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Abstract 
This paper presents a seed-driven, bootstrapping approach 
to domain porting that could be used to customize a generic 
information extraction (IE) capability for a specific domain. 
The approach taken is based on the existence of a robust, 
domain-independent IE engine that can continue to be 
enhanced, independent of any particular domain. This 
approach combines the strengths of parsing-based symbolic 
rule learning and the high performance linear string-based 
Hidden Markov Model (HMM) to automatically derive a 
customized IE system with balanced precision and recall. 
The key idea is to apply precision-oriented symbolic rules 
learned in the first stage to a large corpus in order to 
construct an automatically tagged training corpus.  This 
training corpus is then used to train an HMM to boost the 
recall.  The experiments conducted in named entity (NE) 
tagging and relationship extraction show a performance 
close to the performance of supervised learning systems.   

Introduction  
There are two learning approaches to information 
extraction, supervised learning and unsupervised or weakly 
supervised learning.  It is generally recognized that there is 
a knowledge bottleneck for supervised machine learning, 
since it requires a sizable manually-annotated training 
corpus.  Without a sizable training corpus, the ‘sparse data’ 
problem can be so serious as to affect the usability of the 
trained model.  An added difficulty arises from the 
inconsistency between annotators and quality control of the 
annotated corpus.   
 State-of-the-art rule-based systems and supervised 
learning systems achieve the best performance, especially 
for NE tagging near human performance can be reached 
[Krupka and Hausman 1998] [Miller et al., 1998].  
However, such systems are difficult for rapid domain 
porting.  They cannot effectively support user-defined IE.  
The two basic issues facing IE domain porting are:(i) 
overcoming the performance degradation problem, and (ii) 
extending IE to capture domain-specific, user-defined 
information.  
 As an alternative, more and more researchers are now 
exploring unsupervised or weakly supervised learning 
algorithms, e.g. [Yarowsky 1995] [Lin 1998] [Thelen & 
Riloff 2002].  The advantage of this approach is its ability to 
make use of the almost unlimited raw corpus in learning a 
model.  If designed properly, the availability of a huge 
corpus can lead to a high performance model with 
outstanding resistance to statistical random noise.    

 [Cucchiarelli & Velardi 2001] discussed boosting the 
performance of an existing named entity (NE) tagger by 
unsupervised learning based on parsing structures.  
[Cucerzan & Yarowsky 1999], [Collins and Singer 1999], 
and [Kim 2002] presented various techniques using co-
training schemes for NE extraction seeded by a small list of 
proper names or handcrafted NE rules.   
 As for the bootstrapping system for relationship 
extraction, [Riloff 1996] described a system which 
automatically generates parsing-based relationship and 
event extraction patterns from an untagged corpus. This 
system requires document classification. [Agichtein & 
Gravano 2000] proposed a bootstrapping approach for 
relationship extraction which only requires a few 
relationship instances (facts)1 as initial seeds.  
[Ravichandran & Hovy 2002] use a bootstrapping method 
that extracts relationships from the web in order to enhance 
their Question-Answering system. 
 This paper addresses these issues in the same boot-
strapping fashion.  Our approach differentiates itself by 
using a successive learning method that combines 
precision-oriented symbolic rule learning with recall-
oriented HMM. It leverages the parsing capabilities of our 
domain-independent natural language processing (NLP)/IE 
system.  IE extension is supported by the guidance (i.e. 
weak supervision) given to this learning process.   
 Bootstrapped learning involves “seeding” with 
exemplars from lexical resources, or a small set of easily 
formulated extraction rules. Such ‘seeds’ or exemplars 
represent human guidance in the porting process.  Except 
for the need for a few ‘seeds’, the learning process is fully 
automatic.  In particular, structure-based unsupervised 
learning has leveraged InfoXtract parsing capabilities and 
learned new rules from a parsed corpus, guided by IE 
‘seeds’.  ‘Structure’ refers to basic phrases constructed by 
the shallow parser or logical dependency relationships such 
as logical subject-verb-object (SVO) relationships decoded 
by the deep parser.  A large domain-representative un-
annotated corpus is fed to the InfoXtract parser to prepare 
structural conditions for learning and applying domain-
dependent IE rules.  In a sense, the corpus is “marked-up” 
by the full-fledged, domain-independent InfoXtract engine.  
This provides richer data for learning and enables 
                                                 
