【立委科普:如何自动识别同一个意思千变万化的表达?】

自然语言理解(NLU)的很多应用需要找到解答下列问题的算法:如何自动识别同一个意思千变万化的表达?譬如,问答系统或自然语言的任何人机接口,第一个问题就是如何理解不同用户千变万化的问题,以便从某个库里检索出合适的答案来。主流流行的做法仍然是绕过结构和理解,根据关键词、ngram以及 some word expansion,建立一个模型来计算不同问句的相似度。这种显然是偏离人类理解,最多可算是近似的做法被认为是理所当然,甚或唯一的算法,因为符号逻辑和语言规则那一套貌似模拟人类理解语言的做法早已从学界退出了历史舞台:学习界要竞争连对手都没有,只能自己跟自己玩。

以我骨灰级计算语言学家的身份,本篇就来专门谈谈这个问题的符号逻辑。都说语言学家迂腐得可以,云山雾罩,对牛弹琴。不信这个邪,你就是工程或学习的大牛,今儿个我也要把语言学的琴给你弹明白,不明白不收钱。(当然,明白了也没打算收钱。有心给小费的话,请转而打赏给任何公益项目为荷。)

我们把上述问题分解如下,更复杂的 cases 大多是这些部件的不同组合而已。

(1) 同一个意思的不同表达主要体现在用词的不同上,例如:

我没钱。
我很穷。
我买不起。
我就是个屌丝。
我银子不够。
我手头很紧。

(2)同一个意思的不同表达主要体现在结构的不同上,例如:

我没有那么多钱
钱我没有那么多
我钱没有那么多

同一个意思的不同表达所用的词不同结构也不同也是有的,那不过是上述两种情形的交织而已。任它千变万化,所牵涉到的变量是可以映射的。以上述场景为例,变量是:【human】【lack】【money】。其底层结构是:【lack】(【human】,【money】)。词典级的映射是:

【money】:钱,银子,美钞,RMB,¥,$ ……
【lack】:缺乏,没有,缺少,不够
【human】:我,你,他,人,…..
【lack】(,【money】):穷,穷酸,买不起,手头+紧,……
【lack】(“人”,【money】):屌丝

以底层结构为起点反推(乔姆斯基所谓生成),以上面的词典信息为驱动,加上一些简单的句法约束,包括容忍 optional 的随机成分(譬如加入程度“很”或强调“的确”,时态“已”等等),符号逻辑可以用计算文法(computational grammar)一网打尽语言的不同用词或结构的千变万化,不是清晰可见了吗?

一网打尽的前提是起点是一个定义明确的 logical statement,如果起点不确定,我们面对的是语言海洋,那就不好说了。因此,我一直跟人说,对于领域的问答系统,譬如,起点是 Q&A 的档案或者起点是一个 app 的可能的 commands,利用符号逻辑的自然语言理解技术,建造一个几乎一网打尽的自然语言接口,是完全靠谱,可以拍胸脯的事儿。

这里面的原理就在语言海洋的千变万化被聚焦了(据说深度学习也有了类似的时髦概念 叫 attention,在 IE 领域,这个概念已经有 20 多年的历史了,IE 本身就是 NLU 的聚焦)。聚焦以后仍然有很多变式,让人眼花缭乱的不同说法,但是这些变化逃不过如来佛的手掌。聚焦的最大特点是 vocabulary 急剧浓缩,加上语言学文法的约束(此篇省略其细节,明眼人自可想象,这绝对是 tractable 的任务),貌似的千变万化于是被一张无形的符号逻辑网罩住。

顺便一提:很喜欢张学友一首歌,叫【一张无边无际的网】,说的是情网,用来代表文法也很贴切。文法就是NL的无边无际的网。我们做计算文法的人 为什么乐此不疲,因为是在编织这张无边无际的网。尽管如此,仍然需要语义聚焦,才好最佳落地。

 

【相关】

立委科普:问答系统的前生今世

【deep parsing,deep learning 以及在对话和问答系统中的应用】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

 

发布者

liweinlp

立委博士,弘玑首席科学家,自然语言处理(NLP)资深架构师。前讯飞AI研究院副院长,研发支持对话的多语言平台,前京东主任科学家, 主攻深度解析和知识图谱及其应用。Netbase前首席科学家,期间指挥研发了18种语言的理解和应用系统。特别是汉语和英语,具有世界一流的解析(parsing)精度,并且做到鲁棒、线速,scale up to 大数据,语义落地到数据挖掘和问答产品。Cymfony前研发副总,曾荣获第一届问答系统第一名(TREC-8 QA Track),并赢得17个小企业创新研究的信息抽取项目(PI for 17 SBIRs)。立委NLP工作的应用方向包括大数据舆情挖掘、客户情报、信息抽取、知识图谱、问答系统、智能助理、语义搜索等等。

发表评论

您的电子邮箱地址不会被公开。

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据