【语义计算沙龙:sentiment 中的讽刺和正话反说】

w:
看见前面的“降温”,这降温是何极性?
“本来就防寒措施准备不足,这不现在又要降温了。”
“他这几天高烧不退,还好刚才开始降温了。”
还有“降级”
“他这学期实在太差,学校对他实行了降级处理。”
“由防恐工作己经卓有成效,上面终于把防恐等级降级了。”
看这“随风倒”的词,在做情感分析,只看词的话也不大可靠。
我:
大小 多少 高低 长短 增减 之类 自身没有褒贬 根据它所修饰者而定
w:
这些中性词一看很清楚。降级这个偏向性应该很明显。
我:
那是。
降 中性。
w:

我:
级 级别 职称 等级 这些属于隐性正面词 在语言中被激发 被 increase、start or decrease、suspend 这类概念的词所激发。
w:
李老师研究是颇有心得啊!那存不存在褒义词贬义用,贬义词褒义用。
我:
当然存在 譬如讽刺 挖苦 自嘲 和 讥笑
w:
是的
我:
譬如 “谢谢你的完美误导”:“谢谢” 与 “完美” 的褒义 在“误导”前 转为讽刺 因此是负面
w:
呵呵! 那机器拿捏起来,就比较困难了。
我:
再如
“居然拿狐狸肉冒充牛肉上架 沃尔玛 你真行”
你真行 从褒奖转为讽刺贬义。
w:
例子,李老师也是随手拈来啊,这个”真行” -都是用坏了。这些应该是属于超一般文本的自然语言处理。觉得,在NLP 特别棘手这种讽刺,隐喻,借代,拟人之类的
我:
我过去五年就是陷在 sentiment 泥淖呢。
w:
好不容易搭配个语义模板出来,总那么多非法的都是合法的而且是高水平的修辞手法
这让机器莫名其妙,莫衷一是
我:
上面这样的正好反说有迹可循,有套路,小心一点,还是可以抓住的。做过 sentiment 后 事实抽取为基础的知识图谱就是小菜了。
白:
sentiment也是有结构的,仅仅正负面标签远远不够。
w:
同意白老师。独立标签
独立标签也许就如李老师之前所说的关键词
白:
“坑挖深了”有歧义,和不同预期有关。
原来挖浅了,现在按照要求深挖,可以交差了。这是一个意思。
没预期挖那么深,一不留神用力过猛,挖深了,是“过深”的意思。
【相关】

【关于舆情挖掘】

《朝华午拾》总目录

发布者

liweinlp

立委博士,计算语言学家,多语言多领域自然语言处理(NLP)资深架构师。Trend 首席科学家,聚焦医疗领域病友社区的媒体挖掘。前弘玑首席科学家,聚焦RPA+AI的NLP低代码多领域落地,设计NLP核心引擎雕龙,落地多领域场景,包括金融、电力、航空、水利、客服等。前讯飞AI研究院副院长,研发支持对话的多语言平台,前京东主任科学家, 主攻深度解析和知识图谱及其应用。Netbase前首席科学家,期间指挥研发了18种语言的理解和应用系统。特别是汉语和英语,具有世界一流的解析(parsing)精度,并且做到鲁棒、线速,scale up to 大数据,语义落地到数据挖掘和问答产品。Cymfony前研发副总,曾荣获第一届问答系统第一名(TREC-8 QA Track),并赢得17个小企业创新研究的信息抽取项目(PI for 17 SBIRs)。立委NLP工作的应用方向包括大数据舆情挖掘、客户情报、信息抽取、知识图谱、问答系统、智能助理、语义搜索等等。

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据