1 Relationship instance refers to a unique entity pair that 
holds a targeted relationship.  Note that there may be 
multiple mentions of the same relationship instance in a 
corpus.   



comprehensive domain porting.  Unlike conventional linear 
string-based methods, structure-based learning can filter 
random noise and handle ‘sparse data’ more effectively by 
normalizing the text to disregard superfluous details in 
word order, phrasing, etc.  It results in highly precise rules.  
Once applied to a large parsed corpus, these rules are used 
to construct an automatically tagged training corpus which 
approaches the quality of a human annotated training 
corpus.  In the last stage, the traditional supervised learning 
algorithm such as HMM training can be applied to generate 
a high performance IE capability with greatly enhanced 
recall.   
 This paper is based on our previous bootstrapping efforts 
in NE and relationship extraction [Niu et al. 2003a, 2003b].  
We generalize and emphasize the commonality of the two 
efforts and argue that our IE bootstrapping approach is a 
generally applicable approach to IE domain porting. 

System Design  
The foundation for this effort is the Cymfony NLP/IE 
engine, InfoXtract [Srihari et al. 2003]. InfoXtract is a 
domain-independent, intermediate level IE engine that is 
equipped with tools for both machine learning and rule 
writing. The design philosophy for InfoXtract is that the 
core engine should remain as domain independent as 
possible; domain specialization or tuning should happen 
with minimum change to the core engine. More 
specifically, the IE system remains domain independent at 
the algorithmic level while permitting domain adaptation to 
mainly happen at the resource level.   
 IE domain porting relies heavily on the process of 
knowledge mining, including IE rule learning and lexical 
knowledge acquisition.  A repository module links 
knowledge mining modules with the core InfoXtract 
engine.  This defines a process for discovering domain 
dependent knowledge by applying domain-independent 
NLP and IE to a raw training corpus in the target domain.  
The mined knowledge will be fed back into the core engine 
to support the adaptation of the engine to the new domain, 
thus creating a domain dependent version of the engine.  
Our vision is to eventually implement a largely self-
learning mechanism whereby an IE engine automatically or 
semi-automatically adapts to a new domain by ‘training’ on 
large volumes of domain dependent raw data. 
 Figure 1 shows the overall design of the domain porting 
framework. The enhanced system contains four key 
components:  (i) InfoXtract core engine, (ii) IE Repository, 
(iii) machine learning module, and (iv) knowledge mining 
module. 
 The key idea of unsupervised machine learning for IE is 
to utilize context redundancy for rule learning. Co-training 
is the most common way to perform unsupervised learning 
utilizing context redundancy. The key of co-training is the 
separation of features into several orthogonal views.  In the 
case of NE classification, usually one view uses context 
evidence and the other relies on lexicon evidence.  

Learners corresponding to different views learn from each 
other iteratively. 

Figure 1. Domain Porting Architecture 

One issue of co-training is error propagation in the process 
of iterative learning.  Rule precision drops iteration by 
iteration. In the early stages, only a few instances are 
available for learning. This makes some powerful statistical 
models such as HMM difficult to apply due to the 
extremely sparse data.  
 This paper presents a new bootstrapping approach using 
successive learners to overcome this problem. The first 
learner makes use of the structural evidences to learn high 
precision patterns. Then, using a corpus that is 
automatically tagged by the first learner, an HMM is 
trained, which greatly improves recall with little precision 
cost by either generalizing patterns learned by the first 
learner or exploiting rich surface patterns. 
 Although the first learner typically suffers from the recall 
problem, we can apply the learned rules to a huge parsed 
corpus.  In other words, the availability of an almost 
unlimited raw corpus compensates for the modest recall. As 
a result, large quantities of IE instances can still be tagged 
to form a sizable automatically constructed training corpus.  
This automatically annotated IE corpus can then be used to 
train the second HMM-based learner to boost the recall.  

Experimental Results and Benchmarks  
This section describes our experiments in applying our IE 
bootstrapping approach to NE classification and 
relationship detection (experiments on event extraction are 
in progress).  In both cases, we have reached performance 
which approaches that of supervised learning systems.  
This verifies the validity and effectiveness of this generic 
IE porting approach.     

