置顶:立委NLP博文一览(定期更新版)】 屏蔽留存

置顶:立委NLP博文一览(定期更新版)】

屏蔽已有 11232 次阅读 2015-7-3 00:30 |个人分类:立委科普|系统分类:科研笔记| NLP, 科普, 自然语言

NLP University

【立委NLP相关博文汇总一览】

NLP University 开张大吉

《朝华午拾》总目录

余致力自然语言处理(NLP,Natural Language Processing)凡30年,其目的在求交流之通畅,信息之自由,语言之归一,世界之大同。积30年之经验,深知欲达此目的,必须启蒙后进,普及科学,同心协力,共建通天之塔,因作文鼓而吹之。处理尚未成功,同志仍需努力。
 
1. 关于NLP体系及方法论
 
 
 

【立委科普:自然语言parsers是揭示语言奥秘的LIGO式探测仪】

泥沙龙笔记:漫谈语言形式

《泥沙龙笔记:沾深度神经的光,谈parsing的深度与多层》

【立委科普:语言学算法是 deep NLP 绕不过去的坎儿】

《OVERVIEW OF NATURAL LANGUAGE PROCESSING》

《NLP White Paper: Overview of Our NLP Core Engine》

White Paper of NLP Engine

【新智元笔记:工程语法和深度神经】

【新智元笔记:李白对话录 – RNN 与语言学算法】

《新智元笔记:再谈语言学手工编程与机器学习的自动编程》

《新智元笔记:对于 tractable tasks, 机器学习很难胜过专家》

《新智元笔记:【Google 年度顶级论文】有感》

《新智元笔记:NLP 系统的分层挑战》

《泥沙龙笔记:连续、离散,模块化和接口》

《泥沙龙笔记:parsing 的休眠反悔机制》

【立委科普:歧义parsing的休眠唤醒机制初探】

【泥沙龙笔记:NLP hard 的歧义突破】

【立委科普:结构歧义的休眠唤醒演义】

【新智元笔记:李白对话录 – 从“把手”谈起】

《新智元笔记:跨层次结构歧义的识别表达痛点》

立委科普:NLP 中的一袋子词是什么

一切声称用机器学习做社会媒体舆情挖掘的系统,都值得怀疑

立委科普:关键词革命

立委科普:关键词外传

《立委随笔:机器学习和自然语言处理》

【泥沙龙笔记:语法工程派与统计学习派的总结】

【科普小品:NLP 的锤子和斧头】

【新智元笔记:两条路线上的NLP数据制导】

《立委随笔:语言自动分析的两个路子》

Comparison of Pros and Cons of Two NLP Approaches

why hybrid? on machine learning vs. hand-coded rules in NLP

Why Hybrid?

钩沉:Early arguments for a hybrid model for NLP and IE

【李白对话录:你波你的波,我粒我的粒】

【泥沙龙笔记:学习乐观主义的极致,奇文共欣赏】

《泥沙龙笔记:铿锵众人行,parsing 可以颠覆关键词吗?》

泥沙龙笔记:铿锵三人行

《泥沙龙铿锵三人行:句法语义纠缠论》

【科普随笔:NLP主流的傲慢与偏见】

【科普随笔:NLP主流最大的偏见,规则系统的手工性】

再谈机器学习和手工系统:人和机器谁更聪明能干?

乔姆斯基批判

Chomsky’s Negative Impact

[转载]【白硕 – 穿越乔家大院寻找“毛毛虫”】

【新智元笔记:语法糖霜论不值得认真对待】

【科研笔记:NLP “毛毛虫” 笔记,从一维到二维】

【泥沙龙笔记:NLP 专门语言是规则系统的斧头】

【新智元:理论家的围墙和工程师的私货】

泥沙龙笔记:从乔姆斯基大战谷歌Norvig说起

【Church – 钟摆摆得太远(2):乔姆斯基论】

【NLP主流的反思:Church – 钟摆摆得太远(1):历史回顾】

【Church – 钟摆摆得太远(3):皮尔斯论】

【Church – 钟摆摆得太远(4):明斯基论】

【Church – 钟摆摆得太远(5):现状与结论】

《泥沙龙笔记:【钟摆摆得太远】高大上,但有偏颇》

自给自足是NLP王道

自然语言后学都应该看看白硕老师的“自然语言处理与人工智能”

语言创造简史

Notes on Building and Using Lexical Semantic Knowledge Bases

【NLP主流成见之二,所谓规则系统的移植性太差】

Domain portability myth in natural language processing (NLP)

