【强弱人工智能之辩】

董: 两周前陪一位朋友去做肠镜。医务说明上写到:肠镜有风险:肠穿孔是1000:1;大出血是:500:1。后来我想到了伟大的人工智能(AI)和机器人。其实将来可以研发专门的机器人来为患者做肠镜,如果肠穿孔低于1000:1,不就成功了吗?后来又一想不对呀,以后等机器人把肉身人类都消灭了,哪还要做肠镜呀。人类的未来真是太美妙了。没有疾病,没有穷困,没有战争!

我: 董老师,相信所谓强人工智能,甚至所谓超人工智能的,主要是两类人:一类是部分权威或大佬,霍金、比尔盖茨之类;另一类是被小报或科学幻想洗脑的百姓,而编这些科学幻想故事的人基本是出于猎奇的本性。后一类人可以忽略。其实,第一类人,到目前为止,大多还谈不上相信所谓强AI,他们主要是提出要警惕AI可能带来的人类灾难,这是为强人工智能开了口子。这类人不是简单地可以否定的。也不能仅仅归结为他们在忽悠,因为他们足够高大,已经超越了通常意义的忽悠(动机为好处、为金钱、为funding、为耸人听闻等)。

相信不相信强AI已经不再是学术之争了,而越来越成为信仰之争,世界观之争。两派都有大师做后盾。乔姆斯基是强AI的否定派,有人问他:机器会思考么?乔老爷反问:潜艇会游泳么?乔老爷认为强AI是无稽之谈,不值得讨论的话题。但霍金、比尔盖茨等人则未雨绸缪,开始担心强AI了。

从自主思考的意义,我们作为强AI否定者,可以与乔老爷一起斥其为无稽之谈,学术上这个所谓强AI是一个不值得认真对待的问题。但是,从现实考量,警惕强AI论者有其积极意义。这个意义表现在,随着AI系统越来越复杂,创造系统的人可能失去对其全面的掌控和了解,这样来看AI系统,其风险的确在增大,而这一点是不难想见和同意的。

我们先撇开AI看人类的科技进步。事实上,立足于科技进步所带来的毁灭人类和世界的可能性早已存在:如果核按钮掌握在极端主义手中,这是完全可能的事儿。人类对此危险的办法是,限制核武器发展(制裁北韩是举措之一),对于已经掌握核武器的大国,也有一些措施试图保证不至于因为误判或误操作而造成核灾难和大毁灭。如果 AI 系统以后被用于一些敏感的地方,而且系统的复杂度和演化越来越超出人脑可以理解和控制的程度,那么出错以及错了难以阻止的可能性不是不存在的,虽然这与机器自主思考没有一毛钱的关系。

从功能角度,从图灵测试的标准看,潜艇与鱼一样会 “游泳”(先摈除这个字眼本身纯粹从语言带来的专属于动物的限制),飞机与鸟儿一样会 “飞”(还好,语言中这个语词似乎更超脱一些,没有强加隐含的动物限制)。这一点是没有什么疑问的。乔姆斯基实际上是利用了语言学的 trick,打了一个世界观之争的漂亮仗。但严格意义上,有点胜之不武。作为语言大师,他知道如果说潜艇会游泳(尼克说,这是乔老爷拷贝别人的比喻),在一般人心中,会天然地导向无稽之谈的感觉。

张: @wei 向您致敬!

我: 跟董老师讨教,我们都来致敬董老师。我们都是董老师的好学生和追随者,现在话说,粉丝。

张: 我最幸运的亊,一踏上人生和学术之路,就有董老师这座“灯塔”一直照耀我,后来又照耀了我女儿。

我:我一辈子最幸运的事儿,就是在 career 开启的时候,遇到了两位刘老师和董老师,董老师虽然不是直接的导师,但当年的接触和给我的教诲,终身受益。董老师的逻辑语义的论文(逻辑语义及其在机译中的应用)是我的启蒙读本,当年细嚼慢咽读了很多遍的。

白: 动词对主语的专属强度,其实也是与时俱进的。比如“告诉”,之前只能用于人,但是现在可以用于搜索引擎了。专属强度就是世界观的一部分。

我: 总之,我们虽然是乔派,我自己更是董老师派,但我想说的是,这个争论不是简单否定那样简单。这就好比明智的无神论者或不可知论者,已经很难简单否定上帝的存在一样。

张: @董 @wei 读你千遍不厌倦

董: 曾经观看过传销的影视。传销有三个要素:强忽悠、强洗脑;一个好的有能卖钱的产品;一群容易跟风的受众。AI曾栽在了五代机上。后来找对了诸如语音、马克杯识别、在后来有象棋和今日的围棋。谷歌等的“可穿戴”、微软的看脸猜岁数等好像下岗了。如果AI能用于灾害预报,恐袭预测和防止该多好,多紧迫啊。任何的研究,尤其是与人类自身相关的题目都是应该鼓励的。但是不要把某种研究神话、神化,更不可以用来当迷信似地吓唬人。例如“大脑计划”是好题目。AI人应该是经验主义者,他们说要警惕人类会被机器人消灭,有实践能证明吗?

