【一日一析:成语泛化,“1234应犹在,只是56改”】

白老师在他的NLP语义计算群转了一个让人喷饭的神翻译,如此之神(原文的谐音而不是语义保留下来),可以认定是人工的调侃段子,而不是“神经的翻译(NMT)”:神经再深度,还不可能如此之疯,疯得如此机巧。

马老师说,“端到端的(语音输入)翻译有可能性,不过应该是人翻译的”。但那要把两种语言混杂的情况考虑进去,“you cannot” 的英译汉状态 在遇到不可解片段时(beyond 语言模型的某个 thresholds),动态调整到反向的 mei more tai 的汉译英状态。这一直是MT的一个痛点,在同声传译场景更是如此。我们这些中文中喜欢夹杂英语单词的用户,也常常把MT弄晕,错得离谱。但注意到他们有做这方面的努力,如果汉语夹杂特别常见的英文词,如 ok,yes,等,有些系统已经可以对付。

As usual,“parse parse see see”:你将来可能会赚更多的钱,但你没茅台

两个分句是转折(BUT: contrast)的关系。显然是提醒家有珍藏的老板们如虎总,要好好珍惜茅台啊:票子会跑风,而茅台越久越值

 

这仍然是一个带转折的复句。其中的看点之一是“越久越值”,就是不久前提到的“成语泛化”(【从博鳌机器同传“一带一路”的翻译笑话说起】):越A1越A2。可见,成语泛化就是在固定语素字符串的成语用法里面有合适的变量来应对成语的活用,因此成语不再是单纯的词典和记忆问题,而是参杂了泛化的成分。以前提过,成语泛化在中文并不鲜见,其典型案例是:“1234应犹在,只是56改”:

由于汉语的音节特性和汉字语素与音节一一对应的特性,成语泛化的一个根本约束是字数(或音节数),甚过对变量词类或子类的约束,否则读起来就不像个成语。受众如果不能联想到一个特定的成语,说者也就失去了“活用”的妙趣和幽默。下面是 1234(四个音节) 和 56(两个音节) 这两个变量的自然活用案例:

可怜玉砌应犹在,只是天地改
昔日桃花应犹在,只是人面改

再举一些成语活用的解析案例:

(1) 无巧不成书 –> 无x不成y: 广州人无鸡不成宴吖

(2) 不V不知道 / 一V吓一跳: 真是不买不知道,1买吓一跳       

(3) n [animal] m [animal] 之力: 五虎六狮之力   

(5) 不费 vn 之力: 不费眨眼之力

 

成语泛化,是不为也,非不能也!

 

【Parsing 标签】

1 词类:名 N; 形 A; 动 V; 副 RB; 介词 P; 冠词 DT; 叹词 UH; 标点 Punc;

2 短语:名词短语 NP; 动词短语 VP; 形容词短语 AP; 介词短语 PP;
名词组 NG; 动词组 VG; 实体专名 NE; 数据实体 DE;
谓语 Pred; 分句 CL;

3 句法:头词 H;主 S; 宾 O; 定 M; 状 R; 补 B;
接续 NX; 并列 CN; 转折 BUT;
主语从句 sCL;宾语从句 oCL; 定语从句 mCL;
条件状语 ifR; 程度状语 veryR;
功能成分 Z; 其他虚词 X

 

 

【相关】

从博鳌机器同传“一带一路”的翻译笑话说起

NLP 历史上最大的媒体误导:成语难倒了电脑

立委随笔:成语从来不是问题

《一日一析系列》

【语义计算:李白对话录系列】

《朝华午拾》总目录

 

【AI泥沙龙笔记:热议周教授提出的深度突破的三大条件】

李:
上周,周志华教授作为神秘AI大咖嘉宾,请到京东的AI峰会做了个主题演讲。有意思的是他讲到的三点。他的讲演主题是“满足这三大条件,可以考虑不用深度神经网络”: 1. 有逐层的处理;2 有特征的内部变化; 3. 有足够的模型复杂度。

这就有意思了。我们符号派所说的深度解析(deep parsing)和主流当红的深度学习(deep learning),在这三点上,是英雄所见还是殊途同归?不知道这种“巧合”是不是有些牵强,或者是非主流丑小鸭潜意识对主流白天鹅的“攀附”?总之,学士大满贯的周教授的这个总结不仅字字珠玑,深入本质,而且非常受用。他是说深度神经的突破,根本原因是由于上面三条。所以,反过来论证说,既然如此,如果有了这三条,其他模型未尝不能突破,或者其他模型可以匹敌或弥补深度神经。

陈:
有了dl,谁还费力想其它的

李:
周教授就是“费力”想其他的人。他指出了深度神经的缺陷:1 调参的困扰;2. 可重复性差;3. 模型复杂度不能随数据自动适应;4. 理论分析难;5. 黑箱;6. 依赖海量标注。由于这些问题的存在,并不是每一个AI任务都合适用深度神经。对于同一个任务,也不是每一个AI团队都可以重复AI大咖的成绩。

毛:
谁说每个AI任务都合适用深度神经了?DL只是补上缺失的一环。

李:
没人明说,无数人这么 assume

毛:
应该说,无数人这么 misunderstand。

李:
哈,我称之为“迷思”:misconception

毛:
反正是mis-something

李:
从我的导师辈就开始的无数探索和实践,最后得出了自然语言的解析和理解必须多层进行的结论。虽然这与教科书,与乔姆斯基相悖。

陈:
小孩好像从不这么理解

李:
以前论过的:鉴于自然语言的结构复杂性,文句的深度解析和理解很难在单层的系统一蹴而就,自浅而深的多层管式系统于是成为一个很有吸引力的策略。多年的实践表明,多层系统有利于模块化开发和维护,为深度解析的工程化和实用化开辟了道路。但多层系统面临一个巨大的挑战,这个挑战来自于语言中的并不鲜见的相互依赖的歧义现象。

多层了以后,很多不可解的问题,变得可解了。论解析的深度和应对复杂现象和结构能力,多层系统与单层系统完全不可同日而语。30多年前,我的导师做的解析系统是四、五层。但是多层的思路已经萌芽,而且方法论得到确认。最近20多年,我自己的摸索和尝试,发现大约是 50-100 层这个区间比较从容和自如。这不是因为语言中表现出来的递归结构需要这么多层,如果只是为了对付真实语言的递归,五六层也足够了。多层的必要性为的是要有足够的厚度及其动态的中间表达,去容纳从词法分析、实体识别、(嵌套)短语分析、单句分析、复句分析乃至跨句分析(篇章分析)以及从形式分析、语义分析到语用分析的全谱。

当然,这么多层能够顺利推展,前提是要找到解决多层系统面临的挑战的有效方法,即:对相互依赖现象的化解之策。如何在多层系统中确保“负负得正”而不是“错误放大”(error propagation)(【立委科普:管式系统是错误放大还是负负得正?】 )?如何应对 nondeterministic 结果的多层组合爆炸?如果采用 deterministic 的结果,多层的相互依赖陷阱如何规避?我们论过的“休眠唤醒”的创新就是其中一个对策(【立委科普:结构歧义的休眠唤醒演义】)。

毛:
乔老爷没说不能多层啊。递归与多层不就是一回事?

李:
他的递归是在一层里面 parse 的,CFG chart parsing 是教科书里面的文法学派的经典算法。

毛:
这只是形式和实质的区别。我觉得只是深度优先与宽度优先的区别。

李:
他鼓吹 CFG 的递归特性,正是因为他不懂得或不屑认真对待多层叠加的道路。

后者理论上的确不够漂亮。多少有些“凑”的意思,太多工程的味道,模块化的味道,补丁摞补丁的味道,这不符合乔老爷的口味,但实践中比他的递归论要强得多。CFG 能做到的,叠加和拓展了的 FSAs 全部可以做到,但是 叠加的 FSAs 所能达到的深度和能力,CFG 却望尘莫及。递归算个啥事儿嘛,不过是在多层里n次循环调用而已。多层所解决的问题比递归结构的挑战要广得多,包括困扰parsing界很久的“伪歧义”问题(【李白雷梅59:自动句法分析中的伪歧义泥潭】)。

毛:
我倒也是更赞同你说的 FSA,但是认为本质上没有什么不同,不同的只是方法。

李:
这是第一个英雄所见,或殊途同归。深度神经现在几百层了,deep parsing 也 50-100 层了。不是不能超过 100 层,而是确实没有这个必要。迄今还没有发现语言现象复杂到需要超过百层的符号逻辑。

毛:
这两个多层,性质是不一样的。

李:
所以我说这种比对可能“牵强”。但哲学上有诸多相通之处,的确二者都是很 deep 的,有厚度。

那边叫隐藏层,反正我是搞不懂。这边倒是小葱拌豆腐,一清二白的,不说老妪能解吧,但这些个符号逻辑的层次,至少可以对语言学家,领域专家,还有AI哲学家像毛老和群主,还有AI工程大咖利人,可以对你们这些“老人”讲清楚的。这就是我说的,所谓符号逻辑,就是人类自己跟自己玩一个游戏,其中的每一个步骤都是透明的,可解释的。符号派的旗号可以是“模拟”人脑的思维逻辑,其实这个旗号也就是个旗号而已。模拟不摸拟,这一点已经不重要了,关键是效果。何况鬼知道人的语言认知是不是这么乏味、死板、机械,拼拼凑凑,还不如玩家家呢(如果人类思维真的是符号派所模型的那个样子,其实感觉人类蛮可怜的)。

毛:
大多数人的思维可能还没有这么复杂。

李:
但这种游戏般的模拟,在实践中的好处是显然的,它利于开发(自己能跟自己玩的那些游戏规则有助于步骤的梳理,以便各个击破),容易维护和debug(比较容易知道是哪一层的错误,或哪几层有修复的机会及其各自的利弊).

