post-NE token sequence; (ii) post-SP unit sequence; and (iii) post-DP dependency 
trees. 

In the symbolic rule learning stage, the patterns are extracted from one of the three levels of 
contexts, and patterns with high accuracy are learned as relationship extraction rules.  These 
learned rules are applied to the training corpus in the repository to extract new relationship 
instances.  Then the contexts of these new instances are used to learn more rules iteratively.  The 
symbolic rule learning algorithm stops when no new rules can be learned.  
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Figure 1. Bootstrapping Architecture for Relationship Extraction  

 
In the second learning phase, the post-SP contexts associated with the recognized relationship 

instances are used to train an HMM-based context classifier.  The resulting HMM is a 
generalization of the post-SP contextual patterns learned in the previous stage.  Therefore, the 
recall is significantly enhanced. 

2.2 Why Multi-level: Linguistic Justification  
Before describing the details on how the different levels of contexts are retrieved for relation-

ship learning, it is necessary to present the rationale behind the multi-level learning.  In order to 
capture the linguistic phenomena representing relationships, multi-level rules are desirable since 
relationships between entities are often expressed in English at different levels of linguistic  
structure (Li et al. 2003).  Three levels of structure are identified for effective relationship  
extraction via pattern matching.   

The first level is NE, the results are a linear token string except for multi-token NEs which 
have been combined into a single compound token.  Relationship rules learned at this level are 
designed to capture surface level phenomena.  For example, the linear pattern LOC -based ORG 



will match cases like Seattle-based Microsoft.  For this type of very local phenomena, linguistic 
parsing beyond NE is not helpful. 

The second level is Shallow Parsing (SP).  SP aims at grouping the basic linguistic units, 
mainly, BaseNP (Basic Noun Phrase) and VG (Verb Group) (Church 1988).  The results create a 
basic structural foundation for capturing some relationship patterns.  The following is a pattern 
rule for the relationship EMPLOYEE_OF:  PER ,  position_word_list of/for/from ORG.  This rule 
will handle cases like Robert Callahan, spokesman of Seattle-based Microsoft.  In this example, 
the relationship EMPLOYEE_OF from Microsoft to Robert Callahan cannot be captured without 
the SP structural basis which allows pattern matching to ‘jump over’ pre-modifiers like Seattle-
based.  

The third level is Deep Parsing (DP).  DP in InfoXtract is designed to decode underlying 
logical dependency relationships, in effect a type of logical form.  It is especially suited for 
targeting relationships expressed by logical Subject-Verb-Object (SVO) structures.  The following 
sample is a DP-based pattern rule for the relationship EMPLOYEE_OF.  
 

‘work for’ Subject: PER  
  Object: ORG 

 

This rule is able to cover cases like Robert Jackson originally from Washington, D.C. has been 
working for Seattle-based Microsoft for almost a decade.  In the above example, the adverb 
originally and the prepositional phrase from Washington, D.C. no longer stand in the way of 
pattern matching as DP produces a dependency link directly between work for and Robert 
Jackson.     

2.3 HMM as a Context Classifier 
The rationale behind using an HMM for relationship extraction lies in the equivalence of the 

relationship extraction task to the binary context classification task.  That is, given a context  
containing a pair of appropriate entities, determine whether the context expresses the targeted rela-
tionship. 

Like the post-NE context, the post-SP context is also a linear token sequence.  So the context 
classification for relationship detection is equivalent to the binary token sequence classification.  
This is a language modeling task (Jelinek 1997).  HMM is generally recognized as one of the most 
powerful devices for language modeling (Murphy 1995).  One important feature of probabilistic 
finite automata, such as HMM, is the feasibility of learning from positive instances only (Murphy 
1995).  This feature makes this new bootstrapping procedure possible since the symbolic rules 
learned from the first phase can only provide positive instances. 

Agichtein & Gravano (2000) uses a context clustering method based on a vector space model 
for pattern generalization.  We believe that the induction of an HMM as a context classifier is a 
more effective approach since word order is taken into account in addition to uni-gram statistics. 