【科普随笔:NLP的宗教战争?】

Church – 计算语言学课程的缺陷 (翻译节选)

【科普随笔:NLP主流之偏见重复一万遍成为反真理】

坚持四项基本原则,开发鲁棒性NLP系统

NLP 围脖:成语从来不是问题

NLP 是一个力气活:再论成语不是问题

立委围脖:对于用户来说,抓住老鼠就是好猫

《科普随笔:keep ambiguity untouched》

【科研笔记:NLP的词海战术】

在构筑一个模型时,枚举法是常用的必要的强盗分类

没有语言学的 CL 走不远

[转载]为什么谷歌搜索并不像广泛相信的那样主要采用机器学习?

手工规则系统的软肋在文章分类

老教授回函:理性主义回摆可能要再延迟10几年

每隔二十年振荡一次的钟摆要多长?

【系统不能太精巧,正如人不能太聪明】

《泥沙龙李白对话录:关于纯语义系统》

【泥沙龙笔记:语义可以绕过句法吗】

一袋子词的主流方法面对社交媒体捉襟见肘,结构分析是必由之路

《新智元:通用的机器人都是闹着玩的,有用的都是 domain 的》

SBIR Grants

2. 关于NLP分析(parsing)

【语言学小品:送老婆后面的语言学】

【一日一parsing:NLP应用可以对parsing有所包容】

泥沙龙笔记:骨灰级砖家一席谈,真伪结构歧义的对策(1/2)

泥沙龙笔记:骨灰级砖家一席谈,真伪结构歧义的对策(2/2)