马:
越是层次的思维越是更容易模拟,符号派模拟的是高层次的。

毛:
对,就是缺了低层次这一环,才需要由DL来补上。

郭:
@毛德操,周志华 这次演讲,还特别强调了 深度之于广度的核心差异,那就是他的第二条:每层都是在不同特征维度上。

他从两个角度阐明这点。一,至少在1989年,大家就已经知道,在无限逼近任意连续可微函数这件事上,只要宽度足够,单隐含层就好。多层貌似并非必要,或者说多层并没有提高“表达力”。但是,单层系统,从来没能达到同规模多层系统的学习和泛化能力。

二,多层,就可以有结构。譬如resnet,可以在不同层面选取综合不同维度的特征,可以有多信息流。这条,貌似隐含地说了,人的干预还是重要的。

李:
是的,周教授强调的第二点是特征逐层更新。深度学习之前的系统是在同一个静态特征集上work的,包括最像符号逻辑的决策树模型。而深度之所以 deep,之所以有效和powerful,是与特征的变化更新分不开的,这个道理不难理解。深度的系统不可能在静态的特征上发力,或者说,特征静态也就没有深度的必要了。深度系统是一个接力赛的过程,是一浪推一浪的。这一点在我们的实践中是预设的,当成不言而喻的公理。

我们的深度解析,起点就是词典特征和形态特征,随着从浅层到深层的逐层推进,每一步处理都是在更新特征:根据各种角度的上下文条件,不断增加新特征,消除过时的旧特征,或细化已有的特征。后面一层层就这样在越来越优化的特征上,逐步取得对于语言的结构解析和理解。

毛:
深度优先与广度优先,没有绝对的好坏或强弱,要看具体的应用。在NLP中也许是广度优先好一些。乔姆斯基讲的是专门针对 CFG 的,你那个实际上已经越出了这个范畴。

李:
特征是动态的,反映了搜素空间不断缩小,是真理不断逼近的认知过程。很难想象一个系统在一个静态特征的平面可以达到对于复杂语言现象的深度解析。

马:
在某些特殊情况下,已经证明层数少,需要指数级的增加神经元才可以达到层数深的效果。而神经元的增加又加大了计算复杂性,对数据量的要求更大。

毛:
如果上下文相关,那么分层恐怕确实更灵活一些。

李:
这就是我说的乔老爷把“power”这个日常用词术语化以后,实际上给人带来了巨大的误导:他的更 “powerful” 的 递归 CFG 比二等公民的 less powerful 的 FSA 所多出来的 “power” 不过就是在单层系统里面可以处理一些递归结构而已。而把一批 FSAs 一叠加,其 power 立马超越 CFG。

总之,特征不断更新是深度解析的题中应有之义。而这一点又恰好与深度神经不谋而合,殊途同归了。

周教授眼毒啊。

教授的第三点,关于深度系统需要足够的模型复杂度,我不大有把握可以做一个合适的比对。直觉上,由于分而治之由浅入深的多层系统对于组合爆炸的天然应对能力,如果我们假想我们有一种超自然的能力能够把一个 50 层的解析系统,完全碾压到一个平面,那将是一个多大的 network,遮天蔽日,大到难以想象!

马:
符号表示的复杂性可以说是无穷大吧?模型的复杂度指表达能力?太复杂又容易过拟合

李:
周说的是,因为不知道多复杂合适,所以得先弄得很复杂,然后再降低复杂度。他把这个说成是深度神经的一个缺陷。

郭:
周志华特别强调,他的“复杂度”,不是指“表达力”(“单层多层同样的表达力,但多层可以复杂的多”)。

他没给定义,但举了resnet作为例子,并且明确提了“特征信息流的数目”,还说了:多层,但特征信息流动单一的,也没有复杂度。

回顾周说的这三条,李维的 deep parser 条条符合!

有逐层的处理 — 李维的,少说也有50层吧!

有特征的内部变化 — 李维的,每层都在不同的维度/颗粒度/角度,用不同的特征/属性,产生新的特征/属性

有足够的模型复杂度 — 李维的,也有明显的“复杂度”(周志华强调,“复杂度”,不是指“表达力”。过度的“表达力”,往往是负面的)。李维的,不仅有传统的 linguistics motivated 概念/特征/属性,也广泛采用“大数据”(基于统计的)。最近也开始利用“AI”(基于分布式表示的)。

还有一点,周志华多次强调(我认为是作为“三条件”必然推论的),“深度学习,关键是深度,但不一定要 ‘端到端’ ”。他更强调(至少是我的理解),为了端到端,一味追求可微可导,是本末倒置。深度学习,中间有 不可微不可导 的特征/存储,应该是允许甚至是必要的。

对这一点,李维的“休眠唤醒”,大概也可算是 remotely related.

白:
拉倒。带前后条件的FSA早已不是纯种的FSA,只是拿FSA说事儿而已,真实的能力早已超过FSA几条街。

毛:
这就对了。其实,自然语言哪里是 CFG 可以套得上的。

李:
我其实不想拿 FSA 或 FSA++ 说事儿,听上去就那么低端小气不上档次。可总得有个名儿吧,白老师帮助起个名字?教给实习生的时候,我说你熟悉 regex 吧,这就好比是个大号的 regex,可实习生一上手 说不对呀 这比 regex 大太多了。这套 formalism 光 specs,已经厚厚一摞了,的确太超过。要害是剔除了没有线性算法的递归能力。

毛:
记得白老师提过毛毛虫的说法,我还说了句“毛毛虫的长度大于CFG的直径”。(【白硕– 穿越乔家大院寻找“毛毛虫”】

白:
有cat,有subcat,还拿这些东西的逻辑组合构成前后条件,还有优先级。有相谐性,有远距离雷达,有实例化程度不等带来的优先级设定。哪个FSA有这么全套的装备?

陈:
基于规则,遇到长句子一般必死

李:
非规则的 找个不死的瞧瞧。再看看规则的怎么个死法。反正是死。看谁死得优雅。你出一组长句子,找一个学习的 parser,然后咱们可以比较一下死的形态。

白:
先说任务是啥,再说死活。

李:
我是说利人的腔调,极具代表性,那种典型的“成见/偏见”(【W. Li & T. Tang: 主流的傲慢与偏见:规则系统与机器学习】)。

马:
人家DL端到端,不做parser。现在有人做从语音直接到文本的翻译,不过效果还不行,主要可能是数据问题

李:
苹果梨子如何比较死活。

毛:
乔老爷的CFG不应该算入AI,那只是形式语言的解析。

陈:
确实都死。。。但一个死了也没法解释,不要解释。另一个就得思考哪个规则出问题了

毛:
人也好不到哪里,只不过人不死,只是懵了。

李:
😄 懵了就是人造死,artificial death

马:
规则的好处是,你说什么不行?我马上可以加一个规则。这就是我前面说的复杂性无穷。😄 即表达能力无穷

白:
假设任务是从文本抽取一堆关系,放进知识图谱。

假设任务是根据用户反馈,把错的对话改对,同时对的对话不错。

陈:
抽取这个很重要,很多理解的问题其实是抽取问题。比如,阅读问答题

毛:
我还是相信多层符号会赢。

李:
从文本抽取关系 谁更行,需要假设同等资源的投入才好比。我以前一直坚信多层符号,现在有些犹疑了,主要是标注人工太便宜了。到了标注车间,简直就是回到了卓别林的《摩登时代》,生产线上的标注“白领”面对源源不断的数据,马不停蹄地标啊标啊,那真不是人干的活儿啊,重复、单调、乏味,没看见智能,只看见人工,甭管数据有多冗余和灰色。这就是当今主流“人工智能”的依托,让人唏嘘。当然,另一方面看,这是当今AI在取代了很多人工岗位后,难得地给社会创造就业机会呢,将功补过,多多益善,管他什么工作,凡是创造就业机会的,一律应予鼓励。

毛:
@wei 这不正好是训练条件反射吗

陈:
反正智能的事都让机器去做了,人就只好做些低级如标注的活了

白:
问题是啥叫符号?基于字节?字符?基于词已经是符号了吧。是不是要退到茹毛饮血,连词也不分,才算非符号。否则都是站在符号肩膀上

毛:
我认为可以这样来类比: 一个社会经验丰富、老江湖的文盲,跟一个教授,谁能理解更多的语句。我想,除那些江湖切口和黑话,还有些需要“锣鼓听声,说话听音”的暗示以外,一定是教授能理解更多的语句。而且,即使是江湖切口黑话,也能慢慢加到教授的知识库中。

李:
都是站在符号肩膀上。然而,符号系统的实质不是符号,而是显性的 可解释的符号逻辑。就是那套自己跟自己玩 系统内部能够自圆其说 有过程 有因果链条的针对符号及其动态特征做处理的算法。相对于建立在符号和特征基础上的不可解释的学习系统,很多时候这些系统被归结为一个分类问题,就是用原子化的类别符号作为语言落地的端对端目标。如果一个落地场景需要10个分类,只要定义清晰界限相对分明,你就找一批大学生甚至 crowd source 给一批在家的家庭妇女标注好了,一个类标它百万千万,然后深度训练。要是需要100个分类,也可以这么办,虽然标注的组织工作和质量控制要艰难得多,好在大唐最不缺的就是人工。可是,如果落地场景需要一千个、一万个不同侧面的分类,标注和学习的路线就难以为继了。

白:
结果是一个集合,已经比较复杂了。结果是关系集合,又更加复杂。让人类标注,好不到哪儿去。标注一个关系集合,等价于标注一个结构。

 

【相关】

周志华:满足这三大条件,可以考虑不用深度神经网络

周志华最新演讲:深度学习为什么深?

【立委科普:结构歧义的休眠唤醒演义】

【立委科普:歧义parsing的休眠唤醒机制再探】

【白硕– 穿越乔家大院寻找“毛毛虫”】

【科研笔记:NLP “毛毛虫” 笔记,从一维到二维】

【泥沙龙笔记:NLP 专门语言是规则系统的斧头】

【新智元:理论家的围墙和工程师的私货】

乔姆斯基批判

泥沙龙笔记:再聊乔老爷的递归陷阱

泥沙龙笔记:骨灰级砖家一席谈,真伪结构歧义的对策(2/2) 

《自然语言是递归的么?》

语言创造简史

【立委科普:管式系统是错误放大还是负负得正?】

【李白雷梅59:自动句法分析中的伪歧义泥潭】

W. Li & T. Tang: 主流的傲慢与偏见:规则系统与机器学习

《一日一析系列》

【语义计算:李白对话录系列】

《朝华午拾》总目录

【一日一析:“对叙军事打击是一次性行为”】

“对叙军事打击是一次性行为”

对不起,不是对“性行为”或成人话题有偏好,可是这两天老在想这个案例,疑似语言学走火入魔。微信群最近疯传的这个视频,字幕如上,属于 #中文理解太难了# 一类歧义案例,可读出来却不是,那位女播音员低下头,读起来是这样的:“对叙军事打击是一次性…性行为”。

估计是她没有预先看一遍稿子,结果突然看到这三个字,有点不知所措,结巴了。我们 “parse parse see see”:

如果结巴或停顿不用省略号记录的话,就是这样的:

这里面牵涉到的语言学和计算语言学在哪里呢?有什么可琢磨的点?

