Is Thinking Equal to Language?

Some philosophers have argued that thinking and language are two sides of the same coin—thinking as inner language, and language as externalized thought. But this perspective doesn’t quite hold up to scrutiny.

The broader consensus is this: language is the expressive form of thought. Theoretically, all content needs some form in which to exist. As the old saying goes, “Without the skin, where would the hair attach?” But forms come in two kinds: external multimodal forms that can be seen or sensed by others (such as written or spoken language, audio-visual works, etc.), and internal forms—those invisible carriers of thought like neural activity and brainwaves.

Content and form are indeed two sides of the same coin, inseparable in function. Yet, only internal form is indispensable to thinking itself. In practice, large language models (LLMs) represent content as internal vectors—tensors that encode meaning in a computable way. This internal form is known in neural networks as the “latent space.” As Ilya once said, the biological brain likely functions via a similar stream of electrical pulses in the biological neural network. Although this isn’t yet a scientific consensus (since brain science still lags far behind AI's advance), it offers a helpful lens to understand the relationship between internal thought and externalized language.

The notion that thought and language are tightly connected, yet still separable, becomes more fascinating the deeper you think about it. Philosophically, it remains debatable. But the emergence of large language models provides a living analogy—like wave-particle duality. Thought is like a wave; language, as a sequence of discrete symbols, resembles particles in a stream. Consciousness itself is akin to light, exhibiting both behaviors.

What exactly is the form of thought in the brain? How does it interact with or get translated into language—whether spoken or written? We may never fully know from biology alone. But artificial neural networks already give us a convincing glimpse: they encode thoughts as internal vectors, which can be transformed into language through input/output ends like embedding/softmax layers. If language is clothing, then the internal thought chain is a naked stream of consciousness—what we might call "naked thought"—only collapsing into definite symbolic string when forced through verbalization.

Why, then, do we so often feel that thought and language are inter-dependant? A few key reasons are as follows:

First, humans are social beings. We feel an innate urge to share what’s on our minds. We don’t just daydream in solitude—we talk, message, meet. Our inner thoughts and feelings struggle to stay bottled up for long. (Exceptions exist, such as in cases of autism.)

Second, without external forms, our thoughts are fleeting and often lack coherence. Set aside the hidden states inside machine learning models—just look at the human brain. Without the scaffolding of language, our wild ideas rarely stretch into long lines of reasoning. We can't build up knowledge, nor pass it on. No accumulated knowledge means no science, no civilization. That's why language, along with artistic creations, is so crucial to advance of humanity. These external modalities are also the fuel behind the current AI revolution.

Despite having far more neurons than even the largest language models, the human brain is vastly limited in its ability to store and organize knowledge. No matter how brilliant, no individual can match a large model’s breadth and depth. The defeat of the world Go champion by an AI was a vivid example—"tofu brain" versus silicon, simply an unfair fight. Our brains lack both long-term storage and precision. That’s why we need decades of education and training just to stand on the shoulders of past generations and inch forward. This reinforces our intuitive sense that complex thinking requires external form.

Third, culture shapes cognition. Though, in principle, the mind can operate on internal brainwaves and pulses without external representation, the advent of language has changed the landscape. For tens of thousands of years, humans have encoded, transmitted, and reinforced thought through external forms. Over time, especially among the literate, we’ve internalized the habit of thinking in linguistic terms—even silently. Studies show that brainwaves representing thought often align with subtle movements of the speech organs. Silent reading easily slips into self-talk. This reinforces the illusion that thought and language are one and the same.

We now know that LLMs trained with reinforcement learning generate outputs in a "query–COT–answer" sequence. The input (query) and output (answer) are necessarily language, because they interact with human users. But the middle part—COT, or chain-of-thought—can either be fully verbalized or remain as latent reasoning. The latter sacrifices interpretability but might yield better results.

So what about us? Does the human brain also harbor these silent, unspoken internal chains of reasoning? Or are we fundamentally bound to language in order to think at all? There’s long been debate. Most of us feel that without language, extended, organized reasoning is nearly impossible. Only in dreams or moments of deep reflection do we experience vague, inexpressible insights that seem to precede words.

In theory, “thinking” is narrower than “consciousness,” and language is but one modality among many. The inner referent of multimodal signals is best described not as thought alone, but as “conscious experience.” From this angle, the thought-language relation is just one special case of the broader relationship between consciousness and modality. Saying “language = thought” is as flawed as saying “consciousness = modality.”

So, what is consciousness? The ancients might say: “The brain thinks, the heart feels.” The former we call thought; the latter, emotion. Why do we associate emotion with the heart rather than the brain? There’s no scientific basis. But emotional states often come with noticeable changes in heartbeat or blood pressure. When love strikes, it’s “heart-throbbing,” not “brain-throbbing.” Feelings like doubt, admiration, jealousy, or compassion don’t feel like products of cold logic of brains. Regardless of their biological seat, emotions are an essential component of consciousness. Animals may experience basic emotions too, just as they may have rudimentary language. But human emotions are uniquely rich and nuanced.

So if thoughts and emotions are both internal, how do they manifest externally?

    • Through language: the most direct and common mode of expression.

    • Through music: melody and rhythm convey feelings where words fail.

    • Through visual arts: painting, sculpture, film—each captures aspects of what can hardly be said.

    • Through embodied gestures: hugs, kisses, waves, thumbs-up, middle fingers, even fists. Eye contact, laughter, tears—they all fall under the category of embodied intelligence, the domain of future humanoid robots.

    • Through inexpressibility: what cannot be put into form, what remains ineffable—too subtle even for art.

Setting embodiment aside, the relationship between consciousness and modality is essentially the relationship between internal content and external form. Among all modalities, language remains kernel—especially as a carrier of thought. Emotions can be described in language, but such descriptions often feel clumsy, dry, or distorted. Consider the blind musician Abing, who poured his life’s suffering and aspirations into a two-stringed erhu performance, “The Moon Over a Fountain.” No language could ever capture what that music conveys.

So, after this long detour, we return to the question: Is thinking the same as language?

Conclusion:
Thinking is a core component of consciousness—its inner content or meaning. Language is a primary modality—its external form or medium. Thus, to ask whether thought equals language is really to ask whether content equals form, whether consciousness equals modality. Given that the brain can internally represent thought in neural form, thinking does not depend entirely on language. The internal neural network exists independently and proves that “thinking = (external) language” is an oversimplified claim. Still, it doesn’t rule out the assumption that “thinking = internal language” might be true.

 

思维等于语言吗??

有一派哲学家相信,思维等于语言,二者是一块铜币的两面。或曰:思维是内在的语言,语言是外在的思维。但这种观点经不起推敲。

共识是,语言是思维内容的表达形式。理论上,任何内容都需要赖以存在的形式。老话说:“皮之不存,毛将焉附。” 但形式其实有两种:一种是他人能看得见摸得着的多模态外在形式(例如语言文学,也包括音频视频作品),另一种是无法直接与别人分享的内心活动载体——内在形式(神经元脑电波)。

内容与形式的确是一体两面、相互依赖的整体,但只有内在形式才是思维不可或缺的载体。大模型的实践中,我们把内容抽象为可计算和操作的内部向量(tensor),神经网络系统把这种内在形式称为意义的隐藏空间。伊利亚曾说,生物大脑的神经网络也差不多是一种类似的电脉冲数据流。这个观点目前还不是科学共识,因为我们对大脑机理的了解远远落后于AI的发展。无论如何,借助这种视角,我们可以更清晰地认识到思维作为内容,与语言作为外在形式之间的关系。

关于思维与语言既密切相关又可以独立这一点,越想越觉得奇妙。哲学上可以持续争论,然而大型语言模型的出现提供了一个活生生的“波粒二象性”般的例证。思维好比波,语言作为离散符号序列,好比粒子(流)。人类意识就像光,具有这种思维/语言的二象性。到底思维在我们大脑里是一种什么形态?它与我们的语言器官(发音或码字)如何相互转化、作用和反作用呢?纯粹从生物学角度可能不易搞清楚。但人工神经网络至少呈现出一种可以将思维表示为内部向量,并在端口之间实现相互转换(embedding / softmax)的机制。如果把语言比作衣服,那么内部思维链就像光着屁股的意识流,是“裸思”;只有当实施语言化时,这条裸思才坍缩成确定性的符号序列,正如我们在推理模型(例如OpenAI的o系列)输出的语言思维链(CoT)上所看到的。

为什么我们总觉得语言与思维密不可分呢?原因大概有以下几点:

首先,人是群体动物,有着强烈分享“心得”的冲动。我们不满足于自闭遐想,而是喜欢不停地唠叨:电话、微信、开会……给人的感觉是内心的想法和情绪很难长久存于心而不吐露(个别例外,如自闭者)。

其次,没有外在形式,思绪难以长久保持连贯和条理。撇开计算机神经网络内部的隐藏空间不谈,只看人脑的内心活动,我们会发现如果不借助语言这类外在形式,天马行空的意念很难拉成长线,难以进行长线条的逻辑推导,更谈不上形成完整的知识体系。知识无法积淀和传承,也就不会有科学技术的继承和发展。可见,语言和艺术作品这些外在的模态数据,对人类文明和科技进步是多么重要!它们也像燃料一样驱动着这一次大模型革命。

我们的生物大脑的神经元数量比目前最大的头部大模型要高出好几个量级,但每个人都深知人脑的局限:它不像计算机模型那样可以持久承载一个包罗万象的知识体系,再聪明的知识分子也难与大模型硬碰硬拼深度与广度。韩国围棋冠军一败涂地的经历令人记忆犹新,这是“豆腐脑”与电脑硬碰硬时的鲜活惨状。人脑的内在装载容量和知识持久性、完整性都很成问题,这就是为什么人类需要接受十几年甚至二十多年的教育和训练,才能站在前一代人留下的知识体系之上,继续拓展科学技术的边界。所有这些现实,都强化了思想离不开外在形式的直感。

第三,文明的发展反过来影响了我们的内心活动。从原理上说,人类的内心活动原本无需借助语言等外在模态形式,它可以在内在形式的载体(脑电波、脉冲)上独立存在。然而,自从人类发明语言并用它传承文明上万年以来,我们在交流与传承过程中受到了语言的巨大反作用——尤其是读书人,渐渐习惯于在内心活动时频繁利用语言的外在形式,只不过通常并不大声说出来而已。这一点有实验依据:人类脑电波所代表的思维活动往往与发音器官下意识的“默读”活动高度协调。默读一不小心就会演变成很多人“自言自语”的现象。这更加强化了“思维即语言”的观点。