3 SYMBOLIC RULE LEARNING 

3.1 Context Retrieval 
Three context representations are explored corresponding to the three levels of InfoXtract 

processing.  The post-NE context consists of a linear sequence of words and identified NEs.  The 
post-SP context is represented as a linear sequence of linguistic units, i.e. words (e.g. function 
words, or words which failed to be constructed), NEs and basic phrases constructed by SP.  In the 
case of basic phrases, the units are represented by their head tokens, which will be illustrated 
shortly.  One exception is the noun phrase which contains at least one targeted entity in a  
pre-modifier or specifier position (e.g. Japan in NP[Japan’s Nissan Motor], IBM in NP[IBM’s 
headquarters]).  In this case, the noun phrase context is represented in the same way as the post-



NE context while the surrounding context remains at the post-SP level.  The post-DP context is 
defined as the minimum parsing tree that contains the targeted entity pair.   

The following example illustrates the multi-level processing of our system, with the three-level 
context representations for the targeted entity pair {Japan, [Nissan Motor]}:  

 

(1) Input sentence:  Japan's Nissan Motor will build a $1 billion state-of-the-art  
auto plant.   

(2) Post-NE context:  NE[Japan] 's NE[Nissan Motor] will build a NE[$ 1 billion]  
state-of-the -art auto plant .   

(3) SP results:  NP[[Japan] 's [Nissan Motor]] VG[will build] NP[a  
[$ 1 billion] state-of-the-art auto plant] .   

(4) Post-SP context:  Japan 's [Nissan Motor] build plant  
(5) DP results:  [will build] Subject:  [Nissan Motor]   

Modifier: [Japan]  
Object: [state-of-the-art auto plant]  

Modifier: [$ 1 billion]   
 (6) Post-DP context: [Nissan Motor] 

Modifier: [Japan] 

3.2 Symbolic Rule Learning 
The symbolic rules have the following format: 

 

Rule =: RuleLevel RulePattern 
RuleLevel =: @post-NE | @post-SP | @post-DP 

 

For @post-NE rules or @post-SP rules, RulePattern is a linear sequence containing the 
targeted entity pair.  For each context in the form of 543210 a a @NeY a a @NeX a a � , three rule 
patterns are extracted in rule learning (@NeX and @NeY are the targeted entity pair): 
 

@NeY a a @NeX 32 �  

4321 a @NeY a a @NeX a �  

543210 aa @NeY a a @NeX aa �  
 

Assuming NeX=LOC and NeY=ORG, in rule learning, @LOC is a symbol for “checking 
whether the current word is an identified NE of LOC type”, and @ORG stands for “checking an 
identified NE of ORG type”.  Other items in the pattern are based on string matching where string 
refers to the canonical form of the token, after orthographic and morphology normalization, e.g. 
Gone/GOING/go/goes/went/gone � go.  For @post-DP rules, RulePattern checks along the 
logical dependency links instead of linear neighboring tokens, e.g. logical Subject, logical Object, 
Complement, Modifier, etc. 

Given the following sentence containing the targeted entity pair {ORG: [Boeing Corporation], 
LOC: [Chicago]}: The announcement that [Boeing Corporation] is moving its worldwide  
headquarters to [Chicago] has drawn praise from Gov. George Ryan, the following seven rule 
candidates are constructed: 
 

@post-NE @ORG is moving its worldwide headquarters to  @LOC 
@post-NE that @ORG is moving its worldwide headquarters to  @LOC has 
@post-NE announcement that @ORG is moving its worldwide headquarters to 
  @LOC has drawn 



@post-SP @ORG moving headquarters to  @LOC  
@post-SP that @ORG moving headquarters to  @LOC drawn 
@post-SP announcement that @ORG moving headquarters to  @LOC drawn  
  praise 
@post-DP move 

           Subject: @ORG  
  Object: headquarter 
  Complement: PP[to @LOC]. 

  

To evaluate the accuracy of each rule candidate, we define the positive mentions and negative 
mentions of each rule candidate as follows: positive mentions are the existing relationship  
mentions recognized by the rule candidates.  Negative mentions are defined as the mentions in 
conflict with the existing recognized relationships.  As discussed before, this is a conservative 
definition to help guide the precision-oriented rule learning.  This definition will treat any relation-
ship mentions which are unlisted in the current instance set as negative mentions.  The accuracy of 
a rule candidate is computed using Equation 1. 

 

Equation 1.
mentions negativementions positive

mentions positiveaccuracy
+

= . 