首先,文句是歧义的(因此可以休眠唤醒:前两天论过,唤醒的时候,把“一次-性”中的后缀“性”剪枝,改嫁给“行为”做定语,只是一个结构微调整,整个NP大局不变,比起VP/NP歧义的cases如“烤红薯”的休眠唤醒要简单一些),到了播音的时候,因为增加了一个“性”而变得没有歧义了。

更有意思的是,为什么没有歧义了,听众却仍然可以排除听到的结构,反而还原为另一种结构解读呢?

一种说法是,听众有常识,说“军事打击”是“性行为”,违背常识。这样解释自然不错。

另一种说法是,语音的音调和重音这些文字通常不记载的痕迹表明播音员口误了,慌张了,结巴了,因此我们还原到另一个结构的解读。如果是正常的阅读,除了两个性之间的停顿外,“一次性性行为” 中第一个“性”是轻声,重音在 “(一)次” 上,第二个“性”则是重音,可是播音员的第二个“性”读出来反而含混了。由此可见,两个 x 很可能是一个 x 的重复或结巴,因此人脑 parse 的时候是利用了 reduplication 机制处理了这个重叠,从而把原结构的歧义凸显出来,为另一种解读留下了空间。

在这个话题的延长线上,我们看某贪官被双规后对其权色交易的辩解:“这次性行为是一次性行为”。

改成“第一次”又如何呢?

有问,这“第一次”词典化了,如果是“第102次”看系统还能如此解析吗?

“这次” 、“第一次”和 “一次” 有啥不同?为什么决定了其后三个字的不同解读?parser 里面到底有什么神机妙算在内可以做出这种区分?

先不说模拟人脑的 parser 如何实现的,说一说人脑怎么 parse 的。人脑大概用的是排除法。另一个结构的解读呈现下列形态:这次 x 是一次 x,这是一句没有信息量的语句(this x is an x)。因为有定(the)或无定(a)的量词结构是很虚的东西,所以上句结构从实体概念看就是: x ISA x,逻辑上的同义重复,基本没有信息。有信息的 ISA 句应该有一个逻辑上的区分量 y(百科全书中概念定义的典型句式):x ISA y x’ (x belongs to x’), 譬如:”贪官就是违法乱纪的官员”,其中 “违法乱纪” 就是 y.

同理,“一次性” 也是 y(“第一次”也是y), 人脑于是排除了无信息量的结构解读“一次-性行为”,大家不约而同的采纳了具有信息量的常规 ISA句式的解读 “一次性-行为”,虽然理论上的结构歧义依然存在。至于,如何让电脑实现人类的歧义辨识语言认知这一套,那是另一个章回了,先打住。有没有下回分解也说不定了,看彼时的情绪吧。兴起而码字,兴尽而收笔,这是自媒体的好处不是?

 

【Parsing 标签】

1 词类:V = Verb; N = Noun; A = Adjective; RB = Adverb;
DT = Determiner; UH = Interjection; punc = punctuation;

2 短语:VP = Verb Phrase; AP = Adjective Phrase; NP = Noun Phrase;
VG = Verb Group; NG = Noun Group; NE = Named Entity; DE = Data Entity;
Pred = Predicate; CL = Clause;

3 句法:H = Head; O = Object; S = Subject;M = Modifier; R = Adverbial;
(veryR = Intensifier-Adverbial); NX = Next; CN = Conjoin;
sCL = Subject Clause;oCL = Object Clause; mCL = Modifier/Relative Clause;
Z = Functional; X = Optional Function

 

 

【相关】

《一日一析系列》

【语义计算:李白对话录系列】

《朝华午拾》总目录

【一日一析:中文解析中的动名短语歧义】

老友让 parse 两句让人搞笑的歧义句。前一阵子微信里流传过的。那就试试:

性教育先进,吾党理应当仁不让。还有一句啥来着?

承诺什么?要是承诺性行为,对不起,不允许,因为你有钱。如果换成:”少林寺众僧禁止性行为承诺书”,承诺的应该是 “禁止性行为” 哈。俗人的社会,一种是有钱(譬如群主),一种是有权或有势(譬如正遭网民痛殴的语言学家沈阳),这两种人的性行为需要管束,否则权色交易,钱色交易就会猖獗。

“禁止 性行为” vs “禁止性 行为”,如何知道呢?

不知道,咱就选个标配结构,同时留了个后门:【禁止V+性+N行为】 暂时定为定中(定语修饰名词中心语)的结构 NG,做承诺书的修饰语。但里面留了种子,等以后见机翻案,可“休眠唤醒”其作为 VP 的结构语义。一旦翻案,V 变成为 VP 的 head (H),“行为” 自然成为其宾语(O),中间的那个“性”可以修剪,从“禁止”的后缀,改嫁为O的定语。这一套符号逻辑形式上是走得通的,就看实际落地的时候觉得值不值得做了。

中文句法的诡异在于,这种VP(动宾结构的动词短语)和NG(名词词组)同形歧义现象相当普遍。英语也有动词名词的同形歧义现象(study; works; etc)  但是到了短语级别,这种歧义就消失了。中文不然,典型的例子还有:“烤红薯”。到底是【烤…】 (VP) 还是 【…红薯】(NG)?

“我吃烤红薯”,“吃”的是“红薯”。“我想烤红薯”,“想”的是“烤”。

 

可是,“我喜欢烤红薯”呢?到底是喜欢“烤”,还是喜欢“红薯”,还是二者都喜欢,还是喜欢其中之一?所以,休眠唤醒,也有永远换不醒的,到死也翻不了案。这也没啥,人类听和说,一多半的时候,都是模模糊糊地说,一知半解地听。这实际上是语言交流的常态。也不必苛求机器比人还清晰了。

【Parsing 标签】

1 词类:V = Verb; N = Noun; A = Adjective; RB = Adverb;
DT = Determiner; UH = Interjection; punc = punctuation;

2 短语:VP = Verb Phrase; AP = Adjective Phrase; NP = Noun Phrase;
VG = Verb Group; NG = Noun Group; NE = Named Entity; DE = Data Entity;
Pred = Predicate; CL = Clause;

3 句法:H = Head; O = Object; S = Subject;M = Modifier; R = Adverbial;
(veryR = Intensifier-Adverbial); NX = Next; CN = Conjoin;
sCL = Subject Clause;oCL = Object Clause; mCL = Modifier/Relative Clause;
Z = Functional; X = Optional Function

 

 

【相关】

《一日一析系列》

【语义计算:李白对话录系列】

《朝华午拾》总目录

 

【李白101: 话题在逻辑上是个什么东东?】

 

李:
“你们多少钱一条毛毯”

“你们”是主语,or 话题?即便说是“话题”,逻辑语义算个啥?(“毛毯”的【所有(者)】?):

“蓝色的你没有货吗?”

类似的,“蓝色的” 逻辑语义是“货”的【所有】吗?

但上句与下句还不同:

“你没有蓝色的货吗”

后者是全称否定:在你所有的货品中,你缺少蓝色的(子集)。前者是:在这种(你知我知)货品中,你缺少蓝色的款式。

看样子,句首的所谓话题,对于结构语义解析中的 scope 解读,有说法。话题呢,就是先画个圈圈,后面的 argument structure 里面的 args 跳不出这个圈圈。

回到“”你们多少钱一条毛毯”,也有说是省略了谓词:

“你们多少钱一条毛毯卖的?”
“你们多少钱一条毛毯买的?”

前者是 卖家,“毛毯” 的曾经所有者。后者是 买家,“毛毯”的新所有者。默认是卖家,因为这个应该是交易之前的询问。

白:
表“运载”类的动词,介于“给予”类和“取得”类之间:“你们多少钱一斤搬的?”当中,“你们”既可以是出钱的,也可以是干活的。所以,概括来说话题就是“后面一坨当中的未饱和坑”。如果未饱和坑多于一个,其中满足相谐性条件的也多于一个,满足对某些小类的动词可以有倾向性标配,对另外一些小类的动词无倾向性标配。不光领属可以,领属的领属也可以:“王冕昨天父亲腰扭伤了”,“我昨天拉了三趟煤。” 可能我是运输工人、运输老板或者运输客户。或者我自力更生自运自用。

所以,话题是一个纯形式的角色,它对应的逻辑角色是不确定的,完全取决于后面一坨空出来的坑的逻辑属性。如果空出来的坑也是不确定的,那就必然产生歧义。

【Parsing 标签】

1 词类:V = Verb; N = Noun; A = Adjective; RB = Adverb;
DT = Determiner; UH = Interjection; punc = punctuation;

2 短语:VP = Verb Phrase; AP = Adjective Phrase; NP = Noun Phrase;
VG = Verb Group; NG = Noun Group; NE = Named Entity; DE = Data Entity;
Pred = Predicate; CL = Clause;

3 句法:H = Head; O = Object; S = Subject;M = Modifier; R = Adverbial;
(veryR = Intensifier-Adverbial); NX = Next; CN = Conjoin;
sCL = Subject Clause;oCL = Object Clause; mCL = Modifier/Relative Clause;
Z = Functional; X = Optional Function

 

 

【相关】

《一日一析系列》

【语义计算:李白对话录系列】

《朝华午拾》总目录

 

【李白102: 标题就是个大NP,痛点在谓词结构的安放】

白:
“中国证监会编造、传播虚假信息行政处罚案例综述”

李:

解析起来有几个 catches:

1. “案例” 和 “综述” 以及二者的组合“案例综述”,都是那个“另类”名词,它们不是前面的动词的宾语,而是要求一个动词性的前修饰语,逻辑语义是【内容】或【同位】。上面的 parse 不幸中了套。

2. “编造”/“传播” 与 “信息” 的动宾搭配:成为 VP

3. 所谓【修饰语的组合爆炸挑战】:这是一个很长的标题类NP,麻烦的是里面还有两个动词性的结构(“编造、传播……“,”行政处罚”)。

4. 两个动词结构的关系:VP(负面)【原因状语 ?】+ “行政处罚”

白:
“行政处罚”和与之固定搭配的行政处罚主体,有统计显著性。

李:
5. 居首的”中国证监会“到底是整个 NP 的修饰语,还是 VP 的主语?换句话说,这个动词性结构在做修饰语之前,左边界是不清的,到底是 VP 还是 CL(子句)做修饰语?

