
Context Clustering for Word Sense Disambiguation Based on  
Modeling Pairwise Context Similarities 

Cheng Niu, Wei Li, Rohini K. Srihari, Huifeng Li, Laurie Crist 
Cymfony Inc. 

600 Essjay Road, Williamsville, NY 14221. USA. 
{cniu, wei, rohini, hli, lcrist}@cymfony.com 

 

Abstract 
Traditionally, word sense disambiguation 
(WSD) involves a different context model for 
each individual word. This paper presents a 
new approach to WSD using weakly 
supervised learning. Statistical models are not 
trained for the contexts of each individual 
word, but for the similarities between context 
pairs at category level. The insight is that the 
correlation regularity between the sense 
distinction and the context distinction can be 
captured at category level, independent of 
individual words. This approach only requires 
a limited amount of existing annotated training 
corpus in order to disambiguate the entire 
vocabulary. A context clustering scheme is 
developed within the Bayesian framework. A 
maximum entropy model is then trained to 
represent the generative probability 
distribution of context similarities based on 
heterogeneous features, including trigger 
words and parsing structures. Statistical 
annealing is applied to derive the final context 
clusters by globally fitting the pairwise 
context similarity distribution. Benchmarking 
shows that this new approach significantly 
outperforms the existing WSD systems in the 
unsupervised category, and rivals supervised 
WSD systems. 

1 Introduction 
Word Sense Disambiguation (WSD) is one of the 
central problems in Natural Language Processing. 
The difficulty of this task lies in the fact that 
context features and the corresponding statistical 
distribution are different for each individual word. 
Traditionally, WSD involves modeling the 
contexts for each word.  [Gale et al. 1992] uses the 
Naïve Bayes method for context modeling which 
requires a manually truthed corpus for each 
ambiguous word. This causes a serious Knowledge 
Bottleneck. The situation is worse when 
considering the domain dependency of word 
senses. To avoid the Knowledge Bottleneck, 
unsupervised or weakly supervised learning 

approaches have been proposed. These include the 
bootstrapping approach [Yarowsky 1995] and the 
context clustering approach [Schutze 1998]. 

Although the above unsupervised or weakly 
supervised learning approaches are less subject to 
the Knowledge Bottleneck, some weakness exists: 
i) for each individual keyword, the sense number 
has to be provided and in the bootstrapping case, 
seeds for each sense are also required; ii) the 
modeling usually assumes some form of evidence 
independency, e.g. the vector space model used in 
[Schutze 1998] and [Niu et al. 2003]: this limits the 
performance and its potential enhancement; iii) 
most WSD systems either use selectional 
restriction in parsing relations, and/or  trigger 
words which co-occur within a window size of the 
ambiguous word. We previously at-tempted 
combining both types of evidence but only 
achieved limited improvement due to the lack of a 
proper modeling of information over-lapping [Niu 
et al. 2003]. 

This paper presents a new algorithm that 
addresses these problems. A novel context 
clustering scheme based on modeling the 
similarities between pairwise contexts at category 
level is presented in the Bayesian framework. A 
generative maximum entropy model is then trained 
to represent the generative probability distribution 
of pairwise context similarities based on 
heterogeneous features that cover both co-
occurring words and parsing structures. Statistical 
annealing is used to derive the final context 
clusters by globally fitting the pairwise context 
similarities. 

This new algorithm only requires a limited 
amount of existing annotated corpus to train the 
generative maximum entropy model for the entire 
vocabulary. This capability is based on the 
observation that a system does not necessarily 
require training data for word A in order to 
disambiguate A.  The insight is that the correlation 
regularity between the sense distinction and the 
context distinction can be captured at category 
level, independent of individual words. 

In what follows, Section 2 formulates WSD as a 
context clustering task based on the pairwise 
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context similarity model. The context clustering 
algorithm is described in Sections 3 and 4, 
corresponding to the two key aspects of the 
algorithm, i.e. the generative maximum entropy 
modeling and the annealing-based optimization. 
Section 5 describes benchmarks and conclusion. 

2 Task Definition and Algorithm Design 

Given n  mentions of a key word, we first 
introduce the following symbols. iC  refers to the 
i -th context.  iS  refers to the sense of the i -th 
context. jiCS ,  refers to the context similarity 
between the i -th context and the j -th context, 
which is a subset of the predefined context 
similarity features. αf  refers to the α -th 
predefined context similarity feature. So jiCS ,  
takes the form of { }αf . 

