推荐Chris Manning 论大模型,并附上相关讨论

【立委按】强力推荐。非常好的 review。曼宁教授深厚的计算语言学学识反映在他的综述和展望中,具有历史厚度和语言本质的理解深度。最后的那个点也很好:当前的一锅煮的超大模型实际上是一个可行性研究,已经初见成效;将来的大规模的领域场景应用,会召唤相对来说小一些但更加领域数据密集和纯化的基础模型,可以展望其革命性前景。至于这算不算 AGI,曼宁说的也很有分寸:看上去算是在通向 AGI 的路上。短板主要是 semantics 还不够直接面向真实世界,而是源自符号世界、囿于符号世界(所谓 distributional semantics),等于是绕了一个弯儿,语义的深度以及语义结构本身就显得太扁平 太浅 难以消化人类深厚的知识积淀。但即便如此,也堪称一个伟大征程的坚实脚步,是激动人心的NLP新时代。从分布角度看意义,如果说人是社会关系的总和(马克思),那么也可以说,语词基本上是语词间篇章关系的总和。很多年来,我们 NLPers 一直挣扎在如何把 context 合适的模型化,因为语言符号的歧义和微妙很大程度上可以在 context 中予以消解。context 最直接有效的对象就是 sentences/discourse,而恰恰在这一点,深度学习注意力机制为基础的大模型展示了其几乎神奇的表示能力。

刘群老师:同意@wei,深度学习和预训练方法取得的进步非常惊人,超出想象。原来感觉不可解的一些问题,现在似乎都看到了曙光,解决路径隐隐约约能看到了。虽然对AGI仍然质疑,但对这个领域的前景真是非常看好。

算文解字:是的 同一个模型prompt一下就能完成各种nlp任务 就算不是agi 也是更g的ai了[Grin] 而且即使是从denotational semanrics的角度看 加入多模态的预训练模型也算是部分和间接的grounding到真实世界了的物体了。

刘群老师:是的,原来觉得一般意义上的grounding几乎不可能,除非是特定领域。现在看越来越可能了。

立委:感觉上,意义表示(A)落地到客观世界(B)可以看成是人类与生俱来的本能,不需要特别的模型化,如果A本身比较充分的话。 那么这个 A 是个什么东西呢?A 可以看成是一个平面的表示,其中 X 轴就是 discourse/context,而 Y 就是 ontology 甚至还带有 pragmatics 因素的世界知识和推理体系。

目前的大模型的长处是 X 模型化,短处依然在 Y。因此虽然从分布角度貌似也总结出了一些常识,以及浅层的推理能力,但这些能力没有足够的深度和逻辑性,缺乏推理的链条性和一致性。

符号知识图谱以及人类探索积累下来的本体知识库、领域知识库,这些东西都是非常浓缩的、高度结构化的知识体系,本质上具有严谨的逻辑性和推理能力。分布式学习学到了这些知识的皮毛,但总体上,对于这些知识精华还很陌生, 难以系统性直接兼容并蓄。

刘群老师:当然离解决这些问题还远,只是说能看到曙光了。以前感觉根本没希望。虽然还不怎么样,但不是没希望。日拱一卒[ThumbsUp]

算文解字:还有这两年出现的基于预训练模型的常识推理(如Yejin Choi组的工作)也让人眼前一亮。即使五年前,还是说研究common sense一般反应都是敬而远之[Facepalm]

立委:大数据为基础的分布学习可以反映相当多的常识,这个是没有疑问的。我们在本群中讨论过很多案例,也有这种反映:所谓大数据支持的“相谐”性,其实与常识中的特征匹配,吻合度很高。

刘群老师:把符号融入到神经网络里面不是解决这个问题的正确方法,还是分阶段处理,来回迭代才是正途。

立委:方法论上也许的确如此,但 intuitively 感觉是一种知识浪费。就是说,从我们DL外行的角度来看,明明人类已经世代努力提炼了精华,都规整得清清楚楚,可模型就是没法利用。一切必须从头开始。让人着急。

刘群老师:我说的来回迭代不是人机交互,是符号和神经来回迭代,可以自动化的。

立委:哦,那就是我希望看到的深度耦合/融合。这种融合是革命性的方向,有望发生新的AI突破与下一代的范式转变。但不久前,还普遍被认为是一种乌托邦,觉得符号和神经,就跟林黛玉与焦大似的,打死也不兼容。

算文解字:刘老师,这个方向上近期有哪些比较亮眼的工作呀?