 

The algorithm for 3-level symbolic rule learning is as follows: 
 

Step 1.  Provide relationship seeds for bootstrapping, and put them into the relationship 
instance set;  

Step 2.  Retrieve 3-level contexts from the repository for each new instance;  
Step 3.  Construct 3-level rule candidates based on the retrieved contexts; evaluate the 

accuracy of each rule candidate: rule candidates with accuracy >= 0.9 and  
positive mentions >= 2 are learned and sent into symbolic rule set; 

Step 4.  Stop if no new symbolic rules are learned; otherwise, apply the newly learned 
rules to the corpus in the repository, and put the extracted relationship instances 
into the relationship instance set, go to Step 2. 

4 HMM TRAINING FOR RELATIONSHIP EXTRACTION 

The symbolic rules are in the form of an exact token sequence match or an exact parsing tree 
match.  These rules suffer from low recall (benchmarked as 38% in Table 2).  To increase the  
recall, we use an HMM to generalize the token sequence patterns. 

The HMM training is based on a corpus automatically tagged by applying the learned rules.  
All recognized post-SP contexts are retrieved from the repository to form a training corpus for the 
HMM.  It has been observed that the post-SP level output provides the optimum support for HMM 
training; its basic phrase structures facilitate longer contextual checks.   

Each post-SP context may begin up to two tokens before the targeted entity pair and end up to 
two tokens following the entity pair, i.e. 543210 a a @NeY a a @NeX a a � .  The following are  
training samples for a seeded entity pair {HP,  [Palo Alto, Calif.]} for the LOCATION_OF  
relationship.  Note that @LOC and @ORG are treated as two special token symbols in the  
patterns. 

 

@ORG , based in @LOC , revised 
Based in @LOC , @ORG won award 
medium , @LOC - base @ORG save $1,000,000 
………… 

 



Given the above post-SP context corpus, a bi-gram HMM is used to estimate the generation prob-
ability of any token sequence as a post-SP context expressing the targeted relationship.  To handle 
tokens with low frequency, each token is associated with one of the following single token fea-
tures:  
 

twoDigitNum, fourDigitNum, containsDigitAndAlpha, containsDigitAndDash,  
containsDigitAndSlash, containsDigitAndComma, containsDigitAndPeriod, 
otherNum, allCaps, capPeriod, initCap, lowerCase, other.   

 

The definitions of these features are the same as (Bikel 1997).  The bi-gram HMM is defined as 
follows.  For any token sequence nn00 fwfwW �= (where jf denotes a single token feature  
defined above), the generation probability of this token sequence as a relevant post-SP context is 
computed using Equation 2.  Equations 3 through 6 represent the HMM back-off model. 
 

Equation 2. ∏=
i

)f,w|f,wPr(Pr(W) 1-i1-iii .   

Equation 3. )f|f,wPr()-(1)f,w|f,w(P)f,w|f,wPr( 1-iii01-i1-iii001-i1-iii λλ +=  
Equation 4. )f,wPr()-(1)f|f,w(P)f|f,wPr( ii11-iii011-iii λλ +=  
Equation 5. )(f)P(wPr)-(1)f,w(P)f,wPr( i0i2ii02ii λλ +=  

Equation 6. 
V
1)-(1)(wP)Pr(w 3i03i λλ +=  

In the above equations, V denotes the size of the vocabulary, the back-off coefficients λ’s are  
determined using the Witten-Bell smoothing algorithm, and the quantities )f,w|f,w(P 1-i1-iii0 , 

)f|f,w(P 1-iii0 , )f,w(P ii0 , )(fP i0 and )(wP i0  are computed by the maximum likelihood  

estimation.  Furthermore, the perplexity of the token sequence W is defined as W
W )Pr(log

2PP
−

= .  
In the tagging stage, for each candidate entity pair, the Pr(W)  of the corresponding post-SP con-

text W is computed.  Only when the associated perplexity of the context is lower than a predefined 
threshold, will the context be recognized as expressing a positive mention of the relationship. 

5 EXPERIMENTS AND BENCHMARKING 

We used LOCATION_OF in our relationship bootstrapping experiment.  Before the iterative 
learning starts, a large raw corpus (1.2GB, with 88,000,000 words of general news articles) is 
processed by our parser.  The parsing results and the raw text are saved into the repository, which 
supports high-speed context retrieval (see Figure 1).  