【语义计算沙龙:巨头谷歌昨天称句法分析极难,但他们最强】

语义计算沙龙:parsing 的鲁棒比精准更重要】

语义计算沙龙:基本短语是浅层和深层parsing的重要接口》

【做 parsing 还是要靠语言学家,机器学习不给力】

《泥沙龙笔记:狗血的语言学》

语义计算沙龙:关于汉语介词的兼语句型,兼论POS】

泥沙龙笔记:在知识处理中,很多时候,人不如机

《立委科普:机器可以揭开双关语神秘的面纱》

《泥沙龙笔记:漫谈自动句法分析和树形图表达》

泥沙龙笔记:语言处理没有文法就不好玩了

泥沙龙笔记:parsing 是引擎的核武器,再论NLP与搜索

泥沙龙笔记:从 sparse data 再论parsing乃是NLP应用的核武器

【立委科普:NLP核武器的奥秘】

【立委科普:语法结构树之美】

【立委科普:语法结构树之美(之二)】

【立委科普:自然语言理解当然是文法为主,常识为辅】

语义计算沙龙:从《知网》抽取逻辑动宾的关系】

【立委科普:教机器识英文】

【立委科普:及物、不及物 与 动词 subcat 及句型】

泥沙龙笔记:再聊乔老爷的递归陷阱

【泥沙龙笔记:人脑就是豆腐,别扯什么递归了】

泥沙龙笔记:儿童语言没有文法的问题

《自然语言是递归的么?》

Parsing nonsense with a sense of humor

【科普小品:文法里的父子原则】

Parent-child Principle in Dependency Grammar

乔氏 X 杠杠理论 以及各式树形图表达法

【泥沙龙笔记:依存语言学的怪圈】

【没有语言结构可以解析语义么?浅论 LSA】

【没有语言结构可以解析语义么?(之二)】

自然语言中,约定俗成大于文法教条和逻辑

泥沙龙笔记:三论世界语

泥沙龙笔记:再聊世界语及其文化

泥沙龙笔记:聊一聊世界语及老柴老乔以及老马老恩

《泥沙龙笔记:NLP component technology 的市场问题》

【泥沙龙笔记:没有结构树,万古如长夜】

Deep parsing:每日一析

Deep parsing 每日一析:内情曝光 vs 假货曝光

Deep parsing 每日一析 半垃圾进 半垃圾出

【一日一parsing: 屈居世界第零】

【研发随笔:植树为林自成景(10/n)】

【deep parsing:植树为林自成景(20/n)】

【deep parsing:植树为林自成景(30/n)】

语义计算沙龙:植树为林自成景(40/n)】

【deep parsing 吃文化:植树为林自成景(60/n)】

【deep parsing (70/n):离合词与定语从句的纠缠】

【deep parsing (80/n):植树成林自成景】

【deep parsing (90/n):“雨是好雨,但风不正经”】

【deep parsing (100/n):其实 NLP 也没那么容易气死】

3. 关于NLP抽取

【语义计算沙龙:知识图谱无需动用太多知识 负重而行】

【立委科普:信息抽取】

《朝华午拾:信息抽取笔记》

泥沙龙笔记:搜索和知识图谱的话题

《知识图谱的先行:从Julian Hill 说起》

《有了deep parsing,信息抽取就是个玩儿》

【立委科普:实体关系到知识图谱,从“同学”谈起】

泥沙龙笔记: parsing vs. classification and IE

前知识图谱钩沉: 信息抽取引擎的架构

前知识图谱钩沉: 信息体理论

前知识图谱钩沉,信息抽取任务由浅至深的定义

前知识图谱钩沉,关于事件的抽取

钩沉:SVO as General Events

Pre-Knowledge-Graph Profile Extraction Research via SBIR (1)

Pre-Knowledge-Graph Profile Extraction Research via SBIR (2)

Coarse-grained vs. fine-grained sentiment extraction

【立委科普:基于关键词的舆情分类系统面临挑战】

【“剩女”的去向和出路】

SBIR Grants

4.关于NLP大数据挖掘

“大数据与认识论”研讨会的书面发言(草稿)

【立委科普:自动民调】

Automated survey based on social media

《立委科普:机器八卦》

言多必露,文本挖掘可以揭示背景信息

社媒是个大染缸,大数据挖掘有啥价值?

大数据挖掘问答2:会哭的孩子有奶吃

大数据挖掘问答1:所谓数据完整性

为什么做大数据的吹鼓手?

大数据NLP论

On Big Data NLP

作为公开课的大数据演讲

【立委科普:舆情挖掘的背后】

【立委科普:所谓大数据(BIG DATA)】

【科研笔记:big data NLP, how big is big?】

文本挖掘需要让用户既能见林又能见木

【社媒挖掘:《品牌舆情图》的设计问题】

研究发现,国人爱说反话:夸奖的背后藏着嘲讽

立委统计发现,人是几乎无可救药的情绪性动物

2011 信息产业的两大关键词:社交媒体和云计算

《扫了 sentiment,NLP 一览众山小:从“良性肿瘤”说起》

5. 关于NLP应用

【河东河西,谁敢说SMT最终一定打得过规则MT?】

【立委科普:NLP应用的平台之叹】

【Bots 的愿景】

《新智元笔记:知识图谱和问答系统:how-question QA(2)》

《新智元笔记:知识图谱和问答系统:开题(1)》

【泥沙龙笔记:NLP 市场落地,主餐还是副食?】

《泥沙龙笔记:怎样满足用户的信息需求》

立委科普:问答系统的前生今世

《新智元笔记:微软小冰,人工智能聊天伙伴(1)》

《新智元笔记:微软小冰,可能的商业模式(2)》

《新智元笔记:微软小冰,两分钟定律(3)》

新智元笔记:微软小冰,QA 和AI,历史与展望(4)

泥沙龙笔记:把酒话桑麻,聊聊 NLP 工业研发的掌故

泥沙龙笔记:创新,失败,再创新,再失败,直至看上去没失败

泥沙龙笔记:parsing 是引擎的核武器,再论NLP与搜索

立委科普:从产业角度说说NLP这个行当

【立委科普:机器翻译】

立委硕士论文【附录一:EChA 试验结果】

社会媒体(围脖啦)火了,信息泛滥成灾,技术跟上了么?

2011 信息产业的两大关键词:社交媒体和云计算

再说苹果爱疯的贴身小蜜 死日(Siri)

从新版iPhone发布,看苹果和微软技术转化能力的天壤之别

非常折服苹果的技术转化能力,但就自然语言技术本身来说 ...

科研笔记:big data NLP, how big is big?

