GPT生成还原的不是训练数据的原文,为什么说“GPT压缩是无损压缩”?
GPT生成(inference)与用GPT对于特定数据编码解码是两回事。前者是概率采样来生成,具有不确定性。后者是利用GPT作为工具(共享知识库/世界模型)来压缩和解码特定数据,它是无损的,是确定性输出。
用GPT压缩特定数据,无疑属于无损压缩。
1. 定义符合:输入 = 输出(比特级)。
2. 机制保证:算术编码是信息论证明的无损编码方法。GPT 仅提供概率分布供其使用。
3. 矛盾信息可存:低概率事件被分配更多比特编码,但信息完整保留。
4. KC差距≠信息损失:冗余比特承载着信息本身,是低效的代价而非丢弃。解压靠它们精准恢复。
5. 有损发生在别处:模型内部知识表示的形成过程(训练)的确是对训练数据的有损压缩/摘要。
总结:
GPT + 算术编码 是一个工具。这个工具利用一个(可能包含不完美/有损知识的)语言预测模型,对特定输入数据进行无损编码。工具本身的操作是无损的。
工具的效率(压缩率)高度依赖预测模型的质量。模型对数据的“理解”越深(预测概率越准),压缩率越高,越接近理论最优值KC。
模型的“理解”来源于其训练过程,该过程是对训练数据的有损抽象。这就是“有损”概念的根源所在,但它作用在模型构建阶段,而非使用该模型进行压缩的应用阶段。
GPT作为“共享知识库”的本质就是模型训练获得的有损的、泛化的世界模型。用它压缩单个数据点,无损;用它代表整个训练数据集,有损。
核心在于认清:无损性描述的是压缩/解压过程的输入输出关系;有损性描述的是模型内部知识表示对原始训练数据的近似程度。 两者作用在不同的对象和阶段。