The following four entity-pair seeds for the LOCATION_OF relationship were used in our 
experiment: 

 

{Microsoft, Seattle} 
{Microsoft, Redmond} 
{IBM, Armonk} 
{Office Depot, Delray Beach} 

 
In the parsed corpus, 172,575 candidate sentences contain at least one mention of ORG and one 

mention of LOC.  Using the above four seeds, the system learned 3,818 symbolic rules before it 
stopped learning new rules after 14 iterations.  Among the 3,818 rules, there are 1,845 post-NE 
rules, 1,848 post-SP rules and 125 post-DP rules.  These rules extracted 7,645 unique 
LOCATION_OF relationship instances from the candidate sentences.  Some sample rules are 
shown below: 

 



@post-NE @ORG , in @LOC 
@post-SP @LOC – base @ORG 
@post-DP 
 headquarter 
  Object: @ORG 
   Complement: PP[in @LOC]. 

  

Finally, an HMM classifier is trained using the contexts recognized by the learned rules.  
To evaluate the system performance, two ways of benchmarking are defined: Retrieval  

Performance and Extraction Performance.  Following Agichtein & Gravano (2000), the Precision 
(P), Recall (R) and F-score (F) measures for Retrieval Performance are based on counting relation-
ship instances while the measures for Extraction Performance are based on counting the mentions 
of each relationship instance (see Footnote 1).  Note that from information users’ perspectives, the 
Retrieval Performance is a more meaningful benchmark of the system since it directly reflects the 
capability for extracting unique relationships.  The benchmarking procedure, details and  
discussion are described below. 

Manual benchmarking was performed by our tester.  To evaluate the Retrieval performance, 
1,000 recognized relationship instances were randomly selected for checking the precision while 
1,000 relationship instances whose entity pairs are mentioned at least once within a sentence in the 
corpus were selected for checking the recall.  The precision for symbolic rules is 88%.  As for  
recall, among the 1,000 testing pairs, 378 were extracted by the learned rules, thus the Retrieval 
Recall for the first-phase symbolic rule learner is 38%.   

The precision errors are found to be caused more frequently by the underlying NE tagger rather 
than by the relationship extractor itself, as shown in Table 1.  In other words, assuming a perfect 
NE input, the bootstrapped relationship extraction system can achieve a precision measure as high 
as 95.7%. 
 

 Table 1.  Retrieval Precision of Symbolic Rules  

Extracted relationship instances 1,000
Correct 884 
Error due to NE Tagging 73 
Error due to Relationship Extraction 43 
Retrieval Precision 88% 

Table 2. Multi-level Impact on Retrieval Recall 
 Post-NE only 19% 
 Post-SP only 15% 
 Post-DP only 0% 
 Post-NE + Post-SP  37% 
 Post-NE + Post-SP + Post-DP  38% 

 

We have also evaluated the contributions of the combinations of individual levels of symbolic 
rules (Table 2).  Findings show that the two shallow levels of contexts (post-NE and post-SP)  
contribute to the majority of the extracted relationships.  The zero recall in only using the post-DP 
contexts is not surprising: there are no observed recurring post-DP patterns associated with the 
four seeds, thus no post-DP patterns can survive in the iterative rule learning.  The learning simply 
stops in the first iteration.  However, when the post-DP patterns are learned with the post-NE  
patterns and the post-SP patterns together, relationship mentions tagged by the post-NE or post-SP 
rules will trigger richer post-DP contexts for the next round of learning.  That is why the post-DP 
contexts still contribute to the overall system recall.  For the same reason, the recall of the  
combined post-NE and post-SP learning is higher than the summation of their respective recall 
measures.  These benchmarks illustrate the benefits of utilizing multiple level contexts in the  
iterative learning.  