The WSD task is defined as the hard clustering 
of multiple contexts of the key word. Its final 
solution is represented as { }MK ,  where K refers 
to the number of distinct senses, and M represents 
the many-to-one mapping (from contexts to a 
cluster) such that ( ) K]. [1,j n],[1,i j,iM ∈∈=  

For any given context pair, a set of context 
similarity features are defined. With n mentions of 

the same key word, 
2

)1( −nn  context similarities 

[ ] [ )( )ijniCS ji ,1,,1 , ∈∈  are computed. The WSD task 
is formulated as searching for { }MK ,  which 
maximizes the following conditional probability: 

{ }( ) [ ] [ )( )ijniCSMK ji ,1,,1       }{,Pr , ∈∈  
Based on Bayesian Equity, this is equivalent to 

maximizing the joint probability in Eq. (1), which 
contains a prior probability distribution of WSD, 

{ }( )MK ,Pr .  
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Because there is no prior knowledge available 

about what solution is preferred, it is reasonable to 
take an equal distribution as the prior probability 
distribution. So WSD is equivalent to searching for 
{ }MK ,  which maximizes Expression (2). 
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To learn the conditional probabilities 
( )jiji SSCS =|Pr ,  and ( )jiji SSCS ≠|Pr ,  in Eq. (3), a 

maximum entropy model is trained. There are two 
major advantages of this maximum entropy model: 
i) the model is independent of individual words; ii) 
the model takes no information independence 
assumption about the data, and hence is powerful 
enough to utilize heterogeneous features. With the 
learned conditional probabilities in Eq. (3), for a 
given { }MK ,  candidate, we can compute the 
conditional probability of Expression (2).  In the 
final step, optimization is performed to search for 
{ }MK ,  that maximizes the value of Expression 
(2). 

3 Maximum Entropy Modeling 
This section presents the definition of context 
similarity features, and how to estimate the 
generative probabilities of context similarity 

( )
jiji SSCS =,Pr  and ( )

jiji SSCS ≠,Pr  using 
maximum entropy modeling. 

Using the Senseval-2 training corpus,1 we have 
constructed Corpus I and Corpus II for each Part-
of-speech (POS) tag. Corpus I is constructed using 
context pairs involving the same sense of a word.  
Corpus II is constructed using context pairs that 
refer to different senses of a word. Each corpus 
contains about 18,000 context pairs. The instances 
in the corpora are represented as pairwise context 
similarities, taking the form of { }αf . The two 
conditional probabilities ( )

jiji SSCS =,Pr  and 

( )
jiji SSCS ≠,Pr  can be represented as 

( )}{Pr maxEnt
I αf  and ( )}{Pr maxEnt

II αf  which are 
generative probabilities by maximum entropy for 
Corpus I and Corpus II. 

We now present how to compute the context 
similarities. Each context contains the following 
two categories of features: 

i) Trigger words centering around the key word 
within a predefined window size equal to 50 
tokens to both sides of the key word. Trigger 
words are learned using the same technique as 
in [Niu et al. 2003]. 

ii) Parsing relationships associated with the key 
word automatically decoded by our parser 

                                                      
1 Note that the words that appear in the Senseval-3 

lexical sample evaluation are removed in the corpus 
construction process. 



InfoXtract [Srihari et al. 2003]. The 
relationships being utilized are listed below.  

 
Noun: subject-of, object-of, complement-of, 

has-adjective-modifier, has-noun-
modifier, modifier-of, possess, 
possessed-by, appositive-of 

 
Verb: has-subject, has-object, has-

complement, has-adverb-modifier, 
has-prepositional-modifier 

 
Adjective: modifier-of, has-adverb-modifier 
 

Based on the above context features, the 
following three categories of context similarity 
features are defined: 
(1) Context similarity based on a vector space 

model using co-occurring trigger words: the 
trigger words centering around the key word 
are represented as a vector, and the tf*idf 
scheme is used to weigh each trigger word. 
The cosine of the angle between two resulting 
vectors is used as a context similarity 
measure. 

(2) Context similarity based on Latent 
semantic analysis (LSA) using trigger words: 
LSA [Deerwester et al. 1990] is a technique 
used to uncover the underlying semantics 
based on co-occurrence data. Using LSA, 
each word is represented as a vector in the 
semantic space. The trigger words are 
represented as a vector summation. Then the 
cosine of the angle between the two resulting 
vector summations is computed, and used as a 
context similarity measure. 

(3) LSA-based Parsing Structure Similarity: 
each relationship is in the form of )(wRα . 
Using LSA, each word w  is represented as 
semantic vector ( )wV . Then, the similarity 
between )( 1wRα and )( 2wRα  is represented as 
the cosine of angle between ( )1wV  and ( )2wV . 
Two special values are assigned to two 
exceptional cases: i) when  no relationship 

αR  is decoded in both contexts; ii) when the 
relationship αR is decoded only for one 
context. 

To facilitate the maximum entropy modeling in 
the later stage, the resulting similarity measure is 
discretized into 10 integer values. Now the 
pairwise context similarity is a set of similarity 
features, e.g. 

