notebookLM赋能:隐藏推理,大模型推理模型的新动向

核心概念:隐性推理是什么?

隐性推理指的是不通过显式语言步骤,而是在模型的隐藏状态中逐步完成推理过程。与传统的“思维链”(Chain-of-Thought, CoT)不同,隐性推理将逻辑操作埋藏在神经网络的连续激活中,从而展现出一种“内在的多步思考能力”。

自动生成的英文 PPT presentation:

notebookLM 这项 new feature 目前要蛮长时间才出结果,但最终的 presentation 几乎无可挑剔。

 

🌴 Coconut范式:在潜空间中“广度优先搜索”

多篇研究提出并探讨了**Coconut(Chain-of-thought in latent space)**这一新兴推理范式:

  • Coconut 模型模拟了广度优先搜索(BFS)般的策略,在潜空间中并行展开多条推理路径,再筛选收敛于正确答案的路径;

  • 该机制对**数学问答任务(如ProsQA)和程序式逻辑题(如ProntoQA)**表现尤为出色;

  • 相较于传统CoT,它减少了对语言输出的依赖,提升了准确率、稳定性和多样性


🔁 激活路径与层级递归:多样的隐性推理机制

除了 Coconut 以外,研究还提出了多种实现隐性推理的技术路径:

  • 基于激活路径的重用与循环:模型在中间层隐状态中重复利用已有信息;

  • 层作为计算单元(layer-as-computation):模型的每一层可以类比为一次隐性操作或思维跳跃;

  • 递归式控制流:通过特定控制信号或激活结构模拟类似程序的循环与条件分支。


🌫️ 扩散模型与无限推理深度

新兴研究探索了**扩散模型(Diffusion Models)**在隐性推理中的应用:

  • 扩散过程被视为**“隐性推理路径的连续展开”,支持理论上无限深度**的思考步骤;

  • 结合LLM的潜空间操作,可实现在语言层难以表达的复杂逻辑求解任务。


📚 分阶段训练的重要性

成功引导模型掌握隐性推理能力,研究强调:

  • Curriculum learning(课程学习):由浅入深地训练模型掌握多层次推理;

  • 阶段化的指令微调:先训练基础逻辑能力,再训练复杂推理路径;

  • 推理-生成解耦:训练模型在隐藏层内部完成思考,再单独触发输出。


🔍 研究意义与挑战

  • 效率与泛化性:隐性推理为解决token推理长度瓶颈提供新方案;

  • 可解释性难题:隐藏状态中的“思考过程”难以直接观察或控制;

  • 安全与对齐风险:在不可见的推理空间中,模型可能学到“非人类可解释”的思路。

 

立委关于大模型与AI的博客汇总

发布者

立委

立委博士,多模态大模型应用咨询师。出门问问大模型团队前工程副总裁,聚焦大模型及其AIGC应用。Netbase前首席科学家10年,期间指挥研发了18种语言的理解和应用系统,鲁棒、线速,scale up to 社会媒体大数据,语义落地到舆情挖掘产品,成为美国NLP工业落地的领跑者。Cymfony前研发副总八年,曾荣获第一届问答系统第一名(TREC-8 QA Track),并赢得17个小企业创新研究的信息抽取项目(PI for 17 SBIRs)。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

这个站点使用 Akismet 来减少垃圾评论。了解你的评论数据如何被处理