我们知道,强化学习后训练出来的推理模型通常表现为一条“query–COT–answer”的序列线条。query 是用户给的输入,必然是离散的语言表示;answer 是给用户看的输出,也必然需要通过 softmax 外化为语言。只有两个端口之间的 COT 才是两可的:或者语言化,絮絮叨叨地自言自语;或者抛弃语言化,让思维深藏不露(所谓 latent reasoning),牺牲可解释性,但理论上可以提高答案质量。

人类大脑在思维的时候也有这种不言表的内部状态吗,还是说我们的思维基本上离不开语言?这个问题一直有争论。多数人的体验好像是:完全离开语言我们无法进行长线条、有条理的思维,只是在梦里或深省时会有一种模模糊糊的灵感或想法,暂时找不到合适的语言表达。

概念上,思维不如意识宽泛,语言也只是一种模态,多模态信号的内在所指还是用“意识”涵盖更好。在这样的高度,语言与思维的关系,不过是意识与模态关系的一个特例。说“语言=思维”,就好比说“意识=模态”。

意识是什么呢?古人云“脑之所思,心之所感”。前者即思维,后者是情绪。情绪为什么用心而不用脑,其实没有科学依据;但人的喜怒哀乐常常伴随心跳、血压的变化。爱情来了,是“心动”不是“脑动”。怀疑、猜忌、仰慕、怜悯等情绪好像也不是大脑思考的结果。无论它们来自哪个器官,情绪都是意识的重要组成部分。也许动物也有一些粗线条的情绪,就像它们也有简单的语言一样:高级动物据说也犯忧郁症和狂躁症。但人类的情绪显然更加丰富和细腻,人类语言就更非动物语言可比。

思维和情绪这些意识都是内在的,那外在的表现形式有哪些呢?

    1. 诉诸语言文字,这是最常见的方式。人类通过语言刻画和记录内心世界,哪怕它笨拙而有限。

    2. 借助音乐,让旋律和节奏承载情感,这也是一种独特的音频“语言”。

    3. 借助美术、雕塑、视频等艺术形式,用视觉符号或运动影像去表达难以言明的体验。

    4. 借助动作,比如拥抱、接吻、抚爱、挥手、竖大拇指、伸中指,甚至大打出手;还有眼神交流、哭、笑等,这些属于具身智能的范畴了,最终落地到人形机器人身上。

    5. 没有形式可表达,只能烂在心里或脑海中,这“不可道”的部分甚至连艺术也无法企及。

具身智能姑且放下不谈,上述意识与模态的关系就是一表一里、内容与外在形式的关系。其中多模态中语言处于核心地位,是思维的核心载体;情绪也可以尝试用语言来描述,但语言表达情绪常常非常笨拙、干瘪或走形。瞎子阿炳尝尽人间辛酸后,用一支《二泉映月》表达自己的感受,是任何语言文字也难以传达的。说了这么一大圈,还是那句话:内容与形式相依而不等同。长线条、体系化的思想往往离不开外在形式,但意识一定程度的独立性已经无可置疑了。换句话说,思维并不是语言,意识也不是模态。二者虽然高度关联,有时密不可分,但绝对不该划等号。

说到这里,还得承认:很多时候语言对情绪和艺术美感也力不从心。白居易的《琵琶行》可能是描写琵琶曲最精彩的诗化语言了,但他也只能用种种比喻或指法描述,如“大珠小珠落玉盘”、“轻拢慢拈抹复挑”,来间接传达琵琶曲的美感。语言的这种力不从心,是多模态大模型在不同模态之间对齐和转换的巨大困扰。用过文生图、文生音乐、文生视频的玩家都有体会:我们常常不知道如何告诉模型想要的结果,很多时候还得靠模型帮我们扩写模态描述的细节,才能增加成功率。即便如此,AIGC优秀作品的诞生也很大程度上要看运气,需要多次尝试、选优(cherry-picking)。

结论:思维是意识的主要成分,属于内容或意义;语言是模态的主要成分,属于形式或载体。所以一般而言,讨论“思维是否等于语言”,其实是在探讨意识是否等于模态,内容是否等于形式。意识既然可以在大脑内部以神经网络的形式存在,就不必完全依赖语言文字或音频视频这种外在形式。独立存在的神经网络是真实的,它否定了“思维=(外在)语言”这类简单假说,但并不否认“思维=内在语言”的可能。

 

Demystifying the misconception of "Lossless Compression as Intelligence"

Debates on LLM compression theory reveal persistent misconceptions. Crucially, compression lies at the heart of the LLM revolution—illuminating its divine spark. Time for some clarification.

There are two interconnected core issues in the explosive growth of contemporary generative AI and large models that are most worth understanding thoroughly—otherwise, we're essentially allowing ourselves to live in medieval darkness. The first is how sequence learning unlocked universal tasks, making artificial general intelligence possible and transforming AGI from fringe science or science fiction into reality. I've written several blog posts attempting to explain this, though I'm not entirely certain I've conveyed it accurately. The second is the compression theory underlying large model intelligence. This issue has only recently become clear to me, with its context and principles finally falling into place. I feel it's worth sharing these insights.

A critical myth persists:  "Intelligence equals lossless compression" or "Lossless compression begets intelligence."

Both are false.

Compression produces intelligence—that's correct. But it's definitely not lossless compression that produces intelligence.

There's a cognitive error at play: many people conflate intelligent compression during training (lossy abstraction) with technical compression for specific applications (lossless encoding/decoding).

Compression has two distinct meanings: first, extracting every drop of insight and regularity from data, approaching theoretical optimality (K-complexity)—this is compression's true definition and intelligence's manifestation. Second, lossless compression, which requires perfect restoration of original data. Lossless compression/restoration isn't a genuine intelligence goal; at most, it's an application requirement (such as in archiving or transmission scenarios).

Lossless compression directly serves lossless restoration, where the lossless standard demands 100% restoration of input information in output (bit-level, including imperfections). Clearly, without resorting to form (instead of meaning), losslessness is ill-defined or meaningless. This differs from ultimate information compression, which targets meaning instead of form.  Semantic space embodies the true essence of teh statement "compression equals intelligence." Recognizing this distinction is key to dispelling the myth.

GPT, as a general intelligence agent, derives its core value from creative "distortion" in generation tasks (most application scenarios such as creative writing), while lossless compression is merely a technical byproduct (few application scenarios, such as for storage and transmission), and this capability only weakly correlates with intelligence level (when involving compression ratio, but unrelated to lossless restoration goals).

Attempting to prove model intelligence through lossless compression capability is inappropriate—like measuring legislators' competence by clerks' shorthand speed. These represent fundamentally different pathways:

Intelligent compression pursues minimal causal generation rules (K-complexity pathway), requiring active payment of "abstraction tax"; lossless compression pursues data restoration fidelity, leading to sacrificed model simplicity.

GPT's revolutionary nature lies in the former; the latter is merely a technical byproduct. In mainstream scenarios like generation and reasoning, creativity (or creative distortion) truly represents intelligence's brilliance, though its side effect of hallucination becomes large models' inherent challenge in some specific task scenarios (e.g. summarization, translation).

GPT uses next token prediction as its autoregressive training objective, seemingly a type of formal compression since the next token is its gold standard. But in implementation, it's unmistakably a semantic compression. At the micro level, next token prediction accuracy isn't measured by whether model output tokens match gold standards at the formal level, but through cross-entropy of internal token representations, measuring alignment between output and gold standards in semantic space. At the macro level, GPT trains on big data as a whole, not just targeting individual data points (a passage, a song, or an image). Lossless compression/restoration has clear definition for individual data points (100% formal restoration), but facing big data, this definition becomes impractical (unless for original data storage). In other words, big data compression determines it can only be semantic-level compression, mining the regularity behind big data.

Regarding GPT-enabled lossless restoration applications, large models' theoretical foundation of Kolmogorov complexity (K-complexity) supports the "lossy training-lossless application" framework. K-complexity pursues minimal generation programs, not data restoration capability. During training, lossy compression is the only path to approach K-complexity; during application, lossless restoration benefits from GPT's regularity to achieve unprecedented high compression ratios, as hes been verified by a number of researchers.

Actually, the famous scaling law for large model training emerges from this principle. This empirical observation and insight demonstrate that loss is necessary for intelligence: data must far exceed model size for intelligence improvement (otherwise the model "cheats" by memorizing and overfitting in vast parameters rather than continuously compressing and generalizing).

From another perspective, lossless restoration is an algorithmic property, not directly related to K-complexity. In fact, lossless restoration experiments show algorithms can always achieve lossless goals. Essentially: lossless restoration = model + delta. This delta represents the "abstraction tax" paid by the model—details the model didn't remember and needn't remember. In practice, powerful models yield smaller deltas; weaker models yield larger deltas. Lossless compression algorithms simply play this game. During application, model quality affects efficiency (compression ratio) but doesn't affect losslessness. Delta equals zero means the model remembered every detail, requiring the model to approach infinity or euipped with external massive storage. The other extreme is an infinitely small model or no model, degenerating the system into pure storage (hard disk). Disregarding compression ratio: white noise's K(x)≈|x| can still be precisely restored using lossless compression (like ZIP).

In textbooks, K-complexity is defined as a measure of data's intrinsic structure—"the length of the shortest program that outputs the string"—uncomputable in theory. Lossless compression is viewed as an engineering implementation for precise data restoration. Large models' emergence, verified by multiple scholars, indeed dramatically improves lossless compression ratios but doesn't change lossless compression's nature as merely an engineering tool. Of course, dramatically improved compression ratios also indicate that large models grasp data distribution regularity to unprecedented heights. However, regarding complexity theory, lossless compression/restoration often misleads. But high compression ratios during lossless restoration indeed strongly evidence large models' high intelligence, as no other knowledge system can surpass them.

Additionally, this topic has a crucial temporal dimension. Compression targets historical data, while predictive applications point toward the future (models as prophets), yet restoration only refers to historical data. This means even if lossless compression/restoration achieves ultimate compression ratios, it remains a distance from true predictive capability because there's a temporal wall between them. Crucially, intelligence's essence favors future prediction over historical restoration. Future prediction requires space for random sampling, but historical restoration precisely kills this beneficial randomness.

