【语义计算沙龙:从“10年中学文化课”切词谈系统设计】

我:
毛老啊,1966-1976 10年文革,是我十年的中小学,我容易吗?10年中学文化课的时间不到一半,其余是学工学农学军。学赤脚医生 学开手扶拖拉机。
为什么是 【十年中】【学文化课】不是 【十年中学】【文化课】?

Guo:
@wei 单就这句,确实两可。但你后面有这么多的”学”……
至少对这个例子,统计,”深度神经”RNN之类还是有merit的。当然,这两种解析其实也没本质的区别。不必多费心思。

我:
怎讲?因为“学”频率高 所以“中学”成词就不便?统计模型在这个case怎么工作显示merit呢?愿闻其详。
大数据说 有五年中学 有六年中学,极少见十年中学,反映的是中学学制的常识。但是这个知识不是很强大,很难作数,因为这不是 positive evidence。如果句子在 “六年中学” 发生边界纠纷的时候 得到来自大数据的直接支持,那是正面的 evidence,力量就很强。负面证据不顶事儿,因为它面对的是 【非六】(或【非五】)的大海,理论上无边无沿,那点儿证据早被淹没了。

Guo:
统计分long term / global vs short term / local.

你讲的”大数据”,其实是在讲前者。

现在热的”深度神经”,有些是有意无意地多考虑些后者。例如,深度神经”皇冠上的明珠”LSTM即是Long Short Term Memory。虽非显式地求取利用”即时统计”,那层意思还是感觉的到的。

我:
@Guo 恩。这个 local 和 global 之间的关系很tricky
0821e

这个貌似歪打正着的parse应该纯粹是狗屎运,不理论。

白:
N+N的得分本来就低 有状语有动词的更加“典型” N+N是实在没招了只能借助构词法解决零碎的产物 有状语有动词时谁还理N+N。不管几年中学,也抗衡不了这个结构要素。就是说,同样是使用规则,有些规则上得厅堂,有些规则只能下得厨房。如果没有上得厅堂的规则可用,随你下厨房怎么折腾。但是如果有上得厅堂的规则可用,谁也不去下厨房。

我:
这里不仅仅是 N+N 的问题,在绝大多数切词模块中,还没走到N+N这一步,因此这个问题实际上可能挑战不少现存的切词程序:十年/中学/文化课 or 十年中/学/文化课 ?
有一个常用的切词 heuristic 要求偏向于音节数均匀的路径 显然前者比后者均匀多了。

白:
句法上谈多层,也是“狗/咬吕洞宾”, 不是“狗咬/吕洞宾”

我:
真正的反例是交叉型的。
句法怎么谈层次 其实无关 因为多层的切词不过是一个技术策略,(通常)本身并不参与 parsing,最终的结果是 狗/咬/吕洞宾 就行了。其实 即便论句法 SVO 层次 在汉语中还是颇有争论的 不像西方语言里面 V+NP 的证据那么充分。

白:
这有点循环论证了

我:
目前的接口是这样的 多数系统的接口是。切词的结果并不存在层次,虽然切词内部可以也应该使用层次。肯定有研究型系统不采用这样的接口,但实用系统中的多数似乎就是这样简单。

白:
都保留也没啥,交给句法处理好了,谁说一定要分出个唯一结果再交上去,很多系统接受词图而不是词流了。对于神经网络这种天然接受不确定性的formalism而言,接受词图并不比接受词流多什么负担。

我:
数据结构多了维度,对于传统系统,涉及面蛮大的。词不仅仅是词,词本身不是一个简单的 object。以前的系统词流就是string 或最多是 token+POS list 对那样简单的结构增加维度还好。

白:
词和短语一样可以给位置加锁解锁 竞争位置的锁

我:
不错,词是一切潜在结构的发源地,蕴藏了很大潜能,甚至在设计中,应该让词典可以内建结构,与parsing机制一体化。这种设计思想下的词 增加维度 就是带着镣铐跳舞 不是容易处置好的。nondeterministic 是一个动听但不太好使的策略。否则理论上无需任何休眠与唤醒。

白:
可以参数化,连续过渡。处理得好,管子就粗些。处理不好,管子就细些。极端就回到一条线。一个位置允许几个词竞争锁,可以参数化。超出管子容量的,再做休眠唤醒。

我:
多层系统下的 nondeterministic 结构,就好比潘多拉的盒子。放鬼容易降鬼难,层次越多越是这样。也许机器学习那边不怕,反正不是人在降服鬼。

白:
其实一个词多个POS,或者多个subcat,机制是一样的。不仅有组合增加的一面,也有限制增加的一面。不用人降服鬼,鬼自己就打起来,打不赢没脸见人。只要制定好“见人”的标准,其他就交给鬼。

我:
这就是毛主席的路线 叫天下大乱达到天下大治。文革大乱10年国民经济临近崩溃的边缘,但没有像60年那样彻底崩盘,除了狗屎运,还因为有一个绝对权威在。这个权威冷酷无情 翻脸不认人。今天红上了天的红卫兵造反派 明天就下牢狱。

白:
鬼打架也是有秩序的,不是大乱,是分布式表示。

我:
这样的系统大多难以调试 等到见人了 结果已定局 好坏都是它了 斯大林说 胜利者是不受指责的。

白:
局部作用,高度自治

我:
鬼虽然是按照人制定的规则打架。具体细节却难以追踪 因此也难以改正。当然 这个毛病也不是现在才有的 是一切黑箱子策略的通病。

白:
不是黑箱子,是基于规则、分布式表示、局部自治。打架的任何细节语言学上都可解释。理论上,如果词典确定,所有交集型分词歧义就已经确定,是词流还是词图,只是一个编码问题。如果再加上管子粗细的限制,编码也是高度可控的。

我:
刁德一说 这茶喝到这儿才有了滋味。看好白老师及其design

白:
“10年”说的究竟是时长(duration)为10年的时间段,还是2010年这一年的简称,也是需要甄别的。

 

【相关】

 

【置顶:立委NLP博文一览】

《朝华午拾》总目录

发布者

liweinlp

立委博士,弘玑首席科学家,自然语言处理(NLP)资深架构师。前讯飞AI研究院副院长,研发支持对话的多语言平台,前京东主任科学家, 主攻深度解析和知识图谱及其应用。Netbase前首席科学家,期间指挥研发了18种语言的理解和应用系统。特别是汉语和英语,具有世界一流的解析(parsing)精度,并且做到鲁棒、线速,scale up to 大数据,语义落地到数据挖掘和问答产品。Cymfony前研发副总,曾荣获第一届问答系统第一名(TREC-8 QA Track),并赢得17个小企业创新研究的信息抽取项目(PI for 17 SBIRs)。立委NLP工作的应用方向包括大数据舆情挖掘、客户情报、信息抽取、知识图谱、问答系统、智能助理、语义搜索等等。

发表评论

电子邮件地址不会被公开。

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据