刘群老师:WebGPT, AlphaCode等。还有周志华老师反绎学习的工作。

算文解字:恩恩 的确 webgpt这种都可以看做是 大模型 和 离散/黑盒系统(可以是规则)交互迭代的方案

立委:前面提到,对于大数据,人比起机器,有时候好像蚂蚁比大象。有老友不满了,说不要这样说,这是“物种”歧视。

其实,很多事儿,人比起机器,还不如蚂蚁比大象......

1. 计算

2. 存贮/记忆

3. 下棋

4. 知识问答

5. 翻译

6. 做对联

7. 格律诗

8. ......... 可以预见的未来清单还很长很长,都不是遥不可及的  ......
(自动驾驶、自动咨询、自动陪护、自动培训、自动写作、自动音乐、自动绘画 ...........)

事实在那里摆着。不服不行。

回顾历史,人类第一个被蒙圈的就是计算。以前的那些心算大师,算盘顶级快手,现在很少有宣传了,因为干不过一个小小的计算器。

紧接着是存贮量和记忆力。当年我们最崇敬的人物就有不少是过目不忘 博闻强记的大师们。社科院流传着很多大师的传奇故事,社会上也有很多周总理的超凡记忆力的故事,都是能记住非常细节的东西,可以在记忆的大海捞针。现如今,谁敢说任何大师记忆的信息量能比过一个U盘。哪个大师还能在谷歌百度面前夸口自己的大海捞针的信息检索能力?

下棋不用说了,电脑完胜,两次载入计算机历史的里程碑。知识问答也进入了计算机历史博物馆,IBM 沃伦的高光时刻。机器翻译我一直在用,我本人就是机器翻译出身的,目前的翻译水平高过普通翻译,注意:不是指速度。对联、写诗 也有过大赛。自己试试就知道了:你可以尝试在家苦学格律诗n年,然后即兴写诗,与机器比试比试?

面对超大数据的基础模型,人类脑壳里的“小”只会越越来露怯,想藏拙也藏不住了。

当然,严格说来这不是一场完全公平的实体之间的比试。一边是单个实体的人(例如世界围棋冠军),另一边是消化了人类整体知识积淀的实体机器人。好比一人对无数人,自然是蚂蚁遇上了大象。但是,另一方面看,每个碳基生物的人也在不断学习人类的知识才能成为专家或冠军,并非一张白纸。关键在于学习能力,碳基实体无法与硅基实体的电脑比试自动学习的能力,因为后者占尽了时间(速度)与空间(存贮)的优势。超人的出现不会是人,而是机器人,这应该是用不了50年就可以做实的现实。

新摇滚歌手汪峰曾经唱到:我该如何存在?

面对汹涌而来的大数据大模型,人类准备好了吗?

与曼宁教授在斯坦福合影(2017.07.18)

斯坦福Chris Manning: 大模型剑指通用人工智能

from 算文解字 算文解字 2022-04-30 03:06

著名NLP学者斯坦福大学的Chris Manning教授近期在美国人文与科学学院期刊的AI & Society特刊上发表了一篇题Human Language Understanding & Reasoning的论文。

文章在简单回顾了NLP的历史发展的基础上,分析了预训练的transformer模型何有此威力,探讨了语义和语言理解的本质,进而展望了大模型的未来,对新手还是老兵都颇有启发。本文就聊一聊论文的要点。顺便提一句,论文谈的是NLP,但本质也是在说或许我们已经在通用人工智能(Artificial general intelligence, AGI)上迈出了坚定的一步。

  1. NLP领域的范式转移

文章先简要回顾了自然语言处理(NLP)的几个阶段,这对于新一代炼丹师可能过于遥远,所以我们也一笔带过:

  • 第一阶段,发轫于冷战时期1950-1969的机器翻译工作,以现在的观点看数据和计算量都小的可怜,同时没太多语言结构或者机器学习技巧介入。

  • 第二阶段,1978-1992的符号主义,没错,约等于规则,那种很系统且elegant的规则。

  • 第三阶段,1993-2012的,实证主义,也就是基于语料库的机器学习时代。

  • 第四阶段,2013开始一直到现在,深度学习时代。

深度学习本身当然意义巨大,但2018年出现的大规模自监督(self-supervised)神经网络才是真正具有革命性的。这类模型的精髓是从自然语言句子中创造出一些预测任务来,比如预测下一个词或者预测被掩码(遮挡)词或短语。

这时,大量高质量文本语料就意味着自动获得了海量的标注数据。让模型从自己的预测错误中学习10亿+次之后,它就慢慢积累很多语言和世界知识,这让模型在问答或者文本分类等更有意义的任务中也取得好的效果。没错,说的就是BERT (Devlin et al, 2019)和GPT-3之类的大规模预训练语言模型,large pretrained language model (LPLM),中文世界也常称之为大模型

  1. 为什么大模型有革命性意义?

用Manning自己的话来说,在未标注的海量语料上训练大模型可以:

Produce one large pretrained model that can be very easily adapted, via fine-tuning or prompting, to give strong results on all sorts of natural language understanding and generation tasks.

从此,NLP领域的进展迎来了井喷。

Transformer 架构(Vaswani et al., 2017) 自2018年开始统治NLP领域。为何预训练的transformer有如此威力?论文从transformer的基本原理讲起,其中最重要的思想是attention,也就是注意力机制。

Attention其实非常简单,就是句子中每个位置的表征(representation,一般是一个稠密向量)是通过其他位置的表征加权求和而得到。Transformer模型通过每个位置的query, key以及value的表征计算来预测被掩码位置的单词。网上有很多介绍transformer的资料,不熟悉的同学可以自行搜索,大致过程如下图所示:

     

为什么这么简单的结构和任务能取得如此威力?

此处颇有insight。Manning认为通过简单的transformer结构执行如此简单的训练任务之所以能威力巨大的原因在其:通用性

预测下一个单词这类任务是如此简单和通用,以至于几乎所有形式的语言学和世界知识,从句子结构、词义引申、基本事实都能帮助这个任务取得更好的效果。因此,大模型也在训练过程中学到了这些信息,这也让单个模型在接收少量的指令后就能解决各种不同的NLP问题。也许,大模型就是“大道至简”的最好诠释

 

基于大模型完成多种NLP任务,在2018年之前靠fine-tuning(微调),也就是在少量针对任务构建的有监督数据上继续训练模型。最近则出现了prompt(提示学习)这种形式,只需要对任务用语言描述,或者给几个例子,模型就能很好的执行以前从未训练过的任务 (Brown et al, 2020).  

  1. NLP的大模型范式

传统的NLP是流水线范式:先做词法(如分词、命名实体识别)处理,再做句法处理(如自动句法分析等),然后再用这些特征进行领域任务(如智能问答、情感分析)。这个范式下,每个模块都是由不同模型完成的,并需要在不同标注数据集上训练。而大模型出现后,就完全代替了流水线模式,比如:

  • 机器翻译:用一个模型同时搞多语言对之间的翻译

  • 智能问答:基于LPLM微调的模型效果明显提升

  • 其他NLU任务如NER、情感分析也是类似

更值得一提的是自然语言生成 (natural language generation,  NLG),大模型在生成通顺文本上取得了革命性突破,对于这一点玩过GPT-3的同学一定深有体会。

这种能力还能用在更为实用的医学影像生成任务上。大模型能在NLP任务上取得优异效果是毋庸置疑的,但我们仍然有理由怀疑大模型真的理解语言吗,还是说它们仅仅是鹦鹉学舌?

  1. 大模型能真正理解人类语言吗?