白:
这个跟“这本书出版日期”一样。

李:
最大的问题是: VP(负面)+ “行政处罚”,这种个性关系的总结,实现起来感觉心里不踏实。

白:
但是:NP(有权主体)+VP(负面)+“行政处罚”又不相同。

李:
如果再考虑前面的 NP,那就更稀疏了。

即便一切都处理妥当,预备各就各位了,这种案例的诡异在于头重脚轻:“VP+行政处罚” 这个头 应该是 “案例综述” 这个脚的同位修饰语。头重脚轻在汉语的修饰语通常都是用“的”来平衡的,不用“的”修饰语又超长就很游离来(outlier),模型起来极易弄巧成拙。

得,动宾搭配又跑了。弄巧成拙和按下葫芦起了瓢这种事儿 主要说的就是这种 outlier 案例的过度迁就(类似于学习系统的overfitting)。

打住,到此为止。要抑制钻牛角的好奇心。

白:
此标题的文章作者已经撤回。被我指出歧义觉得不妥了。

 

【Parsing 标签】

1 词类:V = Verb; N = Noun; A = Adjective; RB = Adverb;
DT = Determiner; UH = Interjection; punc = punctuation;

2 短语:VP = Verb Phrase; AP = Adjective Phrase; NP = Noun Phrase;
VG = Verb Group; NG = Noun Group; NE = Named Entity; DE = Data Entity;
Pred = Predicate; CL = Clause;

3 句法:H = Head; O = Object; S = Subject;M = Modifier; R = Adverbial;
(veryR = Intensifier-Adverbial); NX = Next; CN = Conjoin;
sCL = Subject Clause;oCL = Object Clause; mCL = Modifier/Relative Clause;
Z = Functional; X = Optional Function

 

 

【相关】

《一日一析系列》

【语义计算:李白对话录系列】

《朝华午拾》总目录

 

《一日一析系列》

【立委按】汇集的《一日一析》,乃是日常遭遇的中文有趣文句,作为中文自动解析(deep parsing)的“压力”测试。兴之所至,对暗含的解构机巧,或点入讲解,或借题发挥。不求完整,但求启迪。谈资之余,或可管中窥豹,集腋成裘也。

 

【一日一析:“爱情这种事……”】

【一日一parsing:“举报毒品违法 犯罪活动有奖”】

【一日一parsing:修饰语的组合爆炸挑战】

【一日一parsing:parser 貌似发疯了】

【一日一parsing:汉语单音节动词的语义分析很难缠】

【一日一parsing:”钱是没有问题”】

【一日一parsing:从“见面”的subcat谈起】

【一日一parsing:#自然语言理解太难了# 吗?】

【一日一parsing:休眠唤醒的好例子】

【一日一parsing:NLP应用可以对parsing有所包容】

【一日一parsing:degraded text and robust parsing】

【一日一parsing,而山不加增,何苦而不平?】

【一日一parsing:中秋節談月亮和花錢】

【一日一析:“爱情这种事……”】

【一日一parsing:“爱情这种事……”】

爱情这种事 太极端 要么一生 要么陌生

精辟啊。不过,概率上很不对等,还是擦肩而过形如陌路的居多。一辈子见过多少人,一生的只有一个。

所谓缘分,就是n年修得同船渡,m年修得共枕眠: m > n > 10.

老友说:失恋也不是喝江小白的理由啊

 

【Parsing 标签】

1 词类:V = Verb; N = Noun; A = Adjective; RB = Adverb;
DT = Determiner; UH = Interjection; punc = punctuation;

2 短语:VP = Verb Phrase; AP = Adjective Phrase; NP = Noun Phrase;
VG = Verb Group; NG = Noun Group; NE = Named Entity; DE = Data Entity;
Pred = Predicate; CL = Clause;

3 句法:H = Head; O = Object; S = Subject;M = Modifier; R = Adverbial;
(veryR = Intensifier-Adverbial); NX = Next; CN = Conjoin;
sCL = Subject Clause;oCL = Object Clause; mCL = Modifier/Relative Clause;
Z = Functional; X = Optional Function

 

 

【相关】

《朝华午拾:与白衣天使擦肩而过》

《音乐心情:落雨的时节,失恋者的歌》

《一日一析系列》

【语义计算:李白对话录系列】

《朝华午拾》总目录

 

 

【一日一parsing:“举报毒品违法 犯罪活动有奖”】

什么?

词类:V = Verb; N = Noun; punc = punctuation;
短语:VP = Verb Phrase; AP = Adjective Phrase; NP = Noun Phrase;
Pred = Predicate; CL = Clause;
句法:H = Head; O = Object; M = Modifier; S = Subject; SubjS = Subject Clause

都是“回车”惹的祸:

正常句子没有回车,没有逗号,空格也不会有,那就对了:

谁说标点符号可有可无,对于 parsing 无关紧要?如果是口语就是,谁说停顿语气对于语言理解不重要?

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

 

【一日一parsing:修饰语的组合爆炸挑战】

中文合成词、术语命名可以很长很长,如果顾及内部的修饰关系的边界,是一种典型的结构歧义的组合爆炸。排列组合算一算,N个修饰语有多少种结构歧义?

怎么整?其实,人对于这种超长短语的理解,也基本上是糊里糊涂听,对于里面潜在的歧义无感居多。那机器去做呢,两个办法,一个是凑合大局,不拘小节,出个 deterministic 的结果。另一个办法就是穷举其中的潜在歧义,也不难,问题是穷举了以后如何是好,还是糊涂。

量子区块链AI韭菜盒子店

NG=Noun Group;  AP = Adjective Phrase; NE = Named Entity;
M/m=Modifier; H = Head; O/o=Object;
N = Noun; A = Adjective; V = Verb;

what is 量子区块链?

马氏体区块链智能韭菜盒子

马氏体?or 体区块链?马氏-style?

AI牌马氏体大数据区块链智能云韭菜盒子

智能云 or 云韭菜盒子?

AI牌马氏体大数据区块链智能云全自动去中心韭菜盒子

AI牌马氏体大数据区块链智能云全自动去中心韭菜盒子声控密钥无人店

这已经超过10个修饰语了:AI牌 / 马氏体 / 大数据 / 区块链 / 智能云 / 全自动 / 去中心 / 韭菜盒子 / 声控 / 密钥 / 无人店

“声控密钥” 感觉是直接修饰 “无人店“ 也许更合理。可现在这种结构也凑合了。好在 XP 内部的纠结,对于句子中 XPs 之间的关系基本没有影响。不过,这种超长NE或NP其实也很少出现在句子里面,通常都是做标题用。

(注:以上例句是尼沙龙人工智能群老友故意拿 buzz words 调侃清华人工智能马教授的一手好菜“生造”出来的。但这些例子反映现代汉语的语言事实,并不离谱。)

O网页链接 【一日一parsing:修饰语的组合爆炸挑战】@马少平THU @立委_米拉  @算文解字 @冯志伟文化博客 @zhazhaba @李利鹏-汇真科技 @永恒的侠少 @白硕SH ​就此谈点自己的看法:
1. 正规文档无论标题还是内容,应该不会出现这种过多个不相关的(即便相关)词罗列堆砌在一起的,既不利于传播也不利于理解。当然,有些新闻媒体,或者某些政府公文的题头内容,比文中本身内容都难理解,可能是另有用意,其实并不相信撰稿人就是真水平不及,或许让人产生印象或其他?无论文章或标题,若是总摆着一副“万层茧”的姿态话,我个人意见,人不用去看,机器更犯不着去分析,即便分析那结果也难看的很,无实用价值,就当是那样的是数据传输的一串乱码。要么,文者水平太差,此文不必去读;要么文者就是想着难为人,那我为何还耐着性子去受难呢。
2. 少数几个词组合在一起,在人们容忍范围内的,还是有一定价值的,毕竟不能要求每个人都有通文晓典,行文都能如丝滑般的顺畅。这种平素不相往来的几个词临时组团赴会,初期可以先作为一个团体来看,然后再在随后的文里看看是否离队的分子,若有,再看看是谁谁频繁结伴单游,再回头看看原来这个团的豪华标签,基本上就有所清晰理解。正所谓“不怕你们聚得紧,就看你们分开时”。若通篇没有一处是分开的,而且大块头的合成词语还挺愿意抛头露面的,且不嫌穿那么长衫而行动不便,那这八成就是专有词了,专有词,何去分析拆解它?作为一个词能从文首进,从文尾出就好,也懒得分析了。
3. 至于是凑合大局还是用穷举来罩它,既然早晚都是糊涂,那单独就句分析句就是没太多必要,别累坏俺们的不经世事的幼年机器哈。
from 微博

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

 

 

【语义计算:议一议“微软机器翻译提前七年达到专业翻译水平”】

李:
最近微信群疯传一条新智元的人工智能新闻专访,【机器翻译提前7年达到人类专业翻译水平,微软再现里程碑突破】。不少老友也特地转发给我这个“老机译”。微软这几天的营销好生了得。到处都是这个第一家超越人类的MT新闻 而且提前了七年(这个提法有点扯,因为如果一个行业很多系统在某个时刻普遍大都可以达到一个水准,再说提前n年就不智了)!

这个微软 MT 是在哪里? 比较过百度,谷歌,有道。有道似乎最好,所以现在就用有道。不妨也试试微软。

事到如今,这几家都可以 claim 新闻翻译超过业余翻译的水平,进入专业翻译的段位了。跟语音类似,这是整个行业的突破,神经翻译大幅度超越上一代统计翻译,尤其是顺畅度。眼见为实,这一点我们都是见证人。已经 n 多次测试过这些系统了。(【谷歌NMT,见证奇迹的时刻】【校长对话录:向有道机器翻译同仁致敬】). 如果是新闻文体,很少让人失望的。

说是第一个正式超越的系统云云,基本上是 marketing。

MT 的下一个突破点应该是:(i)对于缺乏直接对比语料的语言对的 MT(据说进展神速);(ii)对于缺乏翻译语料的领域化 MT,譬如翻译电商领域,目前可用度差得一塌糊涂(20%左右),可有需求,无数据; (iii) 在保持目前NMT 目标语顺畅度的优势情况下,杜绝乱译,确保忠实可信。

这次他们严格测试的是汉译英,拿出数据来证明达到或超越了一般人的翻译水平。然后说,英译汉是类似的方法和原理,所以结论应该相同。这个我信。

有意思的是,在规则MT时代,绝不敢说这个话。汉译英比英译汉困难多了,因为汉语的解析比英语解析难,基于结构解析和转换的翻译自然效果很不相同。但目前的NMT 不需要依赖解析,所以语言的方向性对质量的影响很小。以前最头疼的汉译外,反而容易成为亮点。

当年入行的时候,有两个兴趣点:一是做外汉MT(主要是英汉),一是探索中文解析。前者有底气,知道这条路是通的,就是力气活,假以时间和资源,质量会逐渐越来越好。后者其实没有底气,感觉慢慢长路,“红旗不知道要打多久”(【从产业角度说说NLP这个行当】),但是实在太有趣了。当年的梦想是,什么时候中文解析做好了,用它来做汉外MT,能与外汉MT一样,那该多解气啊。

中文解析经过n多年的思索和实践,终于有底气了(【美梦成真】)。可是原先要落地MT的设想,却突然失去了这个需求和动力。好在 NLU 不仅仅在 MT 落地,还有许多可以落地的地方。

真所谓人算不如天算,看潮起潮落。老友谈养生之道,各种禁忌,颇不以为然,老了就老了,要那么长寿干嘛?最近找到一条长寿的理由,就是,可以看看这个世界怎么加速度变化的。今天见到的发生的许多事情,在 30 年前都是不可想象的:NMT,voice, image, parsing,iPhone,GPS, Tesla, you name it.