 

 

破除“无损压缩即智能”的迷思

立委按:这两天跟大模型压缩理论干上了,发现,这里面目前在市面上仍然充满了迷思和误解。要命的是,压缩问题是大模型革命的首要问题,反映了大模型背后的奥秘和上帝之光。感觉到了正本清源的时候。

我以为,当代生成式AI及其大模型的大爆发,其中有两个相互关联的核心问题,最值得花时间搞明白,否则就好比允许自己生活在中世纪的黑暗中。第一个是序列学习如何解锁了万能任务,让通用人工智能成为可能,AGI不再是民科或科幻。这个问题我写过多篇博客试图解说,虽然不敢肯定是不是传达准确了。第二个就是大模型智能背后的压缩理论。这个问题直到最近才算梳理明白,脉络和原理清晰起来。觉得值得分享一下心得。

在大模型无损有损的争论中,产生了很多迷思,其中一条是:智能就是无损压缩,或,无损压缩产生智能。

错!两条都错。

压缩产生智能,没错。但绝不是无损压缩产生的智能。

存在一个认知误区:很多人把训练阶段的智能性压缩(有损抽象)和一种特定应用的技术性压缩(无损编解码)混为一谈。

压缩有两个不同的含义:一个是榨干数据的油水和所有的规律性,逼近理论最优值 (K-complexity),这才是压缩的正解,智能的体现。第二个指无损压缩,要求可以无损还原始数据。无损压缩/还原不是一个真正的智能目标,它最多不过是一个应用需求(例如在存档、传输等场景)。大模型已经证实可以高效赋能无损还原数据,智能在这里起的作用是让无损压缩提高效率,即提升压缩率。

无损压缩直接服务于无损还原,无损的标准是输入信息在输出中必须达到100% 还原(bit level,包括瑕疵)。可见,离开形式标准,谈不上无损。这与极致的信息压缩不同,极致压缩的对象可以是形式,也可以是内容。前者等价于(极高压缩率的)无损压缩,但后者才是“压缩即智能”的真谛。看清这一点是破除迷思的关键。

GPT作为通用智能体,其核心价值在于:生成任务中的创造性失真(多数应用场景),而无损压缩仅是技术副产品(少数应用场景,例如存贮和传输),且该能力与智能水平仅弱相关(与压缩率高低直接相关,但与无损还原宗旨无关)。

试图用无损压缩能力证明模型智能并不合适,如同用书记员的速记能力衡量立法者水平 —— 两者本质不同路径:

智能压缩追求最小因果生成规则(K-complexity路径),需主动支付抽象税
无损压缩追求数据还原保真度,导致牺牲模型的简洁性。

GPT的革命性在于前者,后者仅是技术副产品。在生成、推理等主流场景中,创造性失真才真正是智能的闪光点,虽然其副作用幻觉在特定任务场景成为大模型与生俱来之痛。

以下一词元预测(next token prediction)作为自回归训练目标的GPT,貌似是形式压缩,因为下一词元是其黄金标准。但实际上,它是不折不扣的意义压缩。微观层面,下一词元预测准不准并不是在形式层面看模型输出token与黄金标准能否匹配,而是通过token 内部表示的交叉熵(cross entropy),是在衡量输出与黄金标准在意义空间之间的吻合度。宏观层面,GPT的训练对象是大数据整体,而不是数据个体(一段话、一首曲子或一幅图)。无损压缩/还原在数据个体具有明确定义(100%还原形式),但面对大数据,这个定义实际上不可行(除非是原数据存贮)。换句话说,大数据压缩决定了它只能是意义层面的压缩,挖掘大数据背后的规律性。

就GPT赋能无损还原的应用而言,大模型的理论基础柯氏复杂度(Kolmogorov complexity,K-complexity)支持“有损训练-无损应用”框架。柯氏复杂度追求的是最小生成程序,而非数据还原能力。训练阶段,有损压缩是逼近柯氏复杂度的唯一路径;应用阶段,无损还原得益于GPT的规律性可以做到前所未有的高压缩率。

其实,著名的大模型训练的经验法则 scaling law 就是这么来的。这个经验观察及其洞见说明了有损是智能的必需:数据必须远大于模型才能有智能提升(否则模型就会“偷懒”,在庞大的参数里死记硬背过拟合,而不是不断压缩和泛化)。

换一个角度看,无损还原是算法属性,与柯氏复杂性并不直接相关。实际上,无损还原的实验表明,算法永远有办法达到无损的目标。本质上:无损还原 = 模型 + delta。这个 delta 就是模型缴纳的抽象税,是模型没记住也不必记住的细节。实践中,用强大的模型,delta 小一点;用弱小的模型,delta 就大一些。无损压缩算法不过就是在玩这个游戏。应用阶段,模型质量影响效率(压缩率),但不破坏无损性。delta 等于零,意味着模型记住了所有的细节,这要求模型趋向于无限大,或外挂巨大的硬盘。另一个极端是模型无限小,或没有模型,那就退化成彻头彻尾的硬盘了。不考虑压缩率:白噪声的 K(x)≈∣x∣,仍可用无损压缩(如ZIP)精确还原。

教科书中,柯氏复杂性定义为数据内在结构的度量,即“the length of the shortest program that outputs the string”,uncomputable,理论上不可计算。而无损压缩被视为一种工程实现手段,用于数据的精确还原。大模型的出现,经多位学者验证,的确大幅度提升了无损压缩的压缩率,但并不改变无损压缩只是一种工程工具的本性。当然,大幅度提升压缩率本身也表明,大模型对于数据分布规律性的把握达到了前所未有的高度。就复杂性理论而言,无损压缩/还原常常是个误导。但无损还原的时候压缩率高,的确是大模型高智能的一个很强的佐证,因为没有其他知识系统能胜过它。

另外,这个话题还有一个要点是时间维度。压缩的对象是历史数据,预测的应用指向未来(模型作为预言家),可还原却说的是历史数据。这意味着,即便无损压缩/还原做到了极致的压缩率,也与真正的预测能力有距离,因为这里面隔了一层时间的墙。关键是,智能的本质偏爱未来预测,而不是历史还原。未来预测必须有随机采样的空间,但还原历史却恰好扼杀了这种有益的随机性。

 

GPT and the Art of Compression

A Cosmic Dance of Bits and Meaning

Imagine a cosmic library, vast and infinite, housing every possible sentence—from the profound “Artificial intelligence will reshape the future” to the absurd “Cat pillow jumps blue because Wednesday.” In this library, popular sentences sit on bright, accessible shelves, found with a quick note: “Shelf 3, Book 5.” Random gibberish lurks in dusty basements, needing a word-for-word map. GPT, the AI we know as a language wizard, is the cosmic librarian, compressing texts into compact codes that can be perfectly restored. But is this compression flawless, or does it lose something along the way? Let’s embark on a journey through probability, information theory, and engineering to uncover the magic of GPT’s compression—and why it matters.

The Cosmic Library: Compressing Meaning

Picture yourself in this library, tasked with sending a sentence across the galaxy. A predictable sentence like “Artificial intelligence will reshape the future” is easy to pinpoint, requiring just a short instruction. A random jumble, like “Cat pillow jumps blue,” demands spelling out every word, taking up more space. GPT’s brilliance lies in its world model—a map of language probabilities built from vast data. It knows which sentences are “popular” (high-probability) and encodes them efficiently. Why do you think predictable text is easier to compress than random noise?

This process is called lossless compression, meaning the original text is perfectly restored, bit for bit. Unlike a compressed JPEG that blurs details, GPT’s compression ensures no loss. But some argue it’s lossy, losing information like a summary. Who’s right? To answer, we need to explore the mechanics and the theory behind it.

Arithmetic Coding: The GPS of Compression

GPT’s compression relies on arithmetic coding, a method that turns text into a number on a line from 0 to 1. Think of it as a GPS coordinate for a sentence’s location in the probability universe. Here’s how it works for “cat eats fish”:

    1. Start with [0.0, 1.0].
    2. For “cat” (P=0.5), shrink to [0.0, 0.5).
    3. For “eats” given “cat” (P=0.7), narrow to [0.0, 0.35).
    4. For “fish” given “cat eats” (P=0.4), end at [0.0, 0.14).
    5. Output a binary number, like 0.125 (0.001 in binary), within [0.0, 0.14).

Decompression reverses this, using the same GPT model to retrace the intervals, ensuring the exact sequence—“cat eats fish”—is restored. Why is using the same model crucial for perfect reconstruction?

The interval’s length (0.14 = 0.5 * 0.7 * 0.4) reflects the sequence’s probability. High-probability sequences create larger intervals, needing fewer bits to encode (e.g., -log₂(0.14) ≈ 2.84 bits). Random sequences, with lower probabilities, need more bits. This is rooted in information theory, where a word’s information content is -log₂(P(x)). A likely word (P=0.95) carries little information (0.07 bits), while a rare one (P=0.0001) carries much (13.3 bits). How does this explain why semantic text compresses better than noise?

Lossless or Lossy? Solving the Debate

The debate over whether GPT’s compression is lossless or lossy stems from a subtle distinction. Lossless compression ensures the original data is perfectly restored, like unzipping a file to its exact form. Lossy compression, like MP3s, discards details for smaller size, losing fidelity. GPT’s compression, using arithmetic coding, is lossless: the encoded binary number uniquely maps back to the original text, preserving every bit. Experiments like ts_zip by Fabrice Bellard and 2022-2023 work by Li Ming and Nick show GPT outperforming gzip by up to 10x for semantic data, with no loss. Why might some still call it lossy?

The confusion arises from GPT’s training process. When GPT learns from vast data, it abstracts patterns into a simplified world model, discarding noise and details—clearly a lossy process, much like summarizing a library. But when used as a tool for compression, there exists a lessless compression algorithm that applies the model to encode and decode specific texts deterministically, ensuring no loss. The lossy aspect lives in the model’s creation, not its application. How does this distinction change your view of GPT’s capabilities?

The Theory: Kolmogorov Complexity and Intelligence

At the heart of this lies Kolmogorov complexity (KC), the length of the shortest program to generate a dataset. An ideal compressor would find this program, but KC is uncomputable—a theoretical dream. GPT’s next-token prediction approximates this, acting like a “prophet” forecasting sequences based on learned patterns. This aligns with Solomonoff induction, where predicting the next token mirrors finding compact descriptions. Ilya Sutskever noted in a 2023 Berkeley talk that this is the secret behind GPT’s efficiency compared to models like BERT. Why might prediction be a form of compression, and how does it reflect intelligence?

For semantic data, like news articles or logs, GPT’s predictions are highly accurate, leading to compact codes. For random noise, where KC equals the data’s length, compression fails—no model can predict chaos. This highlights a limit: GPT excels where patterns exist. What types of data do you think GPT could compress best?