Bootstrapping for NE Domain Porting 
This sub-section presents the application of the 
bootstrapping strategy in NE classification [Niu et al 
2003a].   This approach requires only a few common 
noun/pronoun seeds that correspond to the concept for the 
target NE type, e.g. he/she/man/woman for PERSON NE.  
The entire bootstrapping procedure is implemented as 
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training two successive learners:  (i) a decision list is used 
to learn the parsing-based high precision NE rules, and (ii) 
a Hidden Markov Model is then trained to learn the string 
sequence-based NE patterns.  The second learner uses the 
training corpus automatically tagged by the first learner.  
The resulting NE system approaches supervised NE 
performance and also demonstrates intuitive support for 
tagging user-defined NE types.  The NE bootstrapping is 
performed as follows: 

1. Provide concept-based seeds (by the user) 
2. Retrieve parsing structures involving concept-

based seeds from the repository to train a 
decision list for NE classification 

3. Apply the learned rules to the NE candidates 
stored in the repository 

4. The proper names tagged in Step 3 and their 
neighboring words are assembled as an NE 
annotated corpus 

5. Train an HMM based on the annotated corpus. 
 
 Five types of structural relationships decoded by our 
parser are used for parsing-based NE rule learning.  These 
are all directional, binary dependency links between 
linguistic units:  (i) S-V (from logical Subject to Verb); (ii) 
O-V (from logical Object to Verb); (iii) N-M (from Noun 
to its adjective modifier); (iv) P-N (from the Possessive 
noun modifier to head Noun); and (v) IsA:  equivalence 
relation from one NP to another NP. 
 The concept-based seeds used in the experiments are: 

1. PERSON (PER): he, she, his, her, him, man, 
woman 

2. LOCATION (LOC): city, province, town, village 
3. ORGANIZATION (ORG): company, firm, 

organization, bank, airline, army, committee, 
government, school, university 

4. PRODUCT (PRO): car, truck, vehicle, product, 
plane, aircraft, computer, software, operating 
system, data-base, book, platform, network 

 
 From the parsed corpus in the repository, all instances of 
concept-based seeds associated with one or more of the 
five dependency relations were retrieved:  a total of 
821,267 instances in our experiment. Each seed instance 
was assigned a concept tag corresponding to an NE.  For 
example, each instance of he is marked as PER. The 
marked instances plus their associated parsing relationships 
form an annotated NE corpus are shown below: 

he/PER:     S-V(say) 
she/PER:     S-V(get) 
company/ORG:  O-V(compel) 
city/LOC:    P-N(mayor) 
car/PRO:    O-V(manufacture) 
…………………………… 

Based on this training corpus, the Decision List Learning 
algorithm [Segal & Etzioni 1994] was used.  The accuracy 
of each rule was evaluated using Laplace smoothing as 
follows, 
Equation 1:   
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A total of 1,290 parsing-based NE rules were learned, with 
accuracy higher than 0.9.  The following are sample rules 
of the learned decision list: 
 P-N(wife) �  PERSON 
 S-V(divorce) � PERSON 
 O-V(deport) � PERSON 
 N-M(northern) � LOCATION 
 N-M(non-profit) � ORGANIZATION 
 P-N(ceo) � ORGANIZATION 
 N-M(handheld) � PRODUCT 
 O-V(crash) � PRODUCT 
 ………………………………….. 
 Due to the unique equivalence nature of the IsA relation, 
we only need to add the following IsA-based rules to the 
top of the decision list: IsA(seed) � tag of the seed, e.g. 
IsA(man) � PERSON. 
 These parsing-based rules are used to tag a raw corpus in 
order to train the second NE learner. From the repository, 
we retrieve all the NE candidates, i.e. noun chunks with 
proper name POS tags (NNP and NNPS), which are 
associated with at least one of the five parsing 
relationships.  A total of 1,607,709 NE candidates were 
retrieved.  After applying the decision list to the above, the 
NE candidates, i.e. 33,104 PER names, 16,426 LOC 
names, 11,908 ORG names and 6,280 PRO names, were 
extracted. 
 In constructing the training corpus, we used the heuristic 
one tag per domain for multi-word NE, in addition to the 
one sense per discourse principle [Gale et al. 1992a] [Gale 
et al. 1992b].  These heuristics are found to improve the 
performance of the bootstrapping algorithm for the purpose 
of both increasing positive instances (i.e. tag propagation) 
and decreasing the spurious instances (i.e. tag elimination).  
The tag propagation/elimination scheme is adopted from 
[Yarowsky 1995].  After this step, a total of 386,614 proper 
names were recognized, including 134,722 PER names, 
186,488 LOC names, 46,231 ORG names and 19,173 PRO 
names.  The overall precision is ~90%.  Unlike manually 
annotated running text corpus, this training corpus consists 
only of sample string sequences containing the 
automatically tagged NE instances and their left and right 
neighboring words within the same sentence.  A sample of 
the automatically constructed corpus is shown below: 