王:
中文解析,当然不一定中文,其他语言解析也一样,前景十分广阔,市场巨大。因现阶段还不能达到如人般的理解程度,所以还属于只能踩着有限小石子过河(落地)阶段,以后才能上大路,开高速。我也期望能有一个万能智能秘书,能准确理解且快速帮我办事,达到期望的结果。但能力都还有限,自然还是解析很力不足。

李:
parsing 的应用潜力很大,道理上没人说不对,毕竟这是AI在认知道路上可以预见的一个关键的支持。但实际上有两个坎儿:一是不好做,二是不好用。不好做是,想用的人往往不大会做,不能要求每个人都成为parsing专家。不好用是,独立的 offshelf 的,迄今没有见到大规模使用的成功案例。相对成功使用的,大多是内部消化,自己做自己用。这就局限了它的应用范围和潜力发挥。内部使用的成功经验,最多算是一种可行性论证,证明结构解析对于应用是的确可以赋能的。但平台化领域化的道路还很长。

核武器之所以在吆喝,是因为它还没爆炸,也似乎短期内不会爆炸。真爆炸了,听响声就够了,不需要吆喝了。

嘿,找到 MS Translator URL 了:https://www.bing.com/translator

做个现场测试和比较,用今天城里的新闻:

白宫发言人桑德斯14日表示,电视评论员柯德洛(Larry Kudlow)将出任国家经济会议主席。

桑德斯透过声明指出,川普向柯德洛提出担任总统经济政策助理,以及国家经济会议主席一事,柯德洛也接受了;白宫之后会宣布,柯德洛上任的时间。

川普月初宣布将对进口钢铁和铝材分别课征关税,其国家经济会议主席柯恩(Gary Cohn)因不认同川普此举,在6日请辞。

柯恩请辞后,柯德洛是接任的人选之一;在过去一年,柯德洛是川普的非正式顾问,也是川普2016年总统大选竞选期间的顾问。

川普13日向媒体表示,他有很高机率将任命柯德洛递补首席经济顾问柯恩辞职遗缺。川普说,“柯德洛成为我的好友一段时间了,他在我竞选早期就力挺我,是我最初的支持者之一。他是名非常有才华的人。”

70岁的柯德洛在前总统雷根任内监督白宫管理及预算局5年。柯德洛2001年加入财经媒体CNBC,之后成为知名评论家与主持人。

微软的自动翻译是:

White House spokesman Sanders said 14th that TV commentator Codro Larry Kudlow will serve as president of the National Economic Council.

Sanders said in a statement that Trump to Codro as president of the economic policy assistant, as well as the President of the National Economic Council, Codro also accepted, the White House will announce later, Codro time.

Cohn, the president of the National Economic Council, resigned on 6th for not agreeing to Trump’s move, announced earlier this month that it would impose tariffs on imported steel and aluminium.

After Cohen resigned, Codro was one of the successors, and in the past year Codro was Trump’s unofficial advisor and advisor to Trump during the 2016 presidential election campaign. Trump 13th to the media that he had a high chance of appointing Codro chief economic advisor Cohen to resign casual vacancies. Trump said, “Codro has been my best friend for a while, and he’s been my first supporter of my early campaign.” He is a very talented person.

” The 70-year-old Codro oversaw the White House administration and Budget Office for 5 years in former President Ronald Reagan. Codro joined the financial media CNBC in 2001 and became a well-known critic and moderator.

有道的译文是:

Larry Kudlow, a television commentator, will become President of the national economic council, White House spokesman jay sanders said Sunday.

In a statement, Mr. Sanders said he had accepted Mr. Cordelo as an assistant to the President’s economic policy and the President of the national economic council. The White House would then announce that Mr. Cordelo took office.

The chairman of the national economic council, Gary Cohn, said he would resign on June 6 after he announced that he would impose tariffs on imported steel and aluminum.

When cohn resigned, he was one of his successors. Over the past year, he has been an informal adviser to trump and an adviser to trump during the 2016 presidential campaign.

Trump told the media on Wednesday that he had a high chance of appointing the resignation of coderot’s chief economic adviser, korn/ferry. “He was a good friend for a while,” trump said. “he supported me early in my campaign and was one of my first supporters. He is a very talented person.

The 70-year-old has overseen the White House administration and budget office for five years under former President Reagan. Cordelo joined CNBC in 2001 and became a well-known critic and host.

谷歌的译文是:

White House spokesman Saunders said on the 14th that television commentator Larry Kudlow will serve as chairman of the National Economic Council.

Saunders pointed out through the statement that Trump had proposed to Cadero as the president’s economic policy assistant and the chairman of the national economic conference. Caldero also accepted it; the White House will later announce the time when Calderon took office.

Trump announced at the beginning of the month that it would impose tariffs on imported steel and aluminum products. Gary Cohn, chairman of the National Economic Council, resigned on the 6th because he did not agree with Trump.

After Keen resigned, Kedlow was one of the candidates for the replacement. In the past year, Kedro was an informal advisor to Trump and a consultant during Trump’s 2016 presidential campaign.

Trump stated to the media on the 13th that he has a high chance of appointing Kodlow to replace his chief economic advisor. Trump said, “Kadelo has been a friend of mine for some time. He supported me early in my campaign and was one of my initial supporters. He is a very talented person.”

Kodlow, 70, oversees the White House’s Office of Management and Budget for 5 years under former President Reagan. He joined the financial media CNBC in 2001 and later became a famous critic and host.

粗粗读一遍,都不错。可能是偏爱,还是更喜欢有道。

再来一片,其实不是新闻:

列宁的导师普列汉诺夫的遗言:
一、随着生产力的发展,知识份子的队伍比无产阶级增加得更快,在生产力中的作用跃居首位,在电气时代马克思主义的无产阶级专政理论将会过时。
二、布尔什维克的无产阶级专政将迅速演变成一党专政,再变为领袖专政。而建立在欺骗和暴力基础上的社会,本身就包含着自我毁灭的炸药,一旦真相大白,便会立刻土崩瓦解。
三、“布”党将依次遇到四大危机:饥荒危机、意识形态危机、社会经济危机和崩溃危机,最后政权土崩瓦解,这一过程可能持续数十年,但这个结局谁也无法改变。
四、国家的伟大并不在于它的领土甚至它的历史,而是民主传统和公民的生活水平。只要公民还在受穷,只要没有民主,国家就难保不发生动荡,直至崩溃。

微软:
Plekhanov’s last words:

With the development of productive forces, the team of intellectuals has increased faster than the proletariat, the role of the productive forces leaped to the top, and the Marxist proletarian dictatorship theory in the era of electricity will be outdated. Second, the Bolshevik dictatorship of the proletariat will rapidly evolve into a one-party dictatorship, then become a leader dictatorship.

A society based on deception and violence, in itself, contains self-destructive explosives that, once the truth is revealed, Fall apart immediately.

Third, the “cloth” party will encounter four major crises: Famine crisis, ideological crisis, social economic crisis and collapse crisis, the final regime fell apart, this process may last for decades, but this end can not change. The greatness of the state is not in its territory or even its history, but in its democratic traditions and the living standards of its citizens. As long as citizens are still poor, as long as there is no democracy, the state will not be in turmoil until it collapses.

谷歌:
The words of Plekhanov:
     First, with the development of productive forces, the ranks of intellectuals have grown faster than the proletariat, and they have taken the lead in productivity. In the age of electricity, the Marxist theory of the dictatorship of the proletariat will become obsolete.
     2. The dictatorship of the proletariat of the Bolsheviks will rapidly evolve into a one-party dictatorship and will become a dictatorship of leaders. The society based on deception and violence itself contains self-destructive explosives. Once the truth is revealed, it will soon fall apart.
     Third, the “cloth” party will encounter four major crises in sequence: the famine crisis, the ideological crisis, the socio-economic crisis, and the collapse crisis. The final regime collapsed. This process may last for decades, but no one can change this outcome.
     Fourth, the greatness of the country does not lie in its territory or even its history. It is the democratic tradition and the standard of living of its citizens. As long as citizens are still living in poverty, as long as there is no democracy, the country cannot guarantee that there will be no turmoil until collapse.

有道:

His last words:
One, with the development of productive forces, intellectual team increase faster than that of the proletariat, in the role as the first productivity, at the age of electricity of marxism’s theory of the dictatorship of the proletariat will be out of date.

The dictatorship of the proletariat of the bolsheviks will quickly turn into a one-party state and become a leadership dictatorship. Society, based on deception and violence, contains self-destructive explosives, and when the truth comes out, it will fall apart.

Three, “cloth” party will, in turn, have four big crisis: hunger crisis, the collapse of the ideology, social and economic crisis and crisis, the regime collapse, this process may last for decades, but the end no one can change.

The greatness of a nation lies not in its territory or even its history, but in its democratic traditions and the living standards of its citizens. As long as the citizens are still poor, as long as there is no democracy, there will be no unrest until the country collapses.

梁:
这岂不让专业翻译人士好紧张吗?

李:
没办法,准备改行做编辑吧。作为职业,译员的市场的确在急剧萎缩中,大势所趋。

昨天跟老友说 还是要抬头讲故事 不能只是低头做实事。还要看故事的风口和时机。微软这一宣传 家喻户晓 老妪能解 普罗惊叹。一叹人工智能已经步步紧逼 看得见摸得着了。二叹微软太牛 给人印象是把对手远远抛在后面 在这个一日千里的AI时代 居然提前七年实现赶超人类语言认知的里程碑。

梁:
对,讲个好故事,比什么都重要!