与机器人对话

《机器翻译词义辨识对策》

【立委随笔:机器翻译万岁】

6. 关于中文NLP

【新智元:parsing 在希望的田野上】

语义计算沙龙:其实 NLP 也没那么容易气死

【deep parsing (70/n):离合词与定语从句的纠缠】

【立委科普:deep parsing 小讲座】

【新智元笔记:词的幽灵在NLP徘徊】

《新智元笔记:机器的馅饼专砸用心者的头》

【新智元笔记:机器的馅饼(续篇)】

【新智元笔记:parsing 汉语涉及重叠的鸡零狗碎及其他】

【新智元笔记:中文自动分析杂谈】

【deep parsing:“对医闹和对大夫使用暴力者,应该依法严惩" 】

【让机器人解读洪爷的《人工智能忧思录》(4/n)】

【让机器人解读洪爷的《人工智能忧思录》(3/n)】

【让机器人解读洪爷的《人工智能忧思录》(2/n)】

【让机器人解读洪爷的《人工智能忧思录》(1/n)】

《新智元笔记:找茬拷问立氏parser》

【新智元笔记:汉语分离词的自动分析】

《新智元笔记:与汉语离合词有关的结构关系》

《新智元笔记:汉语使动结构与定中结构的纠缠》

《新智元笔记:汉语parsing的合成词痛点》

《新智元:填空“的子结构”、“所字结构”和“者字结构“》

【沙龙笔记:汉语构词和句法都要用到reduplication机制】

钩沉:博士阶段的汉语HPSG研究 2015-11-02

泥沙龙小品:小词搭配是上帝给汉语文法的恩赐

泥沙龙笔记:汉语牛逼,国人任性!句法语义,粗细不同

泥沙龙笔记:汉语就是一种“裸奔” 的语言

【NLP笔记:人工智能神话的背后是汗水】

【立委随笔:中文之心,如在吾庐】

汉语依从文法 (维文钩沉)

《立委科普:现代汉语语法随笔》

“自由”的语言学至少有三种理论

应该立法禁止切词研究 :=)

再谈应该立法禁止切词研究

中文处理的迷思之一:切词特有论

中文处理的迷思之二:词类标注是句法分析的前提

中文NLP迷思之三:中文处理的长足进步有待于汉语语法的理论突破

专业老友痛批立委《迷思》系列搅乱NLP秩序,立委固执己见

后生可畏,专业新人对《迷思》争论表面和稀泥,其实门儿清

突然有一种紧迫感:再不上中文NLP,可能就错过时代机遇了

社会媒体舆情自动分析:马英九 vs 陈水扁

舆情自动分析表明,谷歌的社会评价度高出百度一倍

方寒大战高频情绪性词的词频分析

方韩大战的舆情自动分析:小方的评价比韩少差太多了

研究发现,国人爱说反话:夸奖的背后藏着嘲讽

立委统计发现,人是几乎无可救药的情绪性动物

研发笔记:粤语文句的情报挖掘

《立委随笔: 语言学家是怎样炼成的》

《立委科普:汉语只有完成体,没有过去时》

《科研笔记:中文图灵试题?》

立委统计发现,汉语既适合吹嘘拍马亦长于恶意构陷

比起英语,汉语感情更外露还是更炽烈?

科研笔记:究竟好还是不好

《科普随笔:汉字和语素》

《科普随笔:汉语自动断词 “一次性交500元”》

《科普随笔:“他走得风一样地快” 的详细语法结构分析》

【立委科普:自动分析 《偉大的中文》】

《立委随笔:汉语并不简单》

语言学小品:结婚的远近距离搭配

中文处理的模块化纠结

【立委科普:《非诚勿扰》中是谁心动谁动心?】

曙光在眼前,轻松过个年

挺反自便,但不要欺负语言学!

当面对很烦很难很挑战的时候

创造着是美丽的

汉语依从文法 (维文钩沉)

《新智元:挖掘你的诗人气质,祝你新年快乐》

7. 关于NLP社会媒体舆情挖掘的实践

【语义计算沙龙:sentiment 中的讽刺和正话反说】

【喋喋不休论大数据(立委博文汇总)】

【新智元笔记:再谈舆情】

舆情挖掘系统独立验证的意义

【社煤挖掘:雷同学之死】

《利用大数据高科技,实时监测美国总统大选舆情变化》

世人皆错nlp不错,民调错大数据也不会错

社媒大数据的困境:微信的风行导致舆情的碎片化

从微信的用户体验谈大数据挖掘的客户情报

社媒挖掘:社会媒体疯传柴静调查,毁誉参半,争议趋于情绪化

奥巴马赢了昨晚辩论吗?舆情自动检测告诉你

全球社交媒体热议阿里巴巴上市

到底社媒曲线与股市曲线有没有、有多少相关度?

再谈舆情与股市的相关性

【『科学』预测:A-股 看好】

舆情挖掘用于股市房市预测靠谱么?