in <LOC> Argentina </LOC> . 
and <PER> Troy Glaus </PER> walk 
call <ORG> Prudential Associates </ORG> 
, <PRO> Photoshop </PRO> has 
…………………………… 

 This corpus was used for training the second NE learner 
based on evidence from the string sequence. String 
sequence-based HMM learning is set as our final goal for 
NE bootstrapping because of the demonstrated high 
performance of this type of NE taggers.  In this research, a 
bi-gram HMM is trained, following [Bikel 1997]. 



 We used the same blind testing corpus of 300,000 words 
containing 20,000 PER, LOC and ORG instances that were 
truthed in-house originally for benchmarking the existing 
supervised NE tagger: this has the benefit of precisely 
measuring performance degradation from supervised 
learning to unsupervised learning.  Our annotators also 
added the PRO category which is a new tag beyond our 
original tag set.  The benchmarking results are shown 
below.  

NE Type Precision Recall F-Measure 
PERSON 86.6% 88.9% 87.7% 
LOCATION 82.9% 81.7% 82.3% 
ORGANIZATION 57.1% 48.9% 52.7% 
PRODUCT 67.3% 72.5% 69.8% 
 
 The degradation from supervised learning to weakly 
supervised learning using the presented bootstrapping 
method for PER, LOC, and ORG are 5%, 6%, and 34% 
respectively. This shows that this system approaches the 
performance of a supervised NE tagger for two of the three 
proper name NE types in the Message Understanding 
Conference (MUC), namely, PER NE and LOC NE. 
 The reason for the poor performance of ORG (~50%) is 
mainly due to the fact that there are hundreds of sub-types 
of ORGANIZATION that cannot be covered by less than a 
dozen concept-based seeds used in our experiment.   

Bootstrapping for Relationship Domain Porting 
This sub-section presents our experiment on the successive 
bootstrapping approach as used in relationship extraction 
from raw text [Niu et al 2003b].  The bootstrapping 
procedure consists of two learning phases as shown below. 

First, symbolic extraction rules are learned after three 
levels of parsing, namely, (i) post-Named-Entity-tagging 
(post-NE), (ii) post-shallow-parsing (post-SP), and (iii) 
post-deep-parsing (post-DP).  Then, the HMM is trained to 
classify whether the post-SP context expresses the targeted 
relationship.  HMM training uses the training corpus 

automatically tagged by the symbolic rules leaned in the 
first phase. The resulting HMM is, in effect, a 
generalization of post-SP symbolic rules, and hence 
achieves higher recall.  Benchmarking shows that the 
performance of the resulting system approaches supervised 
learning methods.   
 This approach has three characteristics:  (i) exploration 
of multi-level parsing contexts; (ii) separation of the pattern 
generalization process from the pattern extraction process: 
targeted patterns are extracted during bootstrapped iterative 
learning, and the learned patterns are subsequently 
generalized by statistical modeling; and (iii) formulating 
the generalization task as a language modeling task.   
 Bootstrapping starts with the input of a few seeds in the 
form of entity pairs that hold the targeted relationship (e.g. 
{Microsoft, Redmond} for LOCATION_OF relationship, 
and {[Abraham Lincoln], [February 12, 1809]} for 
BIRTHDAY_OF relationship).  The learning system then 
retrieves all sentences containing the entity pairs as the 
contexts.  Three levels of contexts are retrieved:  (i) post-
NE token sequence; (ii) post-SP unit sequence; and (iii) 
post-DP dependency trees. In order to capture the linguistic 
phenomena representing relationships, multi-level rules are 
desirable since correlated-entity relationships are often 
expressed in English at different levels of linguistic 
structure.   
 In the stage of symbolic rule learning, the patterns of 
multi-level contexts are evaluated, and patterns with high 
accuracy are learned as relationship extraction rules.  These 
learned extraction rules are applied to the training corpus in 
the repository to extract new relationship instances.  Then 
the contexts of new instances are used to learn more 
extraction rules iteratively.  The learning algorithm stops 
when no new rules can be learned. The algorithm for three-
level symbolic rule leaning is as follows: 