李:
其实这几家品质都差不多 还有搜狗 还有一些初创 自从大约两三年前深度神经以后 都陆续达到了新闻翻译超越业余人工翻译的水平。换句话说 整个行业提升了。任何一家都可以心不跳脸不红做此宣称。可是老百姓和投资人不知道。这就看谁会讲故事了。

马:
大公司自己宣传,一帮不懂的媒体也愿意跟着捧,甚至捧得更卖力气。现在机器翻译拼的就是语料和平台,以前搜狗没有机器翻译,和我们实验室的刘洋合作后,不到一年就出了一个很不错的系统。

李:
AI 越来越像当年美苏的军备竞赛了,size matters.

@马少平 搜狗要营销的话 可以与电视台合作 搞个新闻现场大奖赛 请翻译界名人做评委 找n个专业翻译 m 个业余翻译 现场出题 限时翻译(要限制到熟练专业来不及查工具书 全凭大脑 勉强可以应付 为最佳)

马:
@wei 比起其他公司来,搜狗不是太会营销。

李:
这种比赛 没有悬念 最终一定是机器赢。好好设计一下,双盲比赛,让专家评审,也不能说它不公平。万一机器没得冠军 而是亚军或季军 宣传效果更佳 为下一轮比赛的高潮做了铺垫。那位人类选手神译 要好好保护 大力宣传 大书特书他过目不忘 博闻强记 知识渊博的种种事迹。当年花生智力竞赛大胜人类 本质上就是玩的这个套路。一直玩到进入了计算机历史博物馆的里程碑专区去了。MT 现在要玩的话,类似的效果,更容易设计,要想拉巨头参与也容易:几家巨头的MT网站都是公开的,随叫随到。

Ben:
@wei  youTube上 《成都》 有高圆圆的音乐,立委应该会喜欢!

李:
歌是好歌,早听过n多遍了,温暖慰藉。赵雷嗓子很有味道,可这小子镜头太多;圆圆友情出境,镜头太少,前面的剪影还是替身。

成都是个养人的好地方,出国前呆过大半年,乐不思非蜀(见【立委外传】):

1990 : 尝尽成都美食。 茶馆 火锅 夫妻肺片。

赵雷草根天才啊,独领城市歌谣,能写出这样的绝妙好词:

【画】
为寂寞的夜空画上一个月亮
把我画在那月亮的下面歌唱
为冷清的房子画上一扇大窗
再画上一张床
画一个姑娘陪着我
再画个花边的被窝
画上灶炉与柴火
我们一起生来一起活
画一群鸟儿围着我
再画上绿岭和青坡
画上宁静与祥和
雨点儿在稻田上飘落
画上有你能用手触到的彩虹
画中有我决定不灭的星空
画上弯曲无尽平坦的小路
尽头的人家梦已入
画上母亲安详的姿势
还有橡皮能擦去的争执
画上四季都不愁的粮食
悠闲的人从没心事
我没有擦去争吵的橡皮
只有一只画着孤独的笔
那夜空的月也不再亮
只有个忧郁的孩子在唱
为寂寞的夜空画上一个月亮

我不知道如何翻译,劳有道机器翻译一下:

“Draw a moon for the lonely night sky.
Draw me under the moon and sing.
Draw a large window for the cold house.
Draw another bed.
Draw a girl with me.
Draw another lace bed.
Draw a stove and firewood.
We were born to live together.
Draw a flock of birds around me.
Let me draw green ridge and green slope.
Picture peace and serenity.
The rain fell on the rice fields.
There’s a rainbow you can touch with your hands.
There are stars in the picture that I have decided not to destroy.
There are endless smooth paths.
The end of the family dream has entered.
Picture mother’s peaceful pose.
There’s also an eraser argument.
Paint food that is not sad in four seasons.
A leisurely person never worries.
I didn’t wipe out the quarrel eraser.
There was only one painting of a lonely pen.
The night sky was no longer bright.
Only a sad child was singing.
Draw a moon for the lonely night sky.”

自然有错译的地方(如 there’s also an eraser argument. I didn’t wipe out the quarrel eraser),可是总体而言,专业出身的我也不敢说一定能译得更好,除非旬月踟蹰。机器翻译超越业余翻译,已经是不争的事实。

 

 

【相关】

【机器翻译新时代的排座座吃果果】

【谷歌NMT,见证奇迹的时刻】

【校长对话录:向有道机器翻译同仁致敬】

【语义计算:李白对话录系列】

《朝华午拾》总目录

 

【李白100:Parsing 的休眠唤醒机制】

尼:
十几年前给两个台办主任送过美凤光盘。

李:
主语施事是侬?

 

这是一个疑问句。

迈:
这是给中纪委举报的分析图吗?

白:
为啥“主任”没当actor?under是“两个台办”,actor是“主任”多好,不用向外借context里的“尼克”了。“台办主任”难道进词典了?N+N结构难道比缺主语还优先?

李:
没进词典,“台办+主任”是rule合成的。为啥主任要做那个actor?“给” here 是个介词,是“送”的 subcat 要求的,作为 dative,不是逻辑主语,就是双宾语句式的 human 对象,光碟才是 undergoer。

白:
说错了,“两个台办”是介宾,“光碟”不变。“主任”单拎出来,做actor。

李:
why?还只是理论上的可能性?有两个台办么?文革中的确有过两个司令部,但那是非常时代。

白:
我是好奇,为啥一个无主的选择会优于一个有主的选择。难道你是推理了没有两个台办才往后走的么?

李:
没有推理,I was kidding。合成词:台办+主任,优于被 determiner 直接修饰。汉语中合成词的构成优先于句法上的chunking;不仅汉语,这是语言学一般原则:合成词处于 morphology 和 syntax 之间。

白:
也就是说,局部的优先关系已经把别的可能性扼杀了?不把其他选择往外传?

李:
这个原则上是对的。

白:
比如“听说发文件的是台办主任吓坏了”,肯定分析不对了?

李:
这个…人理解也有歧义。
不怕献丑了:

白:
不太通

李:
的确不大通。这个 parse 是说,“是台办主任吓坏了”,“听说发文件”是一个诱因。不是完全不可能,但对里面的小词 “de” 和 “是”,parsing 有点走偏了。做这些小词,分寸很难掌握,稍不留心就过火。

白:
“去了趟台办主任更神气了”如何?没有小词了。

李:
白老师不要逼人太甚 :=)
没有小词了,但你为啥不加逗号,不加标点也罢,给个 SPACE 也好。

白:
学意识流。

李:
存心难为 parser:

wrong,as expected

白:
意料之中,构词法一上,木已成舟。

李:

see 你若规矩 便是晴天!
一个小小的 space 有那么难么?为啥意识流?ADD 了么?做系统的人都知道,没有没有软肋的。

白:
对。只是好奇。因为之前交流过能带着多种可能性往下跑的事情。

李:
只是分寸火候而已。原则上,合成词前置是合理的,好处远远大于副作用。理论上可以保留哪怕微小的其他可能性,待后处理。实践中,当断不断, 终于自乱。哪些带着往下跑,哪些当断则断,也是一个火候的掌控。PP-attachment 这类我们是往下带的。太低的模块,一路带着往下跑,瓶瓶罐罐的,非常难缠。

白:
所以,先休眠再有条件唤醒,也是一策。当然这就要允许逆行。

李:
带着往下跑本质上也是一个组合爆炸问题,除非一边往下跑,一边卸包袱。
休眠唤醒是一个好主意,对于某些现象。我也试验过,用得好是有效的。

白:
段子大都是休眠唤醒模式。

李: 譬如一个 NP,内部的关系难以全部穷尽可能性,那就保留部分关系,然后到最后,可以重新进入这个 NP,根据需要决定重建关系。在这种情形下,问题已经缩小了,重建不难。甚至 PP-attachment 也可以循此道。譬如,一律让 PP 挂最近的 XP,成为 deterministic parse,到了语用和抽取的时候,再去重建其他的 parses,这时候语用的条件进来了,先前被休眠的可能 parse 就可以复活。

白:
武断和文断的区别…… 武断是效率的保证,休眠唤醒是兜底的保证。

李:
段子的休眠唤醒说明,人的大脑认知也是先入为主的,很多时候是武断的,不过是允许反悔罢了。这种反悔有类似以前的 backtracking 的地方,但是实践中并没有那么大的 costs。

白:
看是哪种实践了

李:
因为在语用层面做反悔,基本上是已经聚焦了以后的反悔。这种聚焦最经常的方式是词驱动,因此,需要反悔重建的现象大大缩小。

白:
不同商业模式下,价值取向有差异是正常的。

李:
如果大海一样全部来反悔运动,还不如一开始就全部保留。幸运的是,绝大部分应用,语用与语法是可以分清界限的。

白:
反悔是白名单驱动,武断是标配。

李:
标配就是统计可能性大的,或者是遵循普遍原则的,譬如合成词前于句法。

白:

李:
任何原则或 heuristics 都有例外,到了例外,如果有一个反悔机制最好。

白:
给一条反悔的通道,但是慎用。

李:
与此相对应,还有一个例外排除机制,就是先堵住例外,然后做标配。这个办法比反悔更费工。只有在具有类似 Expert Lexicon 的词驱动的例外机制的时候,才好用。

白:
提醒一下,词驱动是取决于双因素的,不仅要看trigger是啥,也要看休眠的是啥。另外休眠的东东即使不参与分析,也可以自己做弥漫式联想(不同进程或线程),类似认知心理学说的阈下啥啥啥。这样trigger就可以提高命中率

李:
弥漫联想再往下就是弗洛伊德了。

白:
对。
词驱动这种“相互性”我举个例子就明白了:我家门前的小河很难过。
“难过”具有长词优势,“难/过”休眠了。但是,“过”弥漫式联想,激活了“过河”,于是开始反悔。直到“难/过”翻案成功。

李:
好例。“过河”与“洗澡”一样是分离式合成词,属于动宾结构。凡是可以词典化的单位,休眠重启不难实现。因为词驱动的可能性都是有限的,而且可能性都可以预先确定。以前提的“睡过”的歧义也是如此。

白:
trigger有外因有内因。外因就是更大整体的句法、或语义、或语用产生不匹配等,内因就是当事的成分自己或静态、或动态地展现出结合的可能性。休眠情况下,静态不可能。动态,相当于休眠的成分梦游了,在梦游中邂逅了。那个“夏洛特烦恼”,也是上下文给了“夏洛”独立成词的某种强化,回过头来唤醒了“特”作为副词的已休眠选项。或许,作为副词的“特”正在梦游。

说了半天,还不是为了尼克

李:
对了,忘了尼克究竟是不是actor了,丫保持缄默,怎么讲?贿赂完三X光碟,在一边偷着乐吗?