大数据帮助决策实例:《走进“大数据”——洗衣机寻购记》

【社媒挖掘:外来快餐店风光不再】

【社媒挖掘:中国手机市场仍处于战国争雄的阶段】

世界杯是全世界的热点,纵不懂也有义务挖掘一哈

【大数据挖掘:方崔大战一年回顾】(更正版)

【大数据挖掘:转基因一年回顾】

【大数据挖掘:“苦逼”小崔2013年5-7月为什么跌入谷底?】

【大数据挖掘:转基因中文网络的自动民调,东风压倒西风?】

【大数据挖掘:转基因英文网络的自动民调和分析】

只认数据不认人:IRT 的鼓噪左右美国民情了么?

继续转基因的大数据挖掘:谁在说话?发自何处?能代表美国人民么

关于转基因及其社会媒体大数据挖掘的种种问题

【美国网民怎么看转基因:英文社交媒体大数据调查告诉你】

【社媒挖掘:必胜客是七夕节情侣聚餐的首选之地?】

【社媒挖掘:大数据时代的危机管理】

测试粤语舆情挖掘:拿娱乐界名人阿娇和陈冠希开刀

【社媒挖掘:不朽邓丽君】

【社媒挖掘:社会媒体眼中的李开复老师】

【社媒挖掘:糟糕透顶的方韩社会形象】

社媒挖掘:关于狗肉的争议

社媒挖掘:央视的老毕

社媒挖掘:老毕私下辱毛事件再挖掘

大数据淹没下的冰美人(之一)

大数据淹没下的冰美人(之二)

大数据淹没下的冰美人(之三): 喜欢的理由

大数据淹没下的冰美人(之四): 流言蜚语篇(慎入)

大数据淹没下的冰美人(之五): 星光灿烂谁为最?

【社媒挖掘:成都暴打事件中的男司机和女司机】

【社媒挖掘:社会媒体眼中的陳水扁】

【社媒挖掘:社会媒体眼中的李登輝】

【社媒挖掘:馬英九施政一年來輿情晴雨表】

【社媒挖掘:臺灣政壇輿情圖】

【社媒挖掘:社会媒体眼中的臺灣綠營大佬】

舆情挖掘:九合一國民黨慘敗 馬英九時代行將結束?

社会媒体舆情自动分析:马英九 vs 陈水扁

社媒挖掘:争议人物方博士被逐,提升了其网路形象

方韩大战高频情绪性词的词频分析

方韩大战的舆情自动分析:小方的评价比韩少差太多了

社媒挖掘:苹果CEO库克公开承认同志身份,媒体反应相当正面

苹果智能手表会是可穿戴设备的革命么?

全球社交媒体热议苹果推出 iPhone 6

互联网盛世英雄马云的媒体形象

革命革到自身头上,给咱“科学网”也挖掘一下形象

两年来中国红十字会的社会媒体形象调查

自动民调Walmart,挖掘发现跨国公司在中国的日子不好过

【社媒挖掘:“剩女”问题】

【舆情挖掘:2013央视春晚播后】

【舆情挖掘:年三十挖一挖央视春晚】

新浪微博下周要大跌?舆情指数不看好,负面评价太多(疑似虚惊)

【大数据挖掘:微信(WeChat)】

【大数据解读:方崔大战对转基因形象的影响】

【微博自动民调:薄熙来、薛蛮子和李天一】

【社媒挖掘:第一夫人光彩夺目赞誉有加】

Chinese First Lady in Social Media

Social media mining on credit industry in China

Sina Weibo IPO and its automatic real time monitoring

Social media mining: Teens and Issues

立委元宵节大数据科技访谈土豆视频上网

【大数据挖掘:中国红十字会的社会媒体形象】

【社媒挖掘:社会媒体眼中的财政悬崖】

【社媒挖掘:美国的枪支管制任重道远】

【舆情挖掘:房市总体看好】

【社媒挖掘:社会媒体眼中的米拉先生】

【社会媒体:现代婚姻推背图】

【社会媒体:现代爱情推背图】

【科学技术之云】

新鲜出炉:2012 热点话题五大盘点之五【小方vs韩2】

【凡事不决问 social:切糕是神马?】

Social media mining: 2013 vs. 2012

社会媒体测试知名品牌百度,有惊人发现

尝试揭秘百度的“哪里有小姐”: 小姐年年讲、月月讲、天天讲?