1. Provide relationship seeds for bootstrapping 
and put them into a relationship instance set;  

2. Retrieve three-level contexts from the 
repository for each new relationship instance;  

3. Construct three-level rule candidates based on 
the retrieved contexts; evaluate the accuracy of 
each rule candidate; the rule candidates with 
accuracy >=0.9 and positive mentions >= 2 are 
sent into symbolic rule set; 

4. Stop if no new symbolic rules are learned; 
otherwise, apply the new symbolic rules to the 
corpus in the repository, and put extracted 
relationship instances into relationship instance 
set.  Then proceed to Step 2. 

 The symbolic relationship extraction rules have the 
following format: 
 Rule =:   RuleLevel RulePattern 
RuleLevel =:  @postNE | @postSP | @postDP 

 
For @postNE rules or @postSP rules, RulePattern is a 
linear sequence containing the targeted entity pair. For each 
context in the form of  543210 a a @NeY a a @NeX a a � , nine 
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rule patterns are extracted in rule learning (@NeX and 
@NeY are the targeted entity pair):  

@NeY a a @NeX 21�  
@NeY a a @NeX a 210 �  

321 a @NeY a a @NeX �  
3210 a @NeY a a @NeX a �  

………… 
543210 a a @NeY a a @NeX a a �  

 To evaluate the accuracy of each rule candidate, we 
define the positive mentions and negative mentions for 
each as follows. Positive mentions are existing relationship 
mentions recognized by the rule candidates, and negative 
mentions are defined as the mentions in conflict with the 
existing recognized relationships. A negative mention for 
LOCATION_OF relationship is illustrated as follows: 
assume that LOCATION_OF Microsoft is Seattle, then, if a 
candidate extraction rule identifies a piece of conflicting 
information that LOCATION_OF Microsoft is Chicago, 
the system counts this relationship mention as a negative 
mention.  The accuracy of a rule candidate is computed as 
follows: 

Equation 2:  

mentions negativementions positive
mentions positiveaccuracy
+

=  

 The post-SP contexts associated with the extracted 
relationship instances are used to train an HMM-based 
context classifier. The resulting HMM is a generalization 
of the post-SP context rules learned in the previous stage.  
Therefore, the recall is significantly enhanced. 
 The rationale behind using HMM for relationship 
extraction lies in the equivalence of the relationship 
extraction task to the binary context classification task, i.e. 
given a context containing a pair of appropriate entities, 
determine whether the context expresses the targeted 
relationship between the two entities. 
 Post-NE context and post-SP context are linear token 
sequences.  So the context classification for relationship 
detection is equivalent to the binary token sequence 
classification.  This is a task of language modeling [Jelinek 
1997].  HMM is one of the most powerful devices for 
language modeling. One important feature of the 
probabilistic finite automata, such as HMM, is the 
feasibility of learning from positive instances only [Murphy 
1996]. This feature makes this new bootstrapping 
procedure possible since the symbolic extraction rules 
learned from the first phase can only provide positive 
instances of contexts. 
 HMM training for relationship extraction is based on the 
tagged corpus automatically constructed by applying the 
learned symbolic extraction rules.  All recognized post-SP 
contexts are retrieved from the repository to form this 
training corpus for HMM.  Each post-SP context is a token 
sequence. The token sequences start from two tokens 
before the targeted entity pair and end at two tokens 
following the entity pair, i.e. 

543210 a a @NeY a a @NeX a a � . The following are some 

training samples for a seeded entity pair {HP,  [Palo Alto, 
Calif.]}. 

