【社煤挖掘:为什么要选ta而不是ta做总统?】

中文社煤挖掘美国大选的华人舆情,接着练。

Why and why not Clinton/Trump?

Why 喜大妈?Why 川大叔?Why not Clinton? Why not Trump?这是大选的首要问题,也是我们舆情挖掘想要探究的重点。Why???

First, why Clinton and why not Clinton? 看看喜大妈在舆情中的优劣对比图(pros and cons)。

sentiment-drivers-33

why Clinton?剔除竞选表现优秀等等与总统辩论和 campaign 有关的好话(“领先”、“获胜”、“占上风”、“赢得”等)外,主要理由有:

1. 老练 强硬; 2. 乐观; 2. 清楚; 4 换发活力 谈笑风生; 5. 梦想共同市场

拿着放大镜,除了政治套话和谀辞外也没看到什么真正的亮点。舆情领先,只能说对手太差了吧。四年前与奥巴马竞争被甩出一条街去,那是遇到了真正的强手。

OK,why not Clinton?

1. 性侵 性骚扰 威胁(她丈夫做的好事,她来背黑锅,呵呵。照常理她是受害者,可以同情的,不料给同样管不住下半身的川普一抹黑,她倒成了性侵的帮凶,说是威胁被性侵的女性。最滑稽的是,川普自己的丑闻曝光,他却一本正经带了一帮前总统克林顿的绯闻女士开记者会,来抹黑自己的对手克林顿夫人。滑稽逆天了。)

2. 邮件门 曝光 泄密

3 竞选团队的不轨行为 操纵大选 作弊

4. 克林顿基金会的问题

5. 华尔街收费

6 健康问题

7 撒谎、可耻

8. 缺乏判断力

这些都不是新鲜事儿,大选以来已经炒了很久了,但比起她的长处(经验老练等少数几条),喜妈被抓住的辫子还真不少。再看网民的情绪性吐槽, 说好话都是相似的,坏话却各有不同:轻的是,“乏善可陈”、“不喜欢”、“不信任”; 重的是:“妖婆”,“婊子”、“灾难”、“无耻”、“邪恶”。

sentiment-drivers-34
作为对比,来看川大叔,why or why not Trump?

sentiment-drivers-35

pros:1. 减税;2. 承诺 崛起 (America great again);3. 真实;4. 擅长 business
cons:
1. 曝光的视频丑闻 性骚扰
2. 偷税漏税
3. 吹嘘
4 咄咄逼人 喜怒无常
5 粗鄙、威胁
6 撒谎

情绪性吐槽,轻的是 “不靠谱”、“出言不逊”,重的是 “恶心”、“愚蠢”、“卑劣”、“众叛亲离”。

sentiment-drivers-36
上篇中文社煤自动民调博文发了以后有朋友问,为什么不见大名鼎鼎的脸书。(微信不见可以理解,人家数据不对外开放,对隐私性特别敏感,比脸书严多了。不过,地球人都知道,反映我大唐舆情最及时精准的大数据宝库,非微信莫属)。查对了一下,上次做的中文舆情调查,不知何故 Facebook 不在 top 10,只占调查数据的 0.1%:

sources-9

记得以前的英语社煤调查,通常的比例是 70% twitter,20% Facebook, 其他所有论坛和社交媒体只占 10%。最近加了 instagram、Tumblr 等,格局似有变。但是中文在海外,除了推特,Facebook 本来应该有比重的,特别是我台湾同胞,用 Facebook 跟东土用微信一样普遍。

再看看这次调查的网民背景分类。

1.  职业是科技为主(大概不少是咱码农),其次才是新闻界和教育界。这些人喜欢到网上嚷嚷。

professions

这是他们的兴趣(interests),有意思的关联似乎是,喜欢谈政治的与喜欢谈宗教和美食的有相当大交集。

interests

这是年龄分组,分布比较均匀,但还是中青年为主。

age

性别不用说,男多女少。男人谈政治与女人谈shopping一样热心。

gender

最后看看地理分布,社煤的地理来源:
geo-regions

 

 

【相关】

【社媒挖掘:川大叔喜大妈谁长出了总统样?】

Big data mining shows clear social rating decline of Trump last month

【川普和希拉里的幽默竞赛】

【大数据舆情挖掘:希拉里川普最近一个月的形象消长】

论保守派该投票克林顿

【立委科普:自动民调】

【关于舆情挖掘】

《朝华午拾》总目录

发布者

立委

立委博士,问问副总裁,聚焦大模型及其应用。Netbase前首席科学家10年,期间指挥研发了18种语言的理解和应用系统,鲁棒、线速,scale up to 社会媒体大数据,语义落地到舆情挖掘产品,成为美国NLP工业落地的领跑者。Cymfony前研发副总八年,曾荣获第一届问答系统第一名(TREC-8 QA Track),并赢得17个小企业创新研究的信息抽取项目(PI for 17 SBIRs)。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据