舆情自动分析表明,谷歌的社会评价度高出百度一倍

圣诞社媒印象: 简体世界狂欢,繁體世界分享

WordClouds: Season's sentiments, pros & cons of Xmas

新鲜出炉:2012 热点话题五大盘点之一【吊丝】

新鲜出炉:2012 热点的社会媒体五大盘点之二【林书豪】

新鲜出炉:2012 热点话题五大盘点之三【舌尖上的中国】

新鲜出炉:2012 热点话题五大盘点之四【三星vs苹果】

社会媒体比烂,但国骂隐含舆情

肮脏语言研究:英语篇

肮脏语言研究:汉语篇(18岁以下勿入)

新年新打算:【社媒挖掘】专栏开张大吉

8. 关于NLP的掌故趣闻

《朝华午拾:创业之路》

《朝华午拾 - 水牛风云》

《朝华午拾:用人之道》

《朝华午拾:欧洲之行》

《朝华午拾:“数小鸡”的日子》

《朝华午拾:一夜成为万元户》

《朝华午拾:世界语之恋》

《朝华午拾:我的考研经历》

80年代在国内,社科院的硕士训练使我受益最多

科研笔记:开天辟地的感觉真好

《朝华午拾:今天是个好日子》

【朝华午拾:那天是个好日子】

10 周年入职纪念日有感

《立委随笔: 语言学家是怎样炼成的》

说说科研立项中的大跃进

围脖:一个人对抗一个世界,理性主义大师 Lenat 教授

《泥沙龙笔记:再谈 cyc》

围脖:格语法创始人菲尔墨(Charles J. Fillmore)教授千古!

百度大脑从谷歌大脑挖来深度学习掌门人 Andrew Ng

冯志伟老师以及机器翻译历史的一些事儿

《立委随笔:微软收购PowerSet》

NLP 历史上最大的媒体误导:成语难倒了电脑

立委推荐:乔姆斯基

巧遇语言学上帝乔姆斯基

[转载]欧阳锋:巧遇语言学新锐 - 乔姆斯基

【科普小品:伟哥的关键词故事】

不是那根萝卜,不做那个葱

【随记:湾区的年度 NLP BBQ 】

女怕嫁错郎,男怕入错行,专业怕选错方向

据说,神奇的NLP可以增强性吸引力,增加你的信心和幽会成功率

【立委科普:美梦成真的通俗版解说】

【征文参赛:美梦成真】

【创业故事:技术的力量和技术公司的命运】

把酒话桑麻,再泡一壶茶,白头老机译,闲坐说研发

MT 杀手皮尔斯 (翻译节选)

ALPAC 黑皮书 1/9:前言

《眼睛一眨,来了王子,走了白马》

职业随想曲:语言学万岁

立委随笔:Chomsky meets Gates

钩沉:《中国报道》上与导师用世界语发表的第一篇论文

钩沉:《中国报道》上用世界语发表的第二篇论文

贴身小蜜的面纱和人工智能的奥秘

有感于人工智能的火热

泥沙龙笔记微博议摘要

【泥沙龙笔记:没有结构树,万古如长夜】

【泥沙龙笔记:机器 parsing 洪爷,无论打油或打趣】

老革命遇到新问题,洪爷求饶打油翁

我要是退休了,就机器 parse 《离骚》玩儿

《朝华午拾》总目录

【置顶:立委NLP博文一览(定期更新版)】

立委NLP频道

http://blog.sciencenet.cn/blog-362400-902391.html

上一篇:泥沙龙笔记:再聊乔老爷的递归陷阱
下一篇:人机接口是机器人的面子

 

6  陆泽橼 李雄 陈辉 朱新亮 bridgeneer decipherer

发表评论评论 (3 个评论)

删除 回复 |赞[2]赵明   2016-6-3 22:32
李老师 
 回复  : thanks

2016-6-26 14:381 楼(回复楼主)赞|回复

删除 回复 |赞[1]李斌   2016-1-31 20:29
college挺好啦。

发布者

立委

立委博士,问问副总裁,聚焦大模型及其应用。Netbase前首席科学家10年,期间指挥研发了18种语言的理解和应用系统,鲁棒、线速,scale up to 社会媒体大数据,语义落地到舆情挖掘产品,成为美国NLP工业落地的领跑者。Cymfony前研发副总八年,曾荣获第一届问答系统第一名(TREC-8 QA Track),并赢得17个小企业创新研究的信息抽取项目(PI for 17 SBIRs)。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据