要讨论这个问题,涉及到什么是语义,以及语言理解的本质是什么。关于语义,语言学和计算机科学领域的主流理论是指称语义(denotational semantics),是说一个单词短语或句子的语义就是它所指代的客观世界的对象。

与之形成鲜明对比的是,深度学习NLP遵循的分布式语义(distributional semantics),也就是单词的语义可以由其出现的语境所决定。Manning认为两者可以统一起来,用他的原话来说,就是:

Meaning arises from understanding the network of connections between a linguistic form and other things, whether they be objects in the world or other linguistic forms.

用对语言形式之间的连接来衡量语义的话,现在的大模型对语言的理解已经做的很好了。但目前的局限性在于,这种理解仍然缺乏世界知识,也需要用其他模态的感知来增强,毕竟用语言对图像和声音等的描述,远不如这些信号本身来的直接。这也正是很多大模型的改进方向。

  1. 大模型的未来

大模型在语言理解任务的成功,以及向其他数据模态,比如图像、知识、生物信息等的拓展巨大的前景指向了一个更通用的方向。在这个方向上,Manning本人也参与提出了近期大火的foundation model(基础模型)的概念。

基础模型是指百万以上参数,通过自监督学习在预料上训练的,可以轻松适配到多种下游任务的大模型(Bommasani et al., 2021)。BERT和GPT-3就是典型的例子,但最近在两个方向上涌现出不少的拓展性工作:

  • 大模型连接知识,无论是以连接知识图谱神经网络,还是实时搜索文本知识的形式。

  • 多模态的foundation model,比如DALL·E模型,这个方向也更激动人心。

Foundation model仍然在早期,但Manning描绘了一个可能的未来:

Most information processing and analysis tasks, and perhaps even things like robotic control, will be handled by a specialization of one of a relatively small number of foundation models. 
These models will be expensive and time-consuming to train, but adapting them to different tasks will be quite easy; indeed, one might be able to do it simply with natural language instructions.

AI模型收敛到少数几个大模型会带来伦理上的风险。但是大模型这种将海量数据中学来的知识应用到多种多样任务上的能力,在历史上第一次地非常地接近了(通用)AI的目标:对单一的机器模型发出简单的指令就做到各种各样的事情

这类大模型可能只拥有非常局限的逻辑推理能力,但是大模型的有效性会让它们得到非常广泛的部署,在未来数十年它们会让人们领略通用人工智能的一瞥。

 

Reference

Ashish Vaswani, Noam Shazeer, Niki Parmar, et al., “Attention Is All You Need,” Advances in Neural Information Processing Systems 30 (2017).
Tom Brown, Benjamin Mann, Nick Ryder, et al., “Language Models Are Few-Shot Learn- ers,” Advances in Neural Information Processing Systems 33 (2020): 1877–1901
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, “BERT: Pre-train- ing of Deep Bidirectional Transformers for Language Understanding,” in Proceedings of NAACL (Stroudsburg, Pa.: Association for Computational Linguistics, 2019), 4171–4186.
Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, et al., “On the Opportunities and Risks of Foundation Models,” arXiv (2021), https://arxiv.org/abs/2108.07258.
点击"原文链接",读原始论文。

from https://mp.weixin.qq.com/s/pnd2Q-5duMtL0OLzrDJ2JA

 

【相关】

斯坦福教授曼宁AAAS特刊发文:大模型已成突破,展望通用人工智能

《我看好超大生成模型的创造前途》

李维 郭进《自然语言处理答问》(商务印书馆 2020)

预告:李维《巴别塔影:符号自然语言处理之旅》(人民邮电出版社 2022)

预告:李维等 《知识图谱:演进、技术和实践》(机械工业出版社 2022)

 

《我看好超大生成模型的创造前途》

最近,盘古群(一个围绕中文超大生成模型盘古的技术交流微信群)里的朋友在谈 open AI 最近发布的文字转图片的 Dalle2 应用,吸引了成千上万的人想要先睹为快。据介绍,Dalle2 可以根据你的自然语言的描述,随机生成任意图片。从发布的样例看,很多生成的图片超出人的想象,很像艺术品,当然也有次品,但都是唯一的。下面随手摘取几张样本:

Dalle 的出现是出版界的福音。出版界为了插图的授权问题,常常弄得头晕脑胀。我们在互联网上发帖子比较随意,需要插图的时候就搜索一幅用上再说,遭遇纠纷的时候撤下就好,但出版界最怕引起这些纠纷。现在好了,通过 Dalle 可以整出来各种插图可供选择,而且保证了这是唯一的“揉合创造”,不会侵权。

商务出版我的《NLP答问》的时候,建议为了回避可能的插图侵权,建议我找艺术家重新描画。无奈之下,我让女儿做了两张素描,她以我和她自己作为原型“再创作”,终于绕过了这个问题。LOL

回来说生成模型。我相信在“机助创作”这个大方向上,超大生成模型今后几年会有接地气的应用出现,Dalle 就是一个苗头。对于创业者,找准市场角度、收获千万用户的杀手级独角兽的出现,也不是小概率事件。因为市场需求是存在的。(据说现在美国有 300 多家初创团队或个人正在寻找利用 GPT3 模型的落地场景。)

这背后的原理,值得说一说。我们知道,计算复杂性研究中有个著名的 P vs NP 问题。简单说就是(在有限时间内)问题分为可解与不可解两类。搜索空间指数增长,组合爆炸,就是不可解的问题。而很多判定性问题具有确定性推理算法,不需要搜索,那就是可解的问题。

超大生成模型的出现就好比是提供了一个把不可解问题转化为可解问题的路径。当然,任何比喻不是跛腿就是夸张,严格说来,应该是超大模型为艺术家和匠人打开了次优解集合的大门。生成模型最大的为人诟病之处是其不稳定性:结果时好时坏,有时候让人拍案叫绝,有时候让人无语。这就是为什么网上对其前景争论不休的主要原因。粉丝报喜不报忧,批评者揭露其背后的缺乏理性或灵性。

这种情况下的最佳搭配其实就是人机耦合(让 human in the loop):人的归人,机器的归机器;各自发挥所长,取长补短。这在创造性应用中最为明显。创造需要消化前人的历史积淀,然后加入个人的灵感,才能成事。但消化类似于搜索,这一步对于人及其有限的脑容量、记忆力和时间,挑战实在太大了。而人作为万物之灵,“灵感”其实人人都有。

现在好了,超大生成模型几乎无限延伸了人的搜索消化的能力,在很多细分领域甚至可以对历史做到一网打尽。深度学习的革命现在可以让消化了的东西重新符号化(包括语言符号、音频符号和视频符号),提供给人选择。这是千载难逢的绝佳组合:人只要判定就好了。判定是灵感参与的线性决策过程,n 挑 1 也就是 n 倍的判定,依然是线性的。对于文学艺术创作,这个太高效了。人类进入“艺术大爆炸”、“艺术个性化”时代,百花齐放,人人皆为艺术家,不是不可以想见的。

熟读唐诗三百首,以前是成为古典诗人的必由之路,被认为是必要的苦功夫。现如今,300 就是个笑话,整个古典诗词喂进模型去也是个小 case。总体而言,消化大数据,人比起机器,就好比蚂蚁比大象。

对于稳定性弱波动性大的生成模型,应用的开花结果不要指望全自动。人机耦合条件下,纵然你n个结果有9成垃圾,我只取一瓢。一样会产生前所未有的价值。目前的问题是,艺术家群体不懂计算,计算界的人艺术敏感度不够,所以二者耦合所能发现的市场角度不容易确定。但假以时间,没有理由不对这个前景看好。

更何况不少创造性应用并不一定要专门针对艺术家或工匠的群体,有相当场景是普罗百姓都有需求的。例如应用文写作、秘书2.0, 编辑2.0, 确保出版插图永无侵权烦恼,等等等等。

 

 

【相关】

DALL·E 2

推荐Chris Manning 论大模型,并附上相关讨论

李维 郭进《自然语言处理答问》(商务印书馆 2020)

预告:李维《巴别塔影:符号自然语言处理之旅》(人民邮电出版社 2022)

预告:李维等 《知识图谱:演进、技术和实践》(机械工业出版社 2022)