It seems to be surprising to see lower recall from the post-SP learning than that from the post-
NE learning because the post-SP context is more abstract than the post-NE context and is therefore 
expected to achieve higher recall.  Further study shows that this is because the symbolic rule  
learning in this approach favors post-NE rules which are more specific than post-SP rules.  In 
other words, the post-NE patterns are more likely to survive than the post-SP patterns in rule learn-



ing.  Note that the relationship is not a one-to-one mapping from real world fact to language  
expressions.  For example, the location of the headquarters of Microsoft could be expressed in 
natural language at different levels of geographic granularity, such as Redmond, Seattle,  
Washington, or even U.S.  Such variations cannot be fully covered by seeds or the iteratively  
recognized instances.  As a result, the uncovered cases become noise in the learning.  For example, 
assume that Washington State is not listed as LOCATION_OF Microsoft in the current instance 
set, then, there is no way for the system to distinguish this relationship mention from negative  
relationship mentions.  In calculating the accuracy of a candidate rule, any relationship mentions 
which do not directly correspond to relationships in the current instance set are regarded as  
negative mentions.  This conservative scheme favors specific rules and results in more rules 
learned when using only the post-NE contexts than using only the post-SP contexts.   

To evaluate the generalization capability of the HMM, the HMM-based context classifier was 
trained based on the post-SP contexts associated with the 378 extracted relationship instances.  For 
each candidate relationship instance, all the post-SP contexts associated with the instance are  
retrieved from the repository, and then classified by the HMM context classifier.  If one of the 
contexts is assigned a perplexity lower than the threshold, that mention is recognized as a targeted 
relationship.  The HMM context classifier extracted 517 out of the 1,000 testing instances.  Thus 
the Retrieval Recall for the second-phase HMM is 52%, an increase of 14% from the first phase.   
Table 3 shows that HMM is indeed an effective pattern generalizer, having significantly enhanced 
the recall (+14%) with limited precision loss (-3%). 

 
Table 3.  HMM Enhancement for Retrieval 

 Symbolic Rules HMM Difference
P 88% 85% -3% 
R 38% 52% +14% 
F 53% 65% +12% 

 

Table 4. Overall Performance Summary 
 Retrieval Extraction 

P 85% 82% 
R 52% 69% 
F 65% 75% 

 
 

Entity Pair Candidate

Pre-constructed 
{ORG,LOC}Table

found in the Table Yes

not found in the table

Three Level 
Symbolic Rules

no applicable rules

rules applicable
Yes

HMM post-SP 
Context Classifier

perplexity higher than threshold

Yes
perplexity lower than threshold

No
 

Figure 2. Procedure of Relationship Extraction  
 
In evaluating the Extraction Performance, we built a relationship extraction module that  

consists of three components: (i) a table containing all the {ORG, LOC} pairs extracted from the 
corpus; (ii) the symbolic rule model; (iii) the HMM-based post-SP context classifier.  We  
processed a testing corpus by the InfoXtract parser and extracted 50,000 sentences containing 
LOC and ORG NEs.  The extracted 50,000 sentences were then processed using the extraction 
procedure in Figure 2.  The Extraction Precision was calculated by checking 1,000 extracted  
relationship mentions which were selected randomly from the relationship extraction results.  For 



Extraction Recall, we selected the first 1,000 sentences that contain the LOCATION_OF relation-
ship.  The results are shown in the ‘Extraction’ Column of Table 4.  The reason the Extraction 
Recall is higher than the Retrieval Recall is due to the fact that the common {ORG, LOC} pairs 
are already extracted in bootstrapping and stored in the pre-constructed table.  The relationship 
instances missed in the table are usually mentioned infrequently.  

Zelenko et al. (2002) reports an F-score of 83% for LOCATION_OF relationship using kernel-
based supervised machine learning.  Our bootstrapping method achieves an F-score of 75% which 
is approaching the performance of supervised machine learning.  Our performance is also close or 
comparable to the best score reported in MUC (75.6% F-score for MUC-7 TR).  

6 CONCLUSION 

A new bootstrapping approach to correlated entity relationship extraction is presented.  The 
bootstrapping procedure is implemented as two training phases.  First, symbolic rules are learned 
at three structural levels: post-Named-Entity-tagging, post-shallow-parsing, and post-deep-parsing.  
Then, an HMM is trained to classify whether a context expresses the targeted relationship.  The 
training of the HMM uses the corpus automatically tagged by the symbolic rules learned in the 
first phrase.  The resulting HMM is a generalization of these symbolic rules, hence higher recall is 
achieved.  Benchmarking shows that the performance of the resulting system approaches  
supervised learning methods. 

The performance contributions for combinations of different levels of contexts are evaluated.  
It is found that the two shallow levels of contexts (post-NE and post-shallow-parsing) contribute to 
the majority of the extracted relationships.  
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