The Tightrope: Efficiency vs. Reliability

High compression rates are powerful but fragile. A single bit error in a highly compressed file can derail decompression, like a misstep on a tightrope. Consider the trade-offs:

Dimension High Compression Rate Low Compression Rate
Restoration Accuracy 100% (theoretical) 100% (theoretical)
Error Resistance Fragile (1-bit error can crash) Robust (local errors)
Computational Cost High (GPT + coding) Low (e.g., gzip)
Readability None (ciphertext) High (text/binary)

High rates suit scenarios where bandwidth is costly, like interstellar communication, but require error correction (e.g., CRC) to prevent crashes. Low rates are ideal for reliable archiving, like server logs, where robustness trumps size.

Why It Matters: From Stars to Servers

GPT’s compression could transform how we store and send data. In interstellar missions, where every bit is precious, it could shrink messages dramatically. In data centers, it could optimize archival storage, though computational costs (e.g., ts_zip at 1k/s) pose challenges. Future models, with sharper predictions, could push efficiency closer to the theoretical limit.

This cosmic dance of bits and meaning reveals a profound truth: compression is intelligence, and GPT is a master choreographer. By mapping language to probabilities, it turns texts into elegant codes, preserving every detail. Whether you’re an AI enthusiast or a tech expert, this opens a universe of possibilities.

Sources: Adapted from posts on liweinlp.com (13277, 13272, 13275, 13273, 13279, 13281).
About the Author: Dr. Li Wei, a senior NLP/LLM consultant, has led innovations at MobVoi, Netbase, and Cymfony, earning the TREC-8 QA Track and 17 SBIR awards.

 

 

 

Efficiency vs. Reliability: The Compression Tightrope

GPT’s compression can shrink data dramatically, but high efficiency comes with risks. A single bit error could unravel everything, like a tightrope walker losing balance. How do we balance compression’s power with reliability?

The Trade-offs

High compression rates save space but are fragile, while low rates are robust but bulky. Here’s a comparison:

Dimension High Compression Rate Low Compression Rate
Restoration Accuracy 100% (theoretical) 100% (theoretical)
Error Resistance Fragile (1-bit error can crash) Robust (local errors)
Computational Cost High (GPT + coding) Low (e.g., gzip)
Readability None (ciphertext) High (text/binary)

High rates suit costly transmission (e.g., interstellar), while low rates fit archiving. Why might a bit error be catastrophic in high compression?

Practical Solutions

Error correction (e.g., CRC) can protect high-rate compression, ensuring reliability. For archives, lower rates may suffice. What scenarios demand high efficiency, and how can we safeguard them?

 

Original post: https://liweinlp.com/13281

 

 

Arithmetic Coding for GPT’s Compression Engine

At the heart of GPT’s compression lies arithmetic coding, a method that turns text into numbers with surgical precision. Like a GPS encoding a house’s location, it captures sentences in compact codes. How does this engine work, and why is it so effective?

The Mechanics

GPT predicts probabilities for each token (e.g., P(“future” | “Artificial intelligence is”)=0.6), and arithmetic coding divides [0, 1) into subintervals:

  1. Start with [0, 1).

  2. Assign [0, 0.6) to “future,” narrowing the range.

  3. Iterate for each token, ending with a tiny interval (e.g., [0.3654321, 0.3654343]).

  4. Output a binary number as the compressed code.

Decompression uses the same GPT model to reverse the process, ensuring bit-level accuracy. Why is the same model critical?

A GPS Analogy

Compression is like encoding a villa’s address into a postal code. Decompression follows this code to the exact spot. This precision ensures no loss. How does this analogy clarify the process?

The Edge of Efficiency

GPT’s accurate predictions make intervals larger for predictable text, reducing bits needed. What limits this approach, and how might better models enhance it?

Original post: https://liweinlp.com/13273

 

 

Navigating the Probability Universe with GPT

Every sentence has a unique address in a probability universe, a number line from 0 to 1. GPT maps texts to these addresses, compressing them into compact codes. How does this cosmic navigation work, and why is it a breakthrough for compression?

Mapping Sentences to Intervals

Each sequence corresponds to a unique interval in [0, 1), with its length equaling the sequence’s probability. For “cat eats fish” (P(“cat”)=0.5, P(“eats” | “cat”)=0.7, P(“fish” | “cat eats”)=0.4), the interval is [0, 0.14), with length 0.5 * 0.7 * 0.4 = 0.14. Arithmetic coding narrows this interval step-by-step, outputting a binary number. Decompression retraces the path, ensuring perfection. Why are these intervals unique?

The Power of Information Theory

The interval’s length reflects the sequence’s probability, with high-probability sequences needing fewer bits (-log₂(0.14) ≈ 2.84 bits). This approaches Shannon’s entropy limit, where GPT’s precise predictions minimize bits for semantic data. Why does predictability reduce bit requirements?

Why It’s Revolutionary

Unlike traditional methods (e.g., Huffman coding), GPT’s approach handles continuous streams and leverages semantic patterns, making it ideal for texts. What data types might benefit most, and how could this evolve with better models?

Original post: https://liweinlp.com/13275

 

Is GPT Compression Lossless or Lossy? The Truth Revealed

The claim that “compression is intelligence” sparks debate: does GPT compress data perfectly, or does it lose something along the way? Some argue it’s lossy, like a compressed JPEG, while others insist it’s lossless, restoring every bit. The answer hinges on a key distinction: GPT’s training versus its use as a compressor. Let’s unravel this mystery.

The Heart of Compression: Kolmogorov Complexity

Kolmogorov complexity defines a data’s essence as the shortest program to generate it—an uncomputable ideal. GPT’s next-token prediction approximates this, acting like a “prophet” forecasting sequences based on its world model. This predictive power drives from compression. How does predicting the next word relate to shrinking data size?

Lossless Compression in Action

Using GPT for compressing a tring of target sequence data is lossless, meaning the original data can be perfectly restored. Experiments like ts_zip (Fabrice Bellard) and Li Ming & Nick’s 2022-2023 work show GPT with arithmetic coding outperforming gzip, sometimes by 10x, in high-transmission-cost scenarios like interstellar communication. Here’s why it’s lossless:

  • Mechanism: GPT provides probabilities (e.g., P(“will” | “Artificial intelligence”)=0.8), which arithmetic coding uses to encode input sequences into a binary number. Decompression uses the same model to reverse the process, ensuring bit-level accuracy.
  • Evidence: Even low-probability tokens are encoded with more bits, preserving all information.

Why might some confuse this with lossy compression?

Training vs. Compression

The confusion arises from GPT’s training, where it abstracts vast data into a simplified world model—a lossy process, like summarizing a library. But compression using this model encodes specific data losslessly. How does this distinction clarify the debate?

Practical Implications

This approach excels for language data (e.g., texts, logs) but struggles with random noise, where complexity equals length. Scenarios like space missions, data archives could leverage this.

Original post: https://liweinlp.com/13272

 

GPT as a Cosmic Librarian: Unlocking Lossless Compression

Imagine a cosmic library holding every possible sentence, from the profound “Artificial intelligence will reshape the future” to the absurd “Cat pillow jumps blue.” Popular sentences sit on prominent shelves, easily found with a short note like “Shelf 3, Book 5.” Random gibberish hides in dusty basements, requiring a long, word-for-word map. GPT, our cosmic librarian, navigates this library with uncanny precision, compressing texts into compact codes that can be perfectly restored. How does it work, and why is this a game-changer for data compression?

The Library of Language

In this infinite library, each sentence has a “popularity” score—its probability based on grammar, meaning, and context. GPT’s world model, trained on vast texts, assigns high probabilities to meaningful sentences, making them easier to locate. For example, “Artificial intelligence will reshape the future” is a bestseller, while “Cat pillow jumps blue” is obscure. Compression is about encoding these locations efficiently. How might GPT’s understanding of language make this possible?

Arithmetic Coding: The Magic Wand

GPT teams up with arithmetic coding to turn sentences into numbers. Here’s how it compresses “Artificial intelligence will reshape…” (tokenized as “Artificial,” “intelligence,” “will,” …):

  1. Start with [0.0, 1.0]: The entire number line as space that represents all possible sequences.
  2. Encode “Artificial”: GPT predicts a 5% chance (P=0.05) for this word to be the first token in a sentence, shrinking the interval to [0.0, 0.05].
  3. Encode “intelligence”: Given “Artificial,” GPT predicts an 80% chance (P=0.8), narrowing to [0.0, 0.04].
  4. Continue: Each token shrinks the interval further, ending with a tiny range, say [0.02113, 0.02114].
  5. Output: Convert a number like 0.02113 to binary (e.g., 0.00010101), which is the compressed result of the processed sentence.

Decompression reverses this, using the same GPT model to retrace the intervals and reconstruct the exact text. Why does this ensure no data is lost?

Information Theory: Why Predictability Saves Space

Information theory reveals why this works. A word’s information content is -log₂(P(x)). High-probability words carry little information, rare words carry more. Predictable sentences, rich in semantic patterns, form larger intervals in the line, requiring fewer bits. Why might random text, like white noise, resist compression?

Why It Matters

This approach could revolutionize data storage and transmission, from archiving logs to sending messages across galaxies. But what challenges might arise in real-world applications? How could GPT’s predictive power evolve with better models?

Original post: https://liweinlp.com/13277

 

与尼克等老友唠大模型压缩理论

1. 为什么中心节点看起来最“省比特”

在语义压缩框架里,发送端和接收端都共享一个超大的知识库(也就是大语言模型GPT本身)。只要两边都装好了这台“超级预言机”,你就只需要传那些模型无法直接预测的信息——往往是微小的差异。

    • 模型分发成本:把模型先安置到两端,是一次性“沉没成本”。

    • 消息传输成本:之后每条消息,只要剩下差分信息,就能拿到极致压缩比。
      (想象一下:家里装了电表,后来用电就只需按表读数付费,不用每次都搬来发电机。)

所以,如果你要传送海量短消息,中心节点(也就是先统一部署好那个大模型)无疑是最省每条消息比特数的做法。

2. “模型足够聪明,万物皆可压缩?”