我的前老板的企业家创业访谈

【立委按】我的前老板(NetBase 创始人兼CEO Jonathan)最近有访谈,谈到他的连环创业的过程,带回来公司创业初期的很多回忆。Netbase 目前是美国社会舆情(social listening)B2B 赛道的绝对领跑者,早已站稳了脚跟。我是五号员工,首席科学家,带进来 NLP 落地大数据的硬核技术。当年与两位创业者融洽相处,共同奋斗的生活是我职业生涯的愉快时光。我在Netbase 的10年见证了技术改变商业情报的成功案例。访谈中提到的最出彩的创业环节是客户顾问委员会的成立,保洁等巨头公司作为早期客户愿意投资新产品,根据他们的需求和痛点参与制定产品方向,这是创业公司梦寐以求的情况。其实,这是因为此前我们已经用NLP技术开发了另一款科技文献的搜索产品(最终由 Elsevier 独家代理发行 illumin8),可以瞬时发现任何问题的现存解决方案,是回答how难题的利器。这款产品的第一期客户就有保洁公司,是这款产品的出色表现及其背后的NLP挖掘大数据的能力展示,使得保洁公司的客户情报部门愿意出钱出力帮助我们制定开发一款面对社交媒体的客户情报挖掘产品,最后成就了我们的 B2B 事业。这里面的创业故事还有很多有趣的细节。记得有一次陪同 Jonathan 去保洁公司总部见他们的VP,路上他跟我回忆他们第一次去保洁公司总部试图联系时候的冷遇,前后对比,不胜唏嘘。我们终于凭着技术创新的实力成了他们的座上客。他当时的感慨和对于新产品的兴奋,非常具有感染力。

将 AI 应用于潜在客户生成:Rev.AI 首席执行官乔纳森·斯皮尔

发表于 2022 年 4 月 26 日星期二

我在 1998 年创办了一家初创公司,将 AI 应用于潜在客户生成和资格问题。时间还早,当年数据还不够丰富。

现在,数据就在那里。问题最终能否以适当的复杂程度得到解决?

米特拉:让我们回到你旅程的开始。你在哪里出生和长大?

乔纳森·斯皮尔(Jonathan Spier):我是在圣地亚哥长大的加州人。我来这里是为了在伯克利上学。我再也无法逃脱。

米特拉:你在伯克利之后做了什么?

乔纳森·斯皮尔:我曾短暂从事咨询工作,然后进入了一家名为 Ariba 的公司。我是 85 号员工。几年之内,我们就有了 3,500 人。这是一个有趣的地方。

米特拉:我们有Ariba案例研究。基思·克拉赫(Keith Krach)参加了该系列。

乔纳森·斯皮尔:他是一位伟大的领袖。整个团队都很棒。我是他们雇用的最年轻的人。我加入时,他们已经是一支非常资深的团队。我对成长型企业非常着迷。

米特拉:你是哪一年离开阿里巴的?

乔纳森·斯皮尔: 2002。

米特拉:那之后会发生什么?

乔纳森·斯皮尔:硅谷经历了整个核冬天。恢复花了很长时间。期间我去接受了我的“脑叶切开术”,哈佛的 MBA。那是一次很棒的经历。我打算最终创办一家公司。2004年离开商学院,我违背自己的意愿创办了一家公司。

米特拉:为什么说违背你的意愿?

乔纳森·斯皮尔:当时他们会说的是先向其他人学习,然后创办公司。这已经改变了。现在鼓励人们立即创办公司。更多的人在他们职业生涯的早期就这样做了。

米特拉:我在麻省理工学院的研究生院创办了我的第一家公司。我没有上商学院。

乔纳森·斯皮尔:有很多人这样做吗?

米特拉:第一批互联网企业家,很多人都在这样做。我在 1994 年创办了我的第一家公司。然后在 1997 年我的第二家公司和 1999 年的第三家公司。当时,人们这样做。你所描述的时期是核冬天。

乔纳森·斯皮尔:我记得我去硅谷银行存入我的种子资金。我记得他们很惊讶有一位企业家在那里。我对这个想法很兴奋。我的联合创始人是麻省理工学院的人。他发明了一个概念。我对此感到非常兴奋。

米特拉:什么是想法?