 
{VSM-Similairty-equal-to-2, LSA-Trigger-

Words-Similarity-equal-to-1, LSA-Subject-
Similarity-equal-to-2}. 

 
In addition to the three categories of basic 

context similarity features defined above, we also 
define induced context similarity features by 
combining basic context similarity features using 
the logical AND operator. With induced features, 
the context similarity vector in the previous 
example is represented as 

 
{VSM-Similairty-equal-to-2, LSA- Trigger-
Words-Similarity-equal-to-1, LSA-Subject-
Similarity-equal-to-2,  
[VSM-Similairty-equal-to-2 and LSA-Trigger -
Words-Similarity-equal-to-1], [VSM-Similairty-
equal-to-2 and LSA-Subject-Similarity-equal-to-
2],  
………, 
[VSM-Similairty-equal-to-2 and LSA-Trigger -
Words-Similarity-equal-to-1 and LSA-Subject-
Similarity-equal-to-2]}. 
 
The induced features provide direct and fine-

grained information, but suffer from less sampling 
space. To make the computation feasible, we 
regulate 3 as the maximum number of logical AND 
in the induced features. Combining basic features 
and induced features under a smoothing scheme, 
maximum entropy modeling may achieve optimal 
performance. 

Now the maximum entropy modeling can be 
formulated as follows: given a pairwise context 
similarity }{ αf , the generative probability of 

}{ αf in Corpus I or Corpus II is given as 
 

( )
{ }

∏
∈

=
α

α
ff

fw
Z

f 1}{Pr
maxEnt         (4) 

 
where Z is the normalization factor, fw  is the 

weight associated with feature f . The Iterative 
Scaling algorithm combined with Monte Carlo 
simulation [Pietra, Pietra, & Lafferty 1995] is used 
to train the weights in this generative model. 
Unlike the commonly used conditional maximum 
entropy modeling which approximates the feature 
configuration space as the training corpus 
[Ratnaparkhi 1998], Monte Carlo techniques are 
required in the generative modeling to simulate the 
possible feature configurations. The exponential 
prior smoothing scheme [Goodman 2003] is 
adopted. The same training procedure is performed 
using Corpus I and Corpus II to estimate 

( )}{Pr maxEnt
I if  and ( )}{Pr maxEnt

II if  respectively. 



4 Statistical Annealing 

With the maximum entropy modeling presented 
above, the WSD task is performed as follows: i) 
for a given set of contexts, the pairwise context 
similarity measures are computed; ii) for each 
context similarity }{ if , the two generative 
probabilities ( )}{Pr maxEnt

I if  and ( )}{Pr maxEnt
II if  are 

computed; iii) for a given WSD candidate 
solution { }MK , , the conditional probability (2) can 
be computed. Optimization based on statistical 
annealing (Neal 1993) is used to search for { }MK ,  
which maximizes Expression (2). 

The optimization process consists of two steps. 
First, a local optimal solution { } 0, MK is computed 
by a greedy algorithm. Then by setting { } 0, MK as 
the initial state, statistical annealing is applied to 
search for the global optimal solution. To reduce 
the search time, we set the maximum value of K  
to 5. 

5 Benchmarking and Conclusion 
To enter the Senseval-3 evaluation, we 

implemented the following procedure to map the 
context clusters to Senseval-3 standards: i) process 
the Senseval-3 training corpus and testing corpus 
using our parser; ii) for each word to be 
benchmarked, retrieve the related contexts from 
the corpora and cluster them; iii) Based on 10% of 
the sense tags in the Senseval-3 training corpus 
(10% data correspond roughly to an average of 2-3 
instances for each sense), the context cluster is 
mapped onto the most frequent WSD sense 
associated with the cluster members. By design, 
the context clusters correspond to distinct senses, 
therefore, we do not allow multiple context clusters 
to be mapped onto one sense. In case multiple 
clusters correspond to one sense, only the largest 
cluster is retained; iv), each instance in the testing 
corpus is tagged with the same sense as the one to 
which its context cluster corresponds.  
    We are not able to compare our performance 
with other systems in Senseval-3 because at the 
time of writing, the Senseval-3 evaluation results 
are not publicly available. As a note, compared 
with the Senseval-2 English Lexical Sample 
evaluation, the benchmarks of our new algorithm 
(Table 1) are significantly above the performance 
of the WSD systems in the unsupervised category, 
and rival the performance of the supervised WSD 
systems. 

 
Table 1. Senseval-3 Lexical Sample Evaluation  

Accuracy  
Category Fine grain (%) Coarse grain (%) 
Adjective (5) 49.1 64.8 

Noun (20) 57.9 66.6 
Verb (32) 55.3 66.3 
Average 56.3% 66.4% 
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