不是的。即便有了一个近似 Solomonoff 预测器(不可计算的最优压缩器),它也只能针对有规律的数据把消息压得很小;面对真正的随机噪声或 Kolmogorov 意义上的不可压缩序列(比如纯白噪声),你依然得用与原始数据相同的位数来描述它。

    • 有损 vs. 无损:大模型做的是“无损语义压缩”的近似——理论上目标是无损,但实践里模型参数、截断长度、tokenizer 带来的误差都让它“看起来”有点像有损。或者说,语义层面上无损,但比特层面依然因截断、tokenizer 等带来轻微有损。

    • 序列号/元数据开销:举例来说,为了保证顺序和可解压,你往往需要加上序列号、checksum 等元信息。

3. Kolmogorov 复杂性的核心定义

    1. 最短描述长度
      对任意字符串 x,其 Kolmogorov 复杂度 K_U(x) 定义为:在一台通用图灵机 U 上,能输出 x 的最短程序(二进制串)长度。

      K_U(x) = min{|p| : U(p)=x}

    2. 可加常数不变性
      虽然不同的通用图灵机 U 和 U′ 会有不同的基准,但对于任意 x,都有

      |K_U(x) - K_{U'}(x)| ≤ C_{U,U'}

      其中 C_{U,U′} 与 x 无关。

    3. 朴素复杂度 vs 前缀复杂度

      朴素复杂度 C(x):

      C(x) = min{|p| : U(p)=x}

      C(x) 只关心“最短的整体长度”,不在意程序间有没有分界。把描述字符串 x 的最短程序长度,直接拿来算。就像你打电话传电话号码,但不告诉对方号码有几位,只发出一串数字:1357902468...对方不知道这串是 10 位还是 11 位,哪里断开也不清楚。这就是朴素复杂度:只在意“整个程序多短”,不管程序之间有没有清晰的分界。但没界限容易搞混:如果程序 A 是 101,程序 B 刚好是 1010,对方收到 1010 时,不知道是 A+0,还是直接 B。

      前缀复杂度 K(x):

      K(x) = min{ |p| : U(p)=x, p is prefix-free }

      在 C(x) 的基础上,多加一个要求:所有可行的程序都不能互为前缀(prefix-free),就像保证任意一段代码结尾清晰、不会和另一段代码混在一起。这让理论性质更好,也能直接对应信息熵。这次你在每个号码后面都加个“#”标记结束,比如13579# 02468# … 听者一听到“#”,就知道这一串号码完整发完了,不会跟下一个混淆。这就是前缀复杂度:所有可行程序都设计成“自己带结束标志”,永远不会是另一个程序的开头。概率总和也容易算清楚:带结束符的代码就像每个密码都有自己独立的门,能保证所有概率加起来是 1,数学上好推导,也能直接对应信息熵。

4. Solomonoff–Kolmogorov–Chaitin 框架

算法概率(Algorithmic Probability)

Solomonoff 提出“通用先验”

P(x) ≈ Σ_{p:U(p)=x}2^{-|p|} ≈ 2^{-K(x)}

意味着:字符串 x 的出现概率和它的最短程序长度成反比。

归纳推理

通过给所有可能程序打上权重(2^{-|p|}),Solomonoff 归纳理论就是在做全空间搜索 + 加权平均,推断下一个 token 的概率,完美符合 GPT “next token prediction” 的理论——只是不可计算。

不可计算性

理论上的最优 K(x)永远算不出来(停机问题),要么只能上界估计(通过各种压缩算法),要么用算术编码等手段做近似。


5. 李明教授的《Introduction to Kolmogorov Complexity》精髓

结构函数(Structure Function)

李明书中详细讨论如何分离“随机性”与“结构”:给定 x,寻找一个模型类 𝓜 (记作 ℳ)和其中的模型 M∈𝓜,使得

K(M) + log|{y : M(y)=x}|

尽可能小——这就是对数据 x 做两部编码(two-part code),也是最优压缩与模型选择的数学基础。第一部分 K(M) 是模型本身的描述长度。第二部分 log |{ y : M(y)=x }| 是给定模型 M 后,还需要的那部分随机性长度。

算法充要统计量 S(x)(Algorithmic Sufficient Statistic)

这是李明重点:一个“充要”统计量 S(x),能在最小化两部编码的同时,既把数据的“规律”压进模型,又把剩余噪声放进随机部分,做到最简洁的描述。第一部分 K(S(x)):用最短的程序描述模型 S(x) 本身;第二部分 log |{ y : S(x)(y) = x }|:在给定模型之后,为了完全还原 x,还需多少比特来区分所有被该模型映射到 x 的可能 y。

K(S(x)) + log|{y : S(x)(y)=x}|

把它们加起来,就是“用这个模型+随机补充”来描述 x 的总代价。找到能让这个和最小的 S(x),就相当于找到了对 x 最好的“充要”统计量。

随机性测度(Randomness Deficiency)

定量衡量某个样本 x 相对于模型 M 是多“典型”或多“离谱”,用于指导是否要换模型或增加模型复杂度。


6. 尼克的视角:GPT 与柯氏复杂性

学习就是“求逆”问题,训练即最短程序逼近

Nick 强调:训练一个模型,就是在可计算的程序空间中,寻找一个能够“生成”训练集的短程序——也就是在实战中做min_p K(p)的近似。

大模型的“内容压缩” vs “形式压缩”

个体压缩(Instance):像无损 ZIP,一首歌可以 100% 还原,对应形式压缩

整体压缩(Dataset):面对海量文本,关注的是文本背后的意义或“语义信息”,此时“无损”只针对意义层面,形式上允许丢弃多余噪声。这正是 LLM 做到的:内容/语义的“无损”——虽然编码字符上看似“有损”

近似最优 vs 真最优

Nick 提到:任何可实现的压缩算法(gzip、xz、算术编码加GPT…)都只能逼近K(x),而 GPT 则是在“预测分布”上进行近似,用一个固定模型去对抗所有序列,其优势是语义联想上下文填空,但仍旧受限于模型容量与截断长度。


小结

    • 李明教授给我们一整套两部编码、结构函数和充要统计量的严谨框架;

    • 尼克的大模型论:训练≈求逆,预测≈Solomonoff 归纳,压缩≈最优编码的近似实践。

    • 真正的“最优无损”只有在理论上存在,现实里每一次“预测+编码”都在做逼近,同时也承载了网络协议的元信息开销。

GPT作为序列数据的无损压缩器

预测下一词的自回归大模型GPT早已风靡全球。压缩即智能的说法已经广为人知,但关于其无损压缩的能力貌似一直有争议。GPT压缩到底是无损还是有损呢?

这是一个非常值得打破沙锅问到底的问题,它正好切入了LLM压缩最核心、也最巧妙的部分。我们来把这个过程彻底拆解一下,让它变得清晰易懂。

一个直观的比喻:在无限的图书馆里找书

想象一个图书馆,里面包含了所有可能的句子。

    • 像 “人工智能将重塑未来产业格局” 这种符合语法、逻辑且有意义的句子,位于图书馆里非常显眼、容易找到的区域 (比如“热门新书区”)。
    • 而像 “产业未来将格局人工智能重塑” 这种语法不通的句子,位于偏僻的角落
    • 像 “猫枕头跳跃蓝色因为星期三” 这种完全随机的胡言乱语,则位于几乎无法访问的尘封地下室

现在,我需要告诉您具体是哪句话。

    • 对于那句热门句子,我不需要把整句话念给您听。我只需要给您一个极短的指令:“热门区,第3排,第5本”。这个指令就是压缩后信息 (少量比特)
    • 对于那句胡言乱语,我没有捷径可走,只能把整句话一字不差地读给您听。这个指令非常长,几乎和原文一样。

GPT的作用,就是建立了这个图书馆的终极索引系统(世界模型)。它知道每一句话“热门”的程度(概率)。算术编码就是那个高效的区间定位系统

核心机制:算术编码如何划分“区间”

现在我们进入技术细节。算术编码的精髓是把一整段信息表示成 0.01.0 之间的一个小数。

压缩:一步步“缩小”区间

我们以您的例子 “人工智能将重塑未来产业格局” 来走一遍流程。为了简化,我们假设分词是:“人工”, “智能”, “将”, “重塑”, “未来”, “产业”, “格局”。

  1. 初始状态:我们的区间是 [0.0, 1.0]
  2. 编码第一个词“人工”
    • GPT模型启动,预测第一个词的概率。假设在所有可能开头的词中,"人工" 的概率是 5% : P("人工")=0.05。
    • 算术编码器就在 [0.0, 1.0] 的区间里,把开头 5% 的位置,也就是 [0.0, 0.05],分配给"人工"。
    • 我们“放大”进入这个新区间 [0.0, 0.05]
  3. 编码第二个词“智能”
    • 现在,GPT的上下文是“人工”。它预测下一个词。因为“人工智能”是高频词,所以 P("智能" | "人工") 的概率会非常高,比如 80%。
    • 算术编码器就在当前区间 [0.0, 0.05] 里,把前 80% 的位置分配给"智能"。
    • 新的区间是 [0.0, (0.05 * 0.8)],即 [0.0, 0.04]
    • 我们再次“放大”进入这个更小的区间 [0.0, 0.04]
  4. 编码第三个词“将”
    • 上下文是“人工智能”。GPT预测 P("将" | "人工智能") 的概率也很高,比如 60%。
    • 新区间是 [0.0, (0.04 * 0.6)],即 [0.0, 0.024]
  5. ...持续这个过程...

最终结果:当整句话编码完毕,我们得到了一个非常精确定位的、极小的最终区间,比如 [0.02113, 0.02114]

关键来了:我们只需要从这个最终区间里随便挑选一个数,比如 0.02113,把它转换成二进制(比如 0.00010101...),这个二进制串就是我们的压缩结果。因为它是一个高概率句子,每一步都取了较大的百分比,所以最终区间的范围相对较大(虽然数值很小),可以用较少的二进制位数来精确表示。

解压:按图索骥,还原路径

解压过程就是上述步骤的逆向操作,像拿着藏宝图找宝藏一样。让我们用数学语言走一遍解压流程。

    • 压缩数字V = 0.02113
    • GPT模型:随时待命

第一轮:解码第一个词

  1. 获取概率:GPT预测,(无上下文时)'人工'的概率是0.05,'智能'是0.03...
  2. 划分区间[0.0, 1.0] 被划分为:
    • [0.0, 0.05] -> '人工'
    • [0.05, 0.08] -> '智能'
    • ...
  3. 定位V = 0.02113 落在 [0.0, 0.05] 区间内。
  4. 解码:输出第一个词 “人工”
  5. 更新区间:我们接下来的工作区间是 L=0.0, H=0.05