@ORG , based in @LOC , revised 
Based in @LOC , @ORG won award 
medium , @ORG - base @ORG save $1,000,000 
………… 

 Note that @LOC and @ORG are treated as two special 
token symbols. Given the above post-SP context corpus, a 
bi-gram HMM [Bikel 1997] is used to estimate the 
generation probability of any token sequence as a post-SP 
context expressing the targeted relationship.  In the tagging 
stage, for each candidate entity pair, the Pr(W)  of the 
corresponding post-SP context W is computed.  Only when 
the associated perplexity of the context is higher than a 
predefined threshold will the context be recognized as 
expressing the relationship. 
 The following four entity-pair seeds for the 
LOCATION_OF relationship are used in our experiment: 

{[Microsoft], [Seattle]} 
{[Microsoft], [Redmond, Wash.]} 
{[IBM], [Armonk, N.Y.]} 
{[Office Depot], [Delray Beach, Fla.]} 

 In 88,000,000 words of corpus, 172,575 candidate 
sentences are found containing at least one mention of 
ORG and one mention of LOC.  Using the above four 
seeds, the system has learned 3,818 symbolic rules which 
extract 7,645 LOCATION_OF relationships from the 
candidate sentences before it stops learning new rules after 
14 iterations.  Among the 3,818 extraction rules, there are 
1,845 post-NE rules, 1,848 post-SP rules and 125 post-DP 
rules.  Some sample rules are shown below: 
       @postNE @ORG , in @LOC 

@postSP @LOC – base @ORG 
 To evaluate the system performance, two types of 
precision and recall are defined: Retrieval Precision/Recall 
and IE Precision/Recall.  Following  [Agichtein & Gravano 
2000], the Retrieval Precision/Recall measures are based 
on counting the relationship instances. The IE 
Precision/Recall measures are based on counting mentions 
of relationships.  To evaluate the Retrieval Precision of the 
learned relationship extraction rules, 1,000 recognized 
relationship instances are randomly selected for manual 
checking.  The results are shown below. 
 Extracted Relationship Instances 1,000 
 Correct 884 
 Error due to Named Entity Tagging 73 
 Error due to Relationship Extraction 43 
 Retrieval Precision 88% 

 
 To evaluate Retrieval Recall of the learned relationship 
extraction rules, we selected 1,000 entity pairs that hold the 
LOCATION_OF relationship. Among the 1,000 testing 
pairs, 378 are extracted by the symbolic rules.  Therefore, 
the Retrieval-Recall of the symbolic rules is 38%. 
 To evaluate the IE Precision/Recall, we build a 
relationship extraction module containing three 
components as shown below. 



 To benchmark IE Precision/Recall, our parser processed 
a testing corpus and extracted 50,000 sentences containing 
LOC and ORG.  The extracted 50,000 sentences were 
processed by the above procedure.  IE Precision 

benchmarking was performed by manually checking 1,000 
of the recognized relationship mentions.  For IE Recall, we 
selected the first 1,000 sentences that contain the 
LOCATION_OF relationship.  The benchmarking results 
are shown below. 

IE Precision  IE Recall  F-measure 

82% 69% 75% 
 
 Using kernel-based supervised machine learning, 
[Zelenko et al. 2002] report an F-measure of 83% for 
LOCATION_OF relationships. Our new bootstrapping 
method achieves an F-measure of 75%, which is 
approaching the performance of supervised machine 
learning. 

         Conclusion  
We have presented an effective IE bootstrapping approach 
based on successive learning. This approach combines 
symbolic rule learning and HMM training for enhanced 
precision and recall.  The resulting HMMs in the 
experiments of NE and relationship extraction reach a 
performance close to supervised systems.    
 
Acknowledgement : This work was partly supported by a 
grant from the Air Force Research Laboratory’s 
Information Directorate (AFRL/IF), Rome, NY, under 
contract F30602-03-C-0044.  Thanks to Carrie Pine of 
AFRL for supporting and reviewing this work.   

References 
Agichtein, E. & Gravano, L.  2000.  Snowball: Extracting 
Relations from Large Plain-Text Collections.  Proceedings of the 
5th ACM International Conference on Digital Libraries. San 
Antonio. 
Aone, A. & M. Ramos-Santacruz 2000.  REES: A Large-Scale 
Relation and Event Extraction System. Proceedings of ANLP-
NAACL 2000, Seattle. 