白: 一些古老的仪式感动作感很强的词,当新技术用更好的动作也能达到同样的最终结果时,就被古董化了。比如:“打印机会写字吗?” 打印机可以呈现写字的最终结果,但摒弃了写字的狭义动作和过程。潜艇摒弃了游泳的狭义动作和过程,只呈现水中位移的最终结果。这种仪式感动作感太强的动词就没办法随着技术的发展与时俱进了。飞就不同。

我: 所以我说乔老爷用那个比喻虽然妙绝,多少有些胜之不武。

自然语言语词,经常带有非逻辑必须的核心语义以外的零碎。这些零碎有助于我们在discourse中找其关联部分,但也容易被其绑架,进入“标配”的认识误区。

马: 还有洗衣机等,用张老师的话说,如果当初研制洗衣机的,想造个机器人,用搓衣板洗衣服,哪年才能做到啊。

白: 在围棋界,“想”是可以用于AlphaGo的。

马: 蒙特卡洛树搜索就是想吧。

梁: 造个机器人帮我洗碗 ,  洗碗机?

白: @马 搓衣板还有其他妙用

马: 惩罚老公?现在改用cup了

我: 如果坚持机器不能 "思维",只能 “计算”, 那么几乎所有的 AI 术语都应该推倒重来:机器翻译(MT)是无稽之谈,人工智能是弥天大谎,自然语言理解(NLU)亵渎万物之灵,神经网络(NN)肯定是神经病的臆想。

张: @wei 句句是真理呀!开始崇拜啦!

马: 可以扩展计算的含义。

白: 不同层面吧。分子只能碰撞,一堆分子却产生温度。

梁: 基本同意“人工智能”就是一个大词儿,吓唬人。空洞的,只有广告宣传造势意义的大词,以“人工智能”为例,可以写一篇文章。

我: 但是术语已经站住了,各有各的理解,怎么办?于是出现了,强AI、弱AI 之争。

马: 我是弱AI派。

我: 加了一个前缀,我们便稍觉心安,原来我们可以一致同意的是,机器可以模拟人的某些知识功能和白领劳动。我们叫它弱人工智能。

白: 整体论和还原论。强弱AI是哲学,不是科学。

我: 我应该也属弱AI 派,不过真心觉得,这个 AI 或 NLU 都有加速度发展的趋势。不见得是硬件的摩尔定律那种速度,但的的确确超出了我们以前的想象极限。我入行的时候对多语 MT 的梦想,现在已经被 SMT(统计型机器翻译) 提前实现,无论我多么批判 SMT 缺乏结构和质量不佳,可现在的在线多语自动翻译唾手可得的局面已经远远超越了我们当时的所有想象。自然语言理解的核心引擎 parser 也是如此。我做梦也想不到,在我有生之年,除了英语和其他欧洲语言外,对于我们这个据说只有意合缺乏语法的伟大母语,我一介书生,可以设计开发出一个现在展示出来的 Chinese parser,接近人工的水平,达到实用的高度。这是最让我感慨的《美梦成真》。当年要是一路做老式的规则MT,先得被SMT气死,然后重生,最后才可以对决,好在 IE (信息抽取)诞生了,我于是转向去做 IE,有深度 parsing 做底,一做17年,无往不利。天不我欺,幸运啊。

马: 统计把AI带向了实用。

白: 弱AI的边界会被人类的专属动词一个一个打穿。到时候,没打穿的是因为太古董,不值得打穿。非不能也是不为也。做一个机器人会游泳还换气,有意思吗?不管SMT水平多矬,翻译也不是人类专属动词了。

我: 对,在我们下一代中,机器翻译已经天然有理了。不像我刚入行的时候,我的文科研究生同学无论如何不理解机器怎么可以翻译,这应该是专属于人的高级脑力劳动。同学当年瞪着一双又是佩服又是恐惧的眼睛,我的印象极为深刻。

白: 昨天我就感慨,人工智能就是人工原罪,你的使命就是把各种专属拉下神坛。

马: 我女儿小时候写作文,总是先搜索一番,都不知道谁教他的搜索。以后翻译也差不多吧。

白: 还有学习,也不专属了。

马: 从数据中学习 机器强于人。

我: 现在的困扰是,我们不知道如何定义灵性。我们可以感受它,也知道它是人机的本质区分,可就是无法精确定义它。

白: 还好灵性不是动词,可以放一放。

我: 凡是可以精确定义的灵性的某种表现,似乎都可以被模仿。有的已经不仅是模仿,而是超越。细思极恐。

孔子说,三十而立,四十而不惑,五十而知天命,六十而耳顺,七十而从心所欲不踰矩。知天命就是顿悟的境界了。自感顿悟确需多年的历练,不到 50,没有足够的积累,的确极难。 睿智如白老师已经耳顺,那又是一个高度。董老师更不用说了,那是天马行空随心所欲了。即便在下,现在看问题,与10几年前看问题就不同,莫名其妙地有一种穿透的感觉,所谓洞若观火。当然指的是自己的一亩三分地,不是说的大千世界(能穿透大千世界的应该是董老师、乔老爷或者星云大师这类高人,我等肉身凡胎只看得见自己的耕耘)。

【相关】

【立委科普:美梦成真的通俗版解说】

【征文参赛:美梦成真】

【泥沙龙笔记:从机器战胜人类围棋谈开去】

有感于人工智能的火热

【反伊莉莎效应,人工智能的新概念】

《立委随笔:人工“智能”》

【置顶:立委科学网博客NLP博文一览】

发布者

立委

立委博士,问问副总裁,聚焦大模型及其应用。Netbase前首席科学家10年,期间指挥研发了18种语言的理解和应用系统,鲁棒、线速,scale up to 社会媒体大数据,语义落地到舆情挖掘产品,成为美国NLP工业落地的领跑者。Cymfony前研发副总八年,曾荣获第一届问答系统第一名(TREC-8 QA Track),并赢得17个小企业创新研究的信息抽取项目(PI for 17 SBIRs)。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据