第二轮:解码第二个词 

  1. 区间归一化 (Rescaling) 
    • 我们需要更新我们的指针 V,计算它在 [0.0, 0.05] 这个新区间里的相对位置。
    • 公式:V_new = (V_old - L) / (H - L)
    • 计算:V_new = (0.02113 - 0.0) / (0.05 - 0.0) = 0.4226
    • 现在,我们用来做决策的指针变成了 0.4226
  2. 获取概率:解压器给GPT输入上下文“人工”,GPT预测下一个词的概率:
    • P("智能" | "人工") = 0.8
    • P("智慧" | "人工") = 0.1
    • ...
  3. 在新坐标系下划分区间:我们根据新概率划分标准区间 [0.0, 1.0]
    • [0.0, 0.8] -> '智能'
    • [0.8, 0.9] -> '智慧'
    • ...
  4. 定位:我们用归一化后的新指针 V_new = 0.4226 来比较。它落在 [0.0, 0.8] 这个区间内。
  5. 解码:输出第二个词 “智能”
  6. 更新区间[L, H]:为下一轮的计算定义新的边界。方:将相对的 [l,h] 区间缩小/映射回绝对坐标系中。'智能'对应的区间是 [0.0, 0.8]。映射回绝对坐标系的工作区间是 [0.0, 0.04]。这个 [0.0, 0.04] 精确地定义了“人工智能”这个词序列在整个 [0.0, 1.0] 空间中的最终位置。
    • L_new = L_prev + (l_curr * Width_Previous)
    • H_new = L_prev + (h_curr * Width_Previous)

这个过程不断重复,每一步都包含 定位 -> 解码 -> 归一化 三个动作,直到结束。具体说,更新指针 V 与 更新区间 [L, H] 这两个过程交替进行,一个负责“决策”,一个负责“更新状态”,共同驱动解码器精确地还原出原始文本。因为每一步的选择都是唯一的,所以解压结果能100%保证和原文一致。

总结:为什么高概率 = 少比特

这背后的数学原理是信息论。一个事件所包含的信息量是其概率的负对数:

I(x) = -log₂(P(x))

    • 高概率事件 (P → 1):比如GPT预测下一个词是“格局”的概率是95% (P=0.95)。它所包含的信息量就非常小(-log₂(0.95) ≈ 0.07比特)。我们只需要极少的信息就能确认这个预测。
    • 低概率事件 (P → 0):如果下一个词是个罕见词,概率只有0.01% (P=0.0001),它所包含的信息量就极大(-log₂(0.0001) ≈ 13.3比特)。我们需要很多信息才能描述这个“意外”。

算术编码巧妙地将这个理论变成了现实。对于一个高概率序列,最终的区间总大小(即所有概率的乘积)会比较“大”,从而可以用一个位数较少的二进制小数来表示。这就是“语义级消除冗余”的本质:所有符合人类知识、语法和逻辑的“意料之中”的内容,都被GPT这个“世界模型”识别出来,并用最少的信息量进行了编码。

 

 

要区分GPT训练中的压缩,与拿GPT当压缩器工具

GPT训练中的压缩,与拿GPT当压缩器工具不是一回事,二者有很大的关联,但不是同一个层面的问题。GPT是无损还是有损压缩的混淆与争论,就是搞错了这个层面和视角。

  1. 理论基础 (Solomonoff-Kolmogorov-Chaitin / Kolmogorov Complexity):

    • 任何数据的“最本质”信息量是其柯氏复杂性 (KC) —— 计算理论中定义为能生成该数据的最短程序的长度。

    • 理想的最优无损压缩器就是能找出这个最短程序的“预言机”。

    • GPT 的 Next Token Prediction 本质上是 Solomonoff 归纳法的近似实现:它利用在海量数据上学到的统计规律/模式(共享知识库,或曰“世界模型”),预测序列的下一个元素。预测越准,对序列的描述(压缩)就越高效。Ilya 在 Berkeley 的演讲确认的就是这点。

  2. 工程实现 (ts_zip / L3TC / GPT 算术编码):

    • ts_zip (Bellard): 早期实验,证明了利用Transformer模型预测下一个Token + 算术编码,可以超越传统压缩器(如xz),代价是慢。核心是利用模型作为“预测器”。

    • 李明 & 尼克 (2022-2023) 的 GPT 实验: 直接用GPT类模型做概率预测 + 算术编码进行无损压缩,效果显著优于gzip(极端情况好10倍),验证了理论可行性。应用场景:传输成本 >> 计算成本时(如星际通信、昂贵带宽)。

  3. 核心优势与限制:

优势: 对富含语义、符合“世界模型”的序列数据(如自然语言、结构化日志)压缩率极高。利用的是数据背后的“意义”和“规律性”

局限:

      • 计算成本高: 压缩/解压慢(如ts_zip 1k/s)。

      • 对随机噪声无效: 真正的随机数据(Kolmogorov噪音)KC等于其长度,无法被任何模型压缩。

      • 依赖模型质量: “共享知识库”(GPT模型)的质量直接影响压缩率。模型越好,对相关数据的“理解”越深,压缩越高效。

解答核心困惑:“次优无损压缩 vs 有损压缩”

这是最容易混淆的点!

李明 & 尼克的坚持:GPT压缩就是无损压缩

    • 定义层面: 只要压缩后能精确地、比特级还原原始数据,无论压缩率如何,无论是否达到理论最优(KC),无论用了什么方法(这里是GPT预测+算术编码),它就是无损压缩

    • “次优” ≠ “有损”: 一个压缩算法压缩率不够好(比如只用gzip压缩文本,远没达到KC),它依然是无损的——解压后还是原文。它的“次优”体现在压缩率不够高,而不是丢失了信息

    • GPT + 算术编码 的机制: GPT 提供下一个Token的概率分布(logits)。算术编码器利用这个分布,将输入Token序列编码成一个比特串(离散数)。解压时,同一个GPT按相同概率分布逐步解码出原始Token序列。输入输出比特完全一致。这是标准的无损压缩流程。

李飞飞强调的“有损”可能是指: 模型在学习过程中,必然会对训练数据进行抽象、泛化、丢弃个体噪声,形成一个内部的、简化的“世界模型”。这个学习过程本身可以看作是对原始训练数据的有损压缩(它丢弃了无法纳入模型的细节)。但请注意:这是指模型内部表示的形成过程,而不是指 “GPT+算术编码“作为压缩器对特定文件进行压缩的过程。后者是明确的无损过程。

结论:

  1. 严格定义上: 使用LLM进行概率预测 + 算术编码是一种无损压缩技术。它保证原始数据的精确还原,只是压缩率依赖于模型的质量和数据的性质。

  2. 理论理想 vs 现实: 任何实际无损压缩器(包括GPT)都达不到理论最优压缩率 (KC),都是“次优”的。“次优”不等于“有损”。“次优”指压缩效率不够好,“有损”指信息永久丢失

  3. 理解“有损”说法的来源:

    • 学习过程的本质: 模型从海量数据中学习形成“世界模型”的过程,本身可视为对训练数据的有损压缩(提取精华,丢弃无关细节和噪声)。

    • 压缩“意义”的模糊性: 当我们谈论压缩数据集整体的“意义”而非具体比特时,“无损”的定义变得模糊。LLM压缩的优势恰恰在于它利用了“意义”来实现对“比特”的高效无损压缩。

    • 与理论最优值KC的差距: 因为无法达到KC,总存在理论上的“浪费”,这种感觉类似有损,但本质是计算不可行性导致的效率不足,而非信息损失。

简单比喻:

    • 无损压缩 (gzip, GPT+算术编码): 把一本厚书用一种非常高效的密语(可能是基于百科全书知识的缩写)写成一个密码序列。只要有密码本和规则,就能一字不差还原原书。 密码本短(压缩率高)说明密语设计得好(模型好)。

    • 次优无损压缩: 密语设计得不够好,密码序列比别人的长(压缩率低),但依然能完全还原原书

    • 有损压缩 (jpg, mp3): 把书提炼成一篇摘要、画面或音乐降低了精度。保留了核心思想(主要特征),但永远无法还原原作的每一个token和所有细节(包括瑕疵)

    • GPT学习形成“世界模型”: 读了图书馆所有书后,模型形成了对“世界”的理解。这个理解是训练数据海量信息的高度抽象和简化(有损)。但当他用这个模型来帮你压缩某一本具体的书时(通过预测+编码),他可以做到无损

所以,回到你的话: “目标是无损,结果是有损” —— 对于利用现存GPT作为压缩器,这个说法不准确。对特定数据的GPT压缩总是无损的,但压缩率是次优的(未达KC)。对于GPT学习构建其内部模型的过程,这个说法有一定道理(内部模型是对训练数据的有损表示)。关键在于要区分 “使用工具(GPT压缩器)的过程” 和 “工具本身(GPT模型内部)的构建过程”,否则就不在同一个概念频道,鸡同鸭讲。

 

 

信息论科普:GPT对给定序列无损压缩的最终区间

可以用GPT无损压缩的算术编码作为例示

一、最终区间的本质:概率宇宙中的精确坐标

想象一个包含所有可能文本序列的宇宙(概率空间):

[0,1) 区间 = 所有可能文本序列的总集合
    • 每个特定序列(如"人工智能将改变世界")对应宇宙中的一个专属子区间

    • 子区间长度 = 该序列出现的概率(由语言模型GPT计算得出)

    • 子区间位置 = 该序列在概率空间中的唯一坐标

二、区间长度=概率的数学证明

假设序列由3个词组成:

序列:W1 → W2 → W3
概率:P(W1) = 0.4, P(W2|W1) = 0.6, P(W3|W1,W2) = 0.8

区间变化过程:

初始: [0, 1)        长度=1.0
选W1: [0, 0.4)      长度=0.4  (1.0×0.4)
选W2: [0.16, 0.4)   长度=0.24 (0.4×0.6)
选W3: [0.16, 0.352) 长度=0.192(0.24×0.8) ← 最终区间长度=0.192

最终长度 = P(W1)×P(W2|W1)×P(W3|W1,W2) = 序列概率

三、宇宙坐标系统的运作原理

示例:压缩序列 ["猫", "吃", "鱼"]

词汇表 概率分布
初始上下文 P(猫)=0.5, P(狗)=0.3, P(鱼)=0.2

编码/压缩过程

    1. 编码"猫":

      [0, 1) → 划分:
        猫:[0, 0.5)
        狗:[0.5, 0.8)
        鱼:[0.8, 1)
      选择 [0, 0.5)
    2. 编码"吃" (上下文="猫"):

      当前区间 [0, 0.5)
      语言模型新分布:P(吃|猫)=0.7, P(睡|猫)=0.3
      划分:
        吃:[0, 0.5×0.7)= [0, 0.35)
        睡:[0.35, 0.5)
      选择 [0, 0.35)
    3. 编码"鱼" (上下文="猫吃"):

      当前区间 [0, 0.35)
      语言模型新分布:P(鱼|猫吃)=0.4, P(肉|猫吃)=0.6
      划分:
        鱼:[0, 0.35×0.4)= [0, 0.14)
        肉:[0.14, 0.35)
      选择 [0, 0.14)

最终结果

序列 ["猫","吃","鱼"] → 独占宇宙坐标 [0, 0.14)
区间长度 = 0.14 = 0.5×0.7×0.4

四、为什么这是唯一坐标?数学保证

假设存在两个不同序列A和B,它们对应的最终区间重叠:

A区间: [L_A, R_A)
B区间: [L_B, R_B)
且 [L_A, R_A) ∩ [L_B, R_B) ≠ ∅

根据算术编码原理:每个序列的区间由其唯一词路径决定

若A和B在第k个词首次不同:

    • 第k步时,A和B会选择不相交的子区间

    • 后续划分永远在分离的区间进行
      → 矛盾! 故不同序列的区间互不相交

五、解码/解压:从坐标回溯序列

给定最终区间 [0, 0.14) 和相同语言模型GPT:

当前区间 [0,1)
数值 C=0.09(区间内任意点)

步骤1:划分初始区间
   [0,0.5) → 猫
   [0.5,0.8) → 狗
   [0.8,1) → 鱼
   C=0.09 ∈ [0,0.5) → 输出"猫"

步骤2:缩放区间
   新区间 = [0,0.5)
   缩放C = (0.09-0)/(0.5-0) = 0.18
   划分:
       吃:[0,0.35) → [0,0.35)相对值→ [0,0.7)
       睡:[0.35,0.5) → [0.7,1)
   C=0.18 ∈ [0,0.7) → 输出"吃"

步骤3:再次缩放
   新区间 = [0,0.35)
   缩放C = (0.18-0)/(0.7-0)×0.35 = 0.09
   划分:
       鱼:[0,0.14) → [0,0.4)
       肉:[0.14,0.35) → [0.4,1)
   C=0.09 ∈ [0,0.4) → 输出"鱼"

完美还原序列!

六、宇宙坐标的直观展示

每个叶节点是最终区间;节点深度越深,区间越小;路径唯一性:从根到叶的每条路径对应唯一序列。

七、工程意义:为何这是革命性的

  1. 突破分组限制

    • 传统压缩(如Huffman)需将符号分组处理

    • 算术编码实现连续流式压缩,单个比特代表部分信息

  2. 逼近熵极限

    理论最小体积 = -log₂(P(序列)) 比特
    算术编码体积 ≈ ceil(-log₂(P(序列)))

    例如P=0.14 → -log₂(0.14)≈2.84 → 3比特足够

  3. 大模型赋能

    • GPT类模型提供精准的 P(word|context)

    • 对自然语言序列,P(序列)值大幅提高 → 区间长度更大 → 所需比特更少

最终区间是概率宇宙中的神圣坐标,它用数学的纯粹性证明:信息即概率,概率即几何,而完美的无损压缩,不过是在[0,1)区间为每条路径划定它应得的疆域。

 

 

GPT无损压缩小问答(3):算术编码

GPT+算术编码是对数据的无损压缩。什么是算术编码?它是怎么工作的?

算术编码:GPT压缩的“比特转换器”

算术编码 (Arithmetic Coding) 是经典的无损压缩算法。GPT作为“世界模型”为这个算法提供了前所未有的、超精准的语言数据的“概率地图”。

核心作用:把概率分布变成最短的比特流

  1. GPT内部的输出是什么?

    • 当输入一个序列 token1, token2, ... token_{i-1} 时,LLM 输出的是 下一个 token token_i 在整个词汇表上的概率分布 P(token_i | context),称为 logits。

    • 例如: 输入 “人工智能是”,LLM 可能输出 P(“未来”)=0.6, P(“趋势”)=0.3, P(“什么”)=0.05, ... P(“香蕉”)=0.0000001

  2. 算术编码器如何工作?

    • 想象一条0到1的数轴: 初始区间是 [0, 1)

    • 按概率切分区间: 根据 P(token_i) 将当前区间划分成若干子区间,每个子区间对应一个可能的 token。

      • 接上例:“未来” -> [0, 0.6), “趋势” -> [0.6, 0.9), “什么” -> [0.9, 0.95), ... “香蕉” -> [0.9999999, 1)

    • 选中真实token的区间: 如果实际的下一个 token 是 “未来”,则新的当前区间变为 [0, 0.6)

    • 迭代: 用这个新区间 [0, 0.6) 作为起点,输入下一个 token token_{i+1} 到GPT获得新的概率分布,再次切分这个新区间。如此反复直到序列结束。

    • 输出一个“代表点”: 最终得到一个非常小的区间 [low, high)选择一个该区间内的二进制小数(比如 (low + high)/2),只保留其小数点后的有效比特位。这个比特串就是压缩结果。区间越小,所需的比特数越少 (-log2(区间长度))。

这里,算术编码中区间和比特输出的转换关系容易让人困惑,这确实是理解无损压缩最烧脑的部分。需要理解“代表点”的生成逻辑。看上去有一个矛盾:区间是连续的,怎么能离散化,用有限比特精确代表?这需要从信息论和计算机表示两个层面拆解。需要彻底打通“概率→区间→比特”的转换链条,想明白为何最终输出的是有限比特而非无限小数。“区间长度对应概率”不难理解,当前瓶颈在于如何把连续区间离散化成比特流。需要重点讲清楚两点:一是-log2(概率)为何等于比特长度(香农极限),二是如何用二进制分数逼近实数而不损失信息。

最终区间:概率的结晶

假设经过对整段文本的逐词编码,算术编码器得到最终区间:

[low, high) = [0.3654321, 0.3654343)
  • 区间长度 = high - low = 0.0000022

  • 这长度就是整个文本出现的概率值!
    若每个词概率为 P1, P2, ..., Pn,则长度 = P1 × P2 × ... × Pn

我们可以这样比喻:将整个[0,1)区间看作一个序列数据的“宇宙”,每个可能的序列都对应这个宇宙中的一个子区间。序列出现的概率越大,对应的子区间就越长:长度等于概率。编码过程就是逐步缩小范围,最后定位到代表输入序列的那个子区间。一个非常简单的演示例子:

假设符号集:A(概率0.6),B(概率0.4)
要编码的序列:"AB"

步骤:

1. 初始区间[0,1)

2. 编码第一个符号'A':将[0,1)划分为 [0,0.6) 和 [0.6,1) 两个子区间。选择'A'对应的区间[0,0.6)。

3. 编码第二个符号'B':将当前区间[0,0.6)按相同比例划分:A占60%:[0,0.36),B占40%:[0.36,0.6)。选择'B'对应的区间[0.36,0.6)。最终区间为[0.36,0.6),区间长度=0.24,等于序列"AB"的概率:P(A)*P(B)=0.6*0.4=0.24。

最终区间内的任何数都可以作为代表点。通常取最终区间[0.36,0.6)的中点(0.48)可能更靠近中间,但实际中我们取最短的二进制小数,比特串011(代表数值0.375)。

解码过程:

解码器已知概率模型,初始区间[0,1)。它接收到比特串011。

第一步:将[0,1)划分为[0,0.6)和[0.6,1),0.375落在[0,0.6)内,所以第一个符号为'A'。

第二步:将当前区间[0,0.6)按比例划分:A:[0,0.36),B:[0.36,0.6)。数值0.375在[0.36,0.6)内,所以第二个符号是'B'。

因此,解码正确。

 

最终区间的概念可以总结为:

- 它是整个序列在[0,1)区间内的“身份证”,其长度等于序列的概率。
- 区间的位置和长度由序列中每个符号的概率逐步决定。
- 编码输出的是这个区间内的一个代表点的二进制表示(取足够位数以唯一确定这个区间)。

通过这种方式,算术编码实现了近乎最优的无损压缩(每个符号的编码长度接近其信息熵)。

直观比喻:GPS坐标压缩

原始文本 → 一栋精确的别墅 (目标区间 = 别墅占地)

比特串 0101110111010111001 → 别墅的 邮政编码 + 门牌号 (19位编码)

邮政编码区域 > 别墅面积 → 邮编一定能覆盖别墅

门牌号指向别墅内的一个点 (代表点)

解压 → 快递员用邮编找到区域,用门牌号送货上门
(只要地址在别墅内,就能正确无误送达)

无损的魔法如何完成?

步骤 数学动作 信息意义
区间生成 [low,high) = ∏ P(word) 文本的概率指纹
比特计算 k = ceil(-log₂(high-low)) 指纹的最短身份证位数
代表点 选区间内一个数,转k位二进制 生成身份证号 (压缩比特流)
解压 用身份证号反向追踪概率划分 凭身份证找回完整指纹 (无损还原)

最终输出的是概率空间的唯一坐标值,而非数据本身——这正是算术编码以逼近香农极限的方式实现无损压缩的魔力!

为什么这是无损的?

解压时,算术编码器反向操作

      • 从同一个初始区间 [0,1) 和同一个初始模型状态开始。

      • 读入压缩后的比特串,将其视为一个二进制小数 C

      • 用 GPT 预测第一个 token 的概率分布,切分区间。

      • 看 C 落在哪个 token 的子区间里,那个 token 就是解压出的第一个 token。

      • 用选中的子区间作为新范围,继续用 LLM 预测下一个 token 的概率分布,切分,看 C 落在哪里... 直到序列结束。

关键: 压缩和解压使用完全相同的LLM完全相同的概率预测流程。只要 C 在最终压缩区间内,就能一步步唯一确定当初编码时的每个 token 选择。输入序列和输出序列比特级一致

 

 

 

信息论科普:香农极限(Shannon Limit)

香农极限(Shannon Limit)是信息论中最深刻、最优雅的概念之一,由“信息论之父”克劳德·香农(Claude Shannon)在1948年奠基性论文《通信的数学理论》中提出。它不仅定义了通信的终极边界,更揭示了信息、噪声与可靠性的本质关系。以下从四个维度解析其内涵:


 一、核心思想:信息传输的“光速壁垒”

香农极限回答了通信领域的终极问题:在存在噪声的信道上,信息传输的速率上限是多少? 它证明:

任何通信系统都无法以超过“信道容量”的速率无错误地传输信息
一旦逼近该极限,误码率将陡增;突破则必然出错。

公式凝练宇宙法则
对于带宽为 B (Hz)、信噪比为 SNR 的高斯信道,香农极限公式为:

C = B × log₂(1 + SNR)  (比特/秒)
  • C:信道容量(理论最大无错传输速率)

  • SNR:信号功率/噪声功率(信噪比,衡量环境干扰)

  • log₂(1+SNR):每赫兹带宽能承载的比特数

直观理解

  • 带宽 B 是“水管粗细” ——越粗每秒流过水越多;

  • 信噪比 SNR 是“水质纯净度” ——噪声越小,信息“纯度”越高;