Bikel, D. M. 1997. Nymble: a high-performance learning name-
finder.  Proceedings of the Fifth Conference on ANLP: 194-201, 
Morgan Kaufmann Publishers. 
Borthwick, A. et al. 1998. Description of the MENE named 
Entity System. Proceedings of MUC-7. 
Collins, M. and Y. Singer. 1999. Unsupervised Models for 
Named Entity Classification. Proceedings of the Joint SIGDAT 
Conference on EMNLP and VLC. 
Cucchiarelli, A. and P. Velardi. 2001. Unsupervised Named 
Entity Recognition Using Syntactic and Se-mantic Contextual 
Evidence. Computational Linguistics, Volume 27, Number 1, 
123-131. 
Cucerzan, S. and D. Yarowsky. 1999. Language Independent 
Named Entity Recognition Combining Morphological and 
Contextual Evidence. Proceedings of the 1999 Joint SIGDAT 
Conference on    EMNLP  and VLC, 90-99. 
Gale, W., K. Church, and D. Yarowsky. 1992. One Sense Per 
Discourse. Proceedings of the 4th DARPA Speech and Natural 
Language Workshop. 233-237. 
Jelinek, F. 1997. Statistical Methods for Speech Recognition. The 
MIT Press. 
Kim, J., I. Kang, and K. Choi. 2002. Unsupervised Named Entity 
Classification Models and their Ensembles. COLING 2002. 
Krupka, G. R. and K. Hausman. 1998. IsoQuest Inc: Description 
of the NetOwl Text Extraction System as used for MUC-7. 
Proceedings of MUC-7. 
Lin, D.K. 1998. Automatic Retrieval and Clustering of Similar 
Words. COLING-ACL 1998. 
MUC-7, 1998.  Proceedings of the Seventh Message 
Understanding Conference (MUC-7).  
Segal, R. and O. Etzioni. 1994. Learning decision lists using 
homogeneous rules. Proceedings of the 12th National Conference 
on Artificial Intelligence.  
Srihari, R., C. Niu, & W. Li. 2000. A Hybrid Approach for 
Named Entity and Sub-Type Tagging.  Proceedings of ANLP 
2000, Seattle.  
Murphy, K. P. 1996. Passively Learning Finite Automata. 
Technical Report, Santa Fe Institute. 
Niu, C., W. Li, J. Ding, and R. Srihari 2003a.. A  Bootstrapping 
Approach to Named Entity Classification using Successive  
Learners. In Proceedings of ACL 2003. Sapporo, Japan. pp. 335-
342 
Niu, C., W. Li, R. Srihari, and L. Crist 2003b.  Bootstrapping a 
Hidden Markov Model for Relationship Extraction Using  Multi-
level Contexts. In Proceedings of Pacific Association for 
Computational Linguistics 2003 (PACLING03).  Halifax, Nova 
Scotia, Canada 
Ravichandran, D. &  E. Hovy, 2002. Learning surface text 
patterns for a Question Answering System. ACL-2002. 
Riloff, E. 1996. Automatically Generating Extraction Patterns 
from Untagged Text. AAAI-96: 1044-1049.  
Srihari, R., W. Li, C. Niu and T. Cornell. 2003.  InfoXtract: A 
Customizable Intermediate Level Information Extraction Engine.  
In Proceedings of HLT/NAACL 2003 Workshop on Software 
Engineering and  Architecture of Language Technology Systems 
(SEALTS). pp. 52-59, Edmonton, Canada. 
Thelen, M. and E. Riloff. 2002. A Bootstrapping Method for 
Learning Semantic Lexicons using Extraction Pattern Contexts. 
Proceedings of EMNLP 2002. 
Yarowsky, D. 1995. Unsupervised word sense disambiguation 
rivaling supervised methods. ACL-1995.  
Zelenko, D., C. Aone  &  A. Richardella. 2002. Kernel Methods 
for Relation Extraction. EMNLP-2002. 
 

Entity Pair Candidate

Pre-constructed 
{ORG,LOC}Table

Found in the Table
Yes

Not Found in the table

Three Level Symbolic
Rules

No Applicable Rules

Some Rules Applicable
Yes

HMM post-SP 
Context Classifier

Perplexity higher than Threshold

Yes
Perplexity lower than Threshold

No