乔纳森·斯皮尔:基本想法是着眼于世界上巨大的数据爆炸和关联信息的数量,并说这些信息对于企业挖掘非常有价值。与基于少数人的旧方法不同,我们可以在一毫秒内了解整个舆论网络。这是一款非常高端的社交上市产品,在一些大型财富 500 强公司中表现出色。

我们发展了大约七年半。我们已经筹集了超过 2000 万美元的资金,并且收到了一家大型企业软件公司提出的以九位数出售的报价。其中一位董事会成员不想出售。好消息是这是一家好公司。它仍然被认为是企业分析类别的领导者。

米特拉:公司的名字是什么?

乔纳森·斯皮尔: NetBase。它有大客户。我经常遇到使用这个软件的人。当我们收到报价时,我赞成出售它。于是,我与公司分道扬镳。

米特拉:你当时是首席执行官?

乔纳森·斯皮尔:我担任创始人兼首席执行官七年半。然后我和 Ho Nam 在 Altos 做了一个 EIR。

米特拉:谁是不想卖的投资者?

Jonathan Spier:这是一家名为 Thomvest 的风险投资公司。这是汤姆森家族的风险投资部门。

米特拉:那太不合理了。

乔纳森·斯皮尔:他们不是不理性的。他们只是想要一个更大的出口。

米特拉:你在Altos有没有想出一些新的东西?

乔纳森·斯皮尔:我喜欢桌子的那一边,但我就是太喜欢运营了。我在看一些机会。在 NetBase,当SAAS软件落地时,我们就在那里。我们有机会建立适当的 SaaS 销售动议。我从 Marketo 的人们那里得到了很多很好的建议。我和他们的团队一起度过了愉快的时光。

我真的很喜欢 B2B 销售流程的演变方式。作为一名 EIR,我在研究这个问题。具体来说,我是在看售后。似乎需要一个新类别来管理客户的售后管理方式。Gainsight刚刚开始。我以为我有点晚了,但我一直很喜欢那家公司,并跟踪他们,看看他们去了哪里。

米特拉:你提到的两家公司,MarketoGainsight,都参加了我们的企业家之旅系列。

Jonathan Spier:我与 Marketo 的 Phil 取得了联系,并与他讨论了目前的公司。我从来没有和 Gainsight 的 Nick 谈过话。他也是门洛帕克的人。

米特拉:你有什么收获​​?

乔纳森·斯皮尔:我朝不同的方向急左转。我遇到了一位在零售领域非常出色的创始人。我最终创办并经营了一家零售业务。我从未想过我会去 B2C,但我非常喜欢这项业务。我被营销过程和弄清楚消费者营销所吸引。

米特拉:你卖的是什么?

乔纳森·斯皮尔:童鞋。这家公司叫普莱。它在门洛帕克拥有非常高的市场份额。

米特拉:我想你想花时间谈论Rev,但请给我一些 NetBase和Plae的亮点,它们确实具有战略意义。

Jonathan Spier:亮点通常来自客户互动和客户增长。我们在 NetBase 做过的最好的事情之一就是成立了一个客户顾问委员会。

我们开始与宝洁公司就我们的新产品进行对话。宝洁公司同意帮助我们做到这一点。他们会坐在房间里帮助我们设计产品。在产品出现之前,他们在财务上做出了承诺。然后他们还帮助我们招募了可口可乐、雀巢和卡夫等其他公司。他们都是顾问委员会的成员。在我们推出产品之前,所有资金都已承诺。

米特拉:那太了不起了。

Jonathan Spier:在编写一行代码之前,我们已经获得了数百万的预订。

Google MT from

Applying AI to Lead Generation: Rev.AI CEO Jonathan Spier (Part 1)

Applying AI to Lead Generation: Rev.AI CEO Jonathan Spier (Part 2)

 

【相关】

李维 郭进《自然语言处理答问》(商务印书馆 2020)

预告:李维《巴别塔影:符号自然语言处理之旅》(人民邮电出版社 2022)

预告:李维等 《知识图谱:演进、技术和实践》(机械工业出版社 2022)