  • 容量 C 是“最大安全流量” ——超过则水管爆裂(误码爆发)。


二、为何存在极限?噪声与不确定性的囚笼

香农的革命性在于:信息即消除不确定性

    • 信息熵:度量信息的不确定性(单位:比特)。例如抛硬币有1比特不确定性。

    • 噪声干扰:在传输中引入额外不确定性(如将“0”误判为“1”)。

香农的突破
通过巧妙的编码理论,将冗余比特像“纠错盔甲”一样包裹真实信息,抵御噪声攻击。但盔甲越厚,有效信息率越低——香农极限正是“盔甲厚度”与“信息密度”的最优平衡点。


三、工程意义:人类技术的“终极标尺”

香农极限像物理中的光速,是通信工程师的圣杯:

通信技术 效率(vs 香农极限) 关键突破
2G (GSM) ≈30% 首次数字化语音
3G (CDMA) ≈50% 码分多址抗干扰
4G (LTE Turbo码) ≈90% Turbo码逼近极限
5G (LDPC/Polar码) >95% 极化码(Polar Code)理论上可达100%

四、超越通信:信息宇宙的底层逻辑

香农极限的哲学辐射远超工程:

    1. 生命与热力学
      薛定谔提出“生命以负熵为食”,生物通过信息编码(DNA)对抗环境噪声(熵增),本质是对抗香农极限的生命策略

    2. AI与压缩极限
      大模型(如GPT)本质是数据的“语义压缩”——其压缩率受柯氏复杂性(Kolmogorov Complexity)限制,可视为香农极限在认知维度的延伸。

    3. 宇宙的本质猜想
      物理学家约翰·惠勒提出“万物源自比特”(It from Bit),认为时空本身可能是信息网络,而物理定律是宇宙级的“纠错编码”。


结语:在噪声中雕刻秩序

香农极限的魅力在于:它为不完美世界中的可靠通信赋予了数学的确定性。正如香农所言:

“通信的根本问题,是在一点精确或近似地复现另一点选择的信息。”

人类至今仍在无限逼近这一极限——从5G的极化码到量子通信的曙光,每一次突破都是对香农智慧的致敬。而理解这一极限,便是理解信息时代最深邃的底层逻辑✨。

延伸阅读

  • 《信息简史》(詹姆斯·格雷克):全景式展现信息观念演变;

  • 《信息论基础》(Cover & Thomas):经典教材深入数学本质。

 

 

GPT无损压缩小问答(2):为什么说GPT是无损压缩?

GPT生成还原的不是训练数据的原文,为什么说“GPT压缩是无损压缩”?

常听到这句话,但其实这句话有歧义,不准确。GPT赋能无损压缩的对象不是训练数据,对于训练数据它的压缩毫无疑问是有损的,否则就不会有幻觉现象的存在。说GPT压缩是无损压缩的,指的是利用GPT这个庞大的知识库,用无损算法(算术编码算法)来压缩(编码)和还原(解码)输入数据。

GPT生成(inference)与用GPT对于特定数据编码解码是两回事。前者是概率采样来生成,具有不确定性。后者是利用GPT作为工具(共享知识库/世界模型)来压缩和解码特定数据,它是无损的,是确定性输出。

具体说,GPT Inference 目标是生成新内容。根据概率分布 P(token|context)采样 一个 token 输出,然后将其加入上下文,重复这个“自回归”生成过程。输出的是新 token 序列。

而GPT+算术编码 (压缩)不同, 目标是编码已有序列。利用 P(token|context) 计算真实 token 的概率值,驱动算术编码器进行区间划分和比特流生成,输出的是比特串(被压缩序列的另一种表示)。解压则使用与算术编码完全相同的GPT和完全相同的概率预测流程。只要 C 在最终压缩区间内,就能一步步唯一确定当初编码时的每个 token 选择。输入序列和输出序列比特级一致

用GPT压缩特定数据,无疑属于无损压缩。无损指的是新的输入,并不是说的训练数据。

1. 定义符合:输入 = 输出(比特级)。
2. 机制保证:算术编码是信息论证明的无损编码方法。GPT 仅提供概率分布供其使用。
3. 矛盾信息可存:低概率事件被分配更多比特编码,但信息完整保留。
4. KC差距≠信息损失:冗余比特承载着信息本身,是低效的代价而非丢弃。解压靠它们精准恢复。
5. 有损发生在别处:模型内部知识表示的形成过程(训练)的确是对训练数据的有损压缩/摘要。

总结:

GPT + 算术编码 是一个工具。这个工具利用一个(可能包含不完美/有损知识的)语言预测模型,对特定输入数据进行无损编码。工具本身的操作是无损的。

工具的效率(压缩率)高度依赖预测模型的质量。模型对数据的“理解”越深(预测概率越准),压缩率越高,越接近理论最优值KC(柯氏复杂性)。

模型的“理解”来源于其训练过程,该过程是对训练数据的有损抽象。这就是“有损”概念的根源所在,但它作用在模型构建阶段,而非使用该模型进行压缩的应用阶段。

GPT作为“共享知识库”的本质就是模型训练获得的有损的、泛化的世界模型。用它压缩单个数据点,无损;用它代表整个训练数据集,有损。

核心在于认清:无损性描述的是压缩/解压过程的输入输出关系;有损性描述的是模型内部知识表示对原始训练数据的近似程度。 两者作用在不同的对象和阶段。

 

 

GPT无损压缩小问答(1): 高压缩率导致系统脆弱

压缩率不够高不是更容易还原原文吗?从无损还原角度,我们其实不想模型压缩率“过高”。

这个问题非常犀利,直接点中了无损压缩理论中一个反直觉的关键点,质疑的是压缩效率与还原可靠性的关系——这恰恰是信息论最精妙的部分。

你可能正在脑补这样的场景:如果压缩率太高,就像把文件压得过于紧实,解压时反而容易出错。但无损压缩的数学基础保证了只要算法正确,100%还原与压缩率高低无关。

然而,这个问题的提出具备工程思维,是从实际系统角度质疑理论模型。“不想模型压缩率过高”,背后可能隐藏着对极端压缩场景下数据完整性的担忧——比如航天器用超高压缩率传输数据时,一个比特错误就可能导致整个文件崩溃。这种担忧很合理,但需要区分压缩算法本身和信道传输问题。

技术上需要强调两点:第一,算术编码作为熵编码,其压缩率逼近香农极限是数学特性,不会影响无损性;第二,高压缩率带来的系统脆弱性属于工程问题,可通过校验码解决。你可能混淆了算法层和系统层的可靠性。

特别要注意不要对“矛盾数据”有执念。数据集内部的矛盾不会导致信息损失,正如之前解释的,LLM压缩是通过增加比特开销来保留异常值,而非丢弃它们。这就像用高清扫描仪保存一幅有瑕疵的画作——瑕疵本身也被完整记录了。

应用层面,“压缩率不够高反而安全”的论述很有洞察。确实在工程实践中,适度冗余能提升系统鲁棒性。但理论上无损压缩的还原能力与压缩率无关这个铁律,需要用通信系统的分层模型来解释清楚。

好,这个问题触及了信息论中最精妙的反直觉点,我们一起来彻底解开这个悖论:

第一层:反直觉的真相

“压缩率不够高 ≠ 更易还原”
“高压缩率 ≠ 更难还原”

无损压缩中(包括GPT+算术编码),压缩率与还原能力完全无关。只要算法正确:
1比特压缩的文件几乎无压缩的文件,解压后都同等完美还原原始数据。这是无损压缩的定义决定的铁律

第二层:高压缩率如何实现?(无损的魔法)

    1. 核心原理:消除冗余
      高压缩率 = 找到更高效的方式描述数据 = 用更少的比特表示相同信息
      例:原始数据 "0000000000" (10字节) → 压缩为 "10个0" (4字节)。解压时完美还原10个0。

    2. GPT的威力:语义级消除冗余
      GPT发现 “人工智能将重塑未来产业格局” 这句话在它的“世界模型”中概率很高 → 用极小的区间(极少的比特)编码。
      关键:区间虽小,但精确对应这句话。解压时,靠比特流定位回这个区间,唯一还原这句话。

    3. 为什么高压缩率不伤害还原?

      压缩率 数据特性 编码动作 还原保障
      高度可预测 (如 “00000”) 分配极小区间 (比特少) 比特流精确定位到该区间 → 还原
      不可预测 (如白噪声) 分配接近整个区间 (比特多) 比特流覆盖大区间 → 还原

      第三层:担忧的本质:工程风险 vs 理论无损

      真正的顾虑是:当压缩率极高时,系统对错误的容忍度急剧下降! 这是完全正确的工程直觉:

      场景 低压缩率 (如未压缩文本) 高压缩率 (GPT极致压缩) 原因
      1比特传输错误 可能只影响1个字符 (AB) 整个文件可能报废 一个比特错误,算术编码的区间定位完全错乱,后续解码雪崩式崩塌。
      模型版本不一致 解压可能正常 解压必然失败/乱码 概率分布不同 → 区间划分不同 → 同一个比特流落在错误子区间,token全错。
      数据边界不匹配 容易发现 难以诊断 高压缩数据像密文,失去人类可读性。

      这才是“不想压缩率过高”的根源!无损压缩理论保证: 只要比特流无误+模型一致,100%还原。 工程现实: 高压缩率将系统的脆弱性放大了——它像一件极其精密的瓷器,完美但怕磕碰。

      应用场景该关心什么?

      1. 还原可靠性需求 >> 存储/带宽成本时

        • 选择低压缩率甚至不压缩。

        • 优点:抗比特错误、易调试、人类可读。

        • 代价:占用更多空间/带宽。

      2. 存储/带宽成本 >> 计算成本时

        • 选择高压缩率(如GPT+算术编码)。

        • 优点:极致节省空间/带宽(尤其对语义丰富数据)。

        • 代价:必须配套 强校验机制 (如CRC, 前向纠错码) + 严格版本控制

      3. 对抗信道噪声的黄金法则

      核心:在压缩后的密文级数据上叠加纠错层,抵御物理信道噪声。

      总结:无损压缩的“不可能三角”

      维度 高压缩率 低压缩率
      还原准确性 ✅ 100% (理论保证) ✅ 100% (理论保证)
      抗干扰能力 ❌ 极脆弱 (1比特可崩溃) ✅ 强韧 (局部错误)
      计算开销 ❌ 极高 (GPT预测+编码) ✅ 极低 (如gzip)
      人类可读性 ❌ 无 (密文) ✅ 有 (文本/二进制)

      您的直觉是对的——在需要系统鲁棒性的场景下,确实要谨慎追求极致压缩率。但这无损压缩本身的数学纯洁性,而是工程权衡的智慧。

       

      立委关于大模型与AI的博客汇总