(i)  “这是我与领导的聊天记录”
(ii)“我与领导的聊天记录得详详细细”

两个休眠唤醒策略:

其一是,“聊天记录”做合成名词,到第二句的某个阶段,把“记录”分离出来做谓语。
其二是,“NP【我与领导的聊天】VP【记录】” 先做成句子(CL:Clause),然后,在第一句解析的某个阶段,再改造这个 CL,成为 NP,主语于是成了修饰语 M:

得字结构无动词谓语可以附着,是 trigger 休眠唤醒的契机。

NP +【得详详细细】:把 NP 内头词的潜在动词性唤醒,分离出来做谓语,非常有道理。新媳妇嫁错人家了,可以抢出来再嫁,没必要嫁狗随狗。

白:
得 向左还是向右,是一个问题

李:
虚词而已,左右无所谓,反正是敲门砖,用完了就扔(X)。

 2016-1-27 15:46 |首发 科学网—《泥沙龙笔记:parsing 的休眠反悔机制》

 

【相关】

科学网—【立委科普:结构歧义的休眠唤醒演义】

科学网—【立委科普:歧义parsing的休眠唤醒机制再探】

【一日一parsing:休眠唤醒的好例子】

【NLP随笔:词法内部结构休眠,句法可以唤醒】

【李白91:休眠唤醒需要打离婚证】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白99:从大小S的整体部分关系看舆情挖掘的统计性】

白:
“这家公司从年报看业绩没什么起色。”

李:
“业绩”可以是小s 也可以是“看”的宾语,其实语义基本不变。“从N看”很像个习惯表达法,可以等于 “从N看上去”(“以N而观之”)。

白:
“这个人从眼睛看瞳孔是蓝色的。”

董:
两位,“这家公司”、“这个人”,还是“状语”吗?怕不合适吧?

李:
主语。“从N看”可以做状语。还是大s小s那套,及其变式。逻辑上就是整体与部分的情形,谓语说部分自然也在说整体。感觉 大小S的问题 有很强的逻辑意味 是逻辑在语言中的表现形式。大S是整体 小s是部分 谓语直接说的是部分,自然也就间接说了整体,这是逻辑上的不完全归纳,与三段论的演绎正好相反。归纳不如演绎严谨,容易引发种种争议,但归纳是人类认识和表达世界广泛使用的手段,表现在语言形式上就很有说法了。

这个问题我们在做舆情分析中,无数次遭遇:说 “iPhone 屏幕很好”,直接说的是“屏幕”,间接说的是 “iPhone”,算不算是说 iPhone 的好话?当然算,至少是找到了 iPhone 的一个亮点。

A:iPhone屏幕好
B:iPhone 屏幕好,但别的都不行。
A:照你说,iPhone 只剩屏幕好了?
…………

A 是说 iPhone 的好话,用的逻辑是不完全归纳。B 是说 iPhone 的坏话,但也做到了与 A 并不矛盾,根据的是归纳的不完全原理。所以说 不完全归纳就是那半瓶水,乐观主义看见的是水,算是点赞;悲观主义看见的是空气,可以是吐槽。如果反过来用三段论演绎法,说的是整体而不是部分,譬如 “iPhone 就是好”,就没有这些弯弯绕了,不会留下模糊的空间。

大前提:iPhone 好
小前提:iPhone 屏幕也是 iPhone (有机部分)
结论:iPhone 屏幕好。

这跟 “文化大革命就是好” 一个道理,是点赞没商量。

回到原句:“这家公司从年报看业绩没什么起色。” 句法上的大S在逻辑语义层转为O,句法上的小s上升为S,这些都说得通,只欠O(整体)与S(部分)之间的关系了:

愿意做细活的话,这个有点特别的 “从N看”(习惯表达法)可以看成是状语或插入语,它不是语句的重心。不过,这种细活做多了,不仅费工,而且也难免弄巧成拙,譬如,万一前面出现了一个通常不出现的主语“我们”或“大家”,就找不到自己的谓语了。

“这个人从眼睛看瞳孔是蓝色的。”

“瞳孔是蓝色的。”
“这个人是蓝色的。”

这就是不完全归纳法推向极端的情形:上句因为是极限事例,听上去不 make sense,但却的的确确隐含归纳法从部分到整体的逻辑链条在内。如果改写成这样,就貌似有些道理了:

“就瞳孔而言,这个人是蓝色的。”

“瞳孔” 这个概念 在其常识性本体知识库里 在Color的字段下 其 appropriate 的属性值里面包括了“蓝色”。但是 “人” 这个概念里面 常识本体库里面的 Color 栏目 没有“蓝色”这个选项,只有“黑 白 黄 红”。说 这个人是蓝色的 违背了这个常识 所以觉得很怪:除了妖怪和童话,怎么会有蓝色的人呢?但人的某个部位的确可以是蓝色的。部分的属性推广到整体的时候 遇到了矛盾。

“希特勒特别善于演说”

是说 希特勒好 吗?还真地就是说他的好话。在舆情抽取的时候,我们记录每一个这种表述,部分好相当于给整体好投了一票,但抽取的碎片化情报只是零散的一票一票,到了对于整个数据源进行信息融合(fusion)的时候,这每一张投票就被统计出来,“舆情”就自然得出。

白:
这是诛心。说鸡蛋好是不是也给下蛋的母鸡投了一票?

李:
最后的结果非常 make sense。原来,在与希特勒相关的舆情数据里面,整体而言,点赞的不足 1% 吐槽的高达 99%,可见其不得民心。这是全貌。舆情的细线条分析 进一步揭示 即便点赞,赞他的方面(aspects)或依据(why)几乎总是其客观能力(演说才能)等,吐槽的却是他的实质:思想,行动,内心,等。

说鸡蛋好,的确是给那只老母鸡点了赞。虽然钱先生对喜欢他的《围城》的粉丝说,鸡蛋好吃,又何必认识老母鸡呢。其实钱先生不仅仅是谦虚或清高,其实就是懒。懒得搭理那些无穷无尽的崇拜者。他内心何尝不知道,鸡蛋吃得香的人,对于老母鸡是有赞的。至少,我去超市买鸡蛋,对于能下黄鸡蛋的母鸡,比只会下食之无味的白鸡蛋的母鸡,心里不是一视同仁的。anyway,我们做了多年舆情挖掘,就是这么个原理。利用的是不完全归纳,对于不完全归纳所带来的副作用和逻辑不严谨,弥补的手段就是大数据投票。并不离谱,有全貌,有细节。

在大数据下,好人不会被评坏了,坏人也不会被评好了。当然,国内水军据说可以左右大数据,另当别论:主要是数据还不够大,水军也太便宜。

白:
无罪推定的原则,逻辑上(典型的就是三段论)推不出来的,你不能安给我。统计算个数也就罢了,把标签落到人头上,贻害无穷。这与诛心何异。比如,我反对一个人的证据(比如钓鱼贴里面那种荒唐证据),对其结论并没表态(尽管结论可能很政治正确),这是一个正常的理性行为。如果因为这个给我打上政治不正确的标签,我很难接受。

李:
大数据下,任何标签都不是黑或白。

白:
可是这种粗暴做法,冠以“舆情分析”的高科技帽子,几乎每天都在发生着。

李:
说你 99% 的政治正确,1% 的政治不正确,你应该很高兴。我要是开个餐馆,或经营一家NLP咨询公司,只要有 80% 的赞誉度 就笑懵了。每次找餐馆,我从来不特别找全五星的,总是找4星以上的,一万个评论打了四星的,比一千个评论打了五星的,要好得多。

白:
评好人缺点的人、不赞成拍好人马屁的人、不赞成捧杀好人的人、不赞成用荒唐论据支持好人的人被当作跟好人不一伙的人,这样的技术是危险的。其实是在诛心,或者在实现一种诛心的逻辑。

李:
退回到人工问券调查民意的时代,手工民意测验其实更差 更不完备。因为大S作为调查对象虽然是确定的,这个 大S的方方面面 那些点赞他吐槽他的种种理由 却五花八门。这些五花八门 个体可能有诛心的风险 整体统计却化解了风险。到了民主政治 一人一票 根本就无心可诛。大数据下 只看票 不看理由。

白:
挺转和反转,就因为双方的旗手而呈现站队状态。反崔挺崔,反方挺方,本来与挺转和反转是互相独立的,在舆论场中愣是给弄成掰不开了。这个话题与政治关系不大。一个人只要不满崔,就会被当成挺转分子。

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白98:从对联和孔子遗言看子语言自动解析】

李:
微信群转来的,想,配个图吧。

做自动解析(parsing)走火入魔,几乎成本能了。凡是人说难度极大,或者盛赞中文奇妙的语录,都忍不住想 parse parse 试试,到底看看离形式化自动化分析距离究竟有多远:稀奇古怪的句子其实不是自动系统的关注点,但它们往往像疲劳测试一样,可以把问题推向极端,考验自动解析的鲁棒度和机械系统应对灵活多变的能力,而且好玩,有fun。

某上海大学生为了显摆,在迎新会上出了一则上联:
上海自来水来自海上。

Note:
CL(clause)= 句;NP(Noun Phrase)= 名词短语;Pred(Predicate)= 谓语;N(Noun)= 名词;V(Verb)= 动词;H(Head)= 头词
S/s(Subject)= 主语;O/o(Object)= 宾语;M/m(Modifier)= 定语;R/r(Adverbial) = 状语

顺念倒念完全一样,难度极大!但其他省的学生也不是吃干饭的,
北京大学生对曰:
香山碧云寺云碧山香。

这个不好整,形容词活用古汉语常见,现代汉语罕见,算是 sublanguage 的问题,同一个系统难以兼顾两种可能冲突的子语言现象。先凑合吧。

山东大学生对曰:
山东落花生花落东山。

山西大学生对曰:
山西悬空寺空悬西山。

安徽大学生对曰:
黄山落叶松叶落山黄。

海南大学生也不示弱,对曰:
海南护卫舰卫护南海。

白:
这倒是像照妖镜一样把每个下联的工整程度晒出来了。

金:
NLP大学生对曰:
语言学老炮老学言语。

李:

“语言学老炮”是有来历的,指的就是白老师。见最近风行的新智元的专访报道:

【老炮儿白硕开讲】区块链可替AI对抗数据寡头

我在朋友圈推送了:看得懂还是不懂 还是雾里看花 似懂非懂 反正我是一字一字看完了。白老师的科普 无条件推送。懂行的看门道 不懂行的可以欣赏文字和说法。

微信还流传着这么一个帖子,一律有惊悚的标题:孔子临终遗言出土,惊动世界,反动之极:

《子寿终录》

子寿寝前弥留少时,唤诸弟子近叩于榻侧。子声微而缓,然神烁。嘱曰:吾穷数载说列侯,终未见礼归乐清。吾身食素也,衣麻也,车陋 也,至尽路洞悉天授之欲而徒弃乃大不智也。  汝之所学,乃固王位,束苍生,或为君王绣袍之言。无奈王者耳木,赏妙乐如闻杂雀鸣,掷司寇之衔于仲尼,窃以为大辱。其断不可长也。鸿鹄伟志实毁于为奴他人而未知自主。无位则无为,徒损智也,吾识之晚矣。呜呼,鲁国者,乃吾仕途之伤心地也。汝勿复师之辙,王不成,侯为次,再次商贾,授业觅食终温饱耳,不及大盗者爽。吾之所悟,授于尔等,切记:践行者盛,空叙者萎。施一法于国,胜百思于竹。吾料后若有成大器之人君,定遵吾之法以驭民,塑吾体于庙堂以为国之魂灵。然非尊吾身,吾言,乃假仲尼名实其位耳。  拥兵者人之主也,生灵万物足下蛆;献谋者君之奴也,锦食玉衣仰人息。锋舌焉与利剑比乎?愚哉!旷古鲜见书生为王者,皆因不识干戈,空耗于文章。寥寥行者,或栖武者帐下,或卧奸雄侧室。如此,焉令天下乎?王座立于枯骨,君觞溢流紫液,新朝旧君异乎?凡王者祈万代永续,枉然矣!物之可掠,强人必效之;位之可夺,豪杰必谋之。遂周而复始,得之,失之,复得之,复失之,如市井奇货易主耳。概言之,行而优则王,神也;学而优则仕,奴耳;算而优则商,豪也;痴书不疑者,愚夫也。智者起事皆言为民,故从者众。待业就,诺遁矣。易其巧舌令从者拥主,而民以为然。故定乾坤者必善借民势。民愚国则稳,民慧世则乱。  武王人皆誉之,纣王人皆谤之。实无异也!俱视土、众为私。私者唯惧失也。凡为君者多无度,随心所欲,迎其好者,侍君如待孺子。明此理,旋君王如于股掌,挟同僚若持羽毛,腾达不日。逆而行之,君,虎也,僚,虎之爪也,汝猝死而不知其由。遇昏聩者,则有隙,断可取而代之。  治天下者知百姓须瘦之。抑民之欲,民谢王。民欲旺,则王施恩不果也。投食饿夫得仁者誉,轻物媚予侯门其奴亦嗤之。仁非钓饵乎?塞民之利途而由王予之,民永颂君王仁。  御民者,缚其魂为上,囚其身为不得已,毁其体则下之。授男子以权羁女子,君劳半也。授父以权辖子,君劳半之半也。吾所言忠者,义者,孝者,实乃不违上者也。  礼者,钳民魂、体之枷也。锁之在君,启之亦在君。古来未闻君束于礼,却见制礼者多被枷之,况于布衣呼?礼虽无形,乃锐器也,胜骁勇万千。  乐者,君之颂章也。乐清则民思君如甘露,乐浊则渔于惑众者。隘民异音,犯上者则无为。不智君王,只知戟可屠众,未识言能溃堤,其国皆亡之。故鼓舌者,必戳之。  吾即赴冥府,言无诳,汝循此诫,然坦途矣!切切。
  言毕,子逝

白:
个人认为,不加连词的复杂谓语结构,在先秦时期似乎是没有的。

李:
这个遗言太现代人了 哈。

白:
“鸿鹄伟志实毁于为奴他人而未知自主。”这哪是先秦的话。

李:
这叫挟圣人以讽世。那行文不是先秦,是我祖父那一辈人常用的文白夹杂的“时文”(见《李老夫子遗墨》)。胡佛塔馆藏的蒋中正日记里也常见。

只好也凑合了。半文半白,难得兼顾,子语言中各别的部分,需要针对性对付。这跟领域化(domain porting)道理同。

王:
临别时,与弟子说一些“吾十有五而志于学…”之类的话似乎更靠谱。人家正在延揽学究攻此项目,大家静下心来,观棋不语真君子!

李:
孔老夫子长寿的秘诀是什么?他那个年代 73岁是寿星了,才能从“耳顺”,到“从心所欲”。那个年代,夭折不计的话,平均寿命也不足40吧。最近一个世纪,人的寿命才显著增长,而且貌似没有停下来的意思。所以才有谷歌忽悠跳大神的勾当,一本正经研究长生不老。所以才有脸书的娃娃扎哥放豪言,要以他的财力资助现代医学,“根治”一切不治之症。特斯拉钢铁侠于是正式立项,推进移民火星计划。地球装不下啊。

有时候想,当年大跃进,毛主席放豪言要20年赶英30年超美,亩产万斤,这种热昏的胡话也有人信,终于三年饥荒,饿死几千万收场。但如果比起谷歌脸书特斯拉大佬们的豪言,热昏度上看,那是小巫见大巫啊。

Lin:
你说的是“说话者的热昏度”,还是“狂热群众听者的热昏度”?

李:
good point,好在西方大佬们把牛吹上天,没有太多恶性后果,反正花的是投资人和股民的银子,愿者上钩:人有多大胆,股有多大产。股民喜欢这些。假作真时真亦假,先帝再世也只能自叹弗如了。

扯远了,回到语言学 parsing 来。那句仿古文句的白话文译文是:

我的伟大理想没有实现是因为我只知道给他人做奴才

姜:
@wei 用您的这套“照妖镜”工具体系能分析出此文是否是孔子的遗言么?

李:
这事儿估计不如机器学习的分类系统。真伪问题更多是用词而不是结构。统计性 ngram 蛛丝马迹,比宏观结构的异同更重要。文本分类是 parsing 的短项,关键词学习系统的长项,不是合适的场地(见《规则系统的软肋在文章分类》)。看一个林子的颜色,不需要对每棵树每片叶子做精细的分析。

 

【相关】

《李老夫子遗墨》

孔子临终遗言出土,惊动世界,反动之极

【老炮儿白硕开讲】区块链可替AI对抗数据寡头

规则系统的软肋在文章分类

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白97:大S小S句式中插入“的”所引起的交叉陷阱】

李:
大S小s 即所谓双主语句,又叫话题句、主谓谓语句,是中文文法非常著名的现象,与西方语言很不同的一种句式。例如:

她个儿高 盘儿靓 心眼儿还特好

“她”是主语 是话语研究(discourse study)中的话题(topic),谓语的内部结构里面还有个小主语,所以叫主谓谓语(主谓结构整体做谓语)。中文里面特常见,翻译成英文试试?没有对应的句型 只好转弯抹角换个说法 不是换词汇 就是换结构。

She is tall, pretty and kind.
She is tall, with a pretty face and kind heart.

硬译过去 就惨不忍睹:

* She body tall face pretty and still heart kind.

老外不是看不懂这种洋泾浜,但文法错乱难以忍受。好回到今天正题,再看一个实际例子:

“和我在超市买的速溶咖啡口味不同”

买的是咖啡,不是口味,可真要辨别清楚,不容易,或不值得。“口味不同” 貌似可以成为一个复合谓语,但这样处理,需要协调前面的 possessive NP 的情形,比较:

1. 速溶咖啡【口味不同】
2. 速溶咖啡的【口味不同】

【口味不同‘】做了谓语,例2中那个“的”字就悬在那里了。如果硬要建立 possisive 的关系,从 PSG (短语结构文法)来看,就违反了关系不得交叉的原则:

  • <(速溶咖啡)的 [ 口味 > 不同 ]

有意思的是,这类交叉关系的逻辑困境,换了 DG(依存关系文法) 表达法,就烟消云散了:

只要允许同一个儿子(“咖啡”)可以有两个老子:做“不同”的主语“大S”,做“口味”的定语 Mod,依存关系里面逻辑纠缠的问题就迎刃而解。道理就是,PSG 是在线性流上面标记,很容易陷入边界陷阱。而更加逻辑化表达的DG则是增加一个维度,head (头词)可以上升为老子(父节点),空间的伸展化解了逻辑形式的矛盾。

白:
交叉要有前提条件,就是过继。“口味”也是有价名词。同理。“王冕死了父亲”,“父亲”的坑过继给“死”,吃一吐一,还留着一个坑给王冕。操作层面算在动词账上,实质层面算在有价名词账上。

李:
以前遇到的左右两个修饰语争抢中间的 head 的伪歧义也是同理,在 PSG 里面不可化解,于是成为歧义(其实是没有意义的“伪歧义”),但到了 DG,head 沿着 Y 轴上升为老子,歧义就自然消失:mod1 H mod2

(1)  ((mod1 H) mod2)
(2)  (mod1 (H mod2))

到了 DG,就是:

(mod1 (H) mod2)

这个 (H) 实际上是升上天了,mod1 mod2 也就没得抢了。

其实 SVO 也是如此,文法书一贯的教导都是: VO 先形成 VP 做谓语,才有资格与主语 S 对谈。但 DG 其实不管,动词中心论说的就是把 V 推到皇帝的宝座,S 和 O 不过左右丞相的区分而已。

所以:((S V) O) 其实不比 (S (V O)) 逊色,反正是两个坑,谁先跳进去,其实对于逻辑和理解是无所谓的。只是到了具体语言,这个次序在句法上可能有个方便和不方便的区别。强调句法的人,可能觉得 VP 先成立 对于语言现象的概括和捕捉更加方便和精炼,但实际上这树怎么画没有想象中的那样绝对。

“和我在超市买的速溶咖啡口味不同”

“和咖啡不同” 还是 “和口味不同”?显然是口味。但是如果短语结构是那样的话,“买”的就是“口味”而不是“咖啡”了(见上图)。PSG parsing 常常遇到这种忠孝不能两全的困境。如果硬要 “买咖啡”的 VO 和谐,把“口味”从VP中踢出去,前面加的那个”和“字,就找不到北了,因为“和”所引导的比较对象是“口味”而不是“咖啡”。矛盾不矛盾?

白:
张三和李四不是同一个老师。
张三和李四不是情敌。

买的口味,肯定错了。买的咖啡、口味,传统说法是大小主语的关系。咖啡-口味能作为大小主语,就不作为定中关系。即使作为定中关系,反填也优先于定中。

李:
说的就是难以两全:

1. 和我在超市买的速溶咖啡口味不同
2. 和我在超市买的速溶咖啡的口味不同”

照顾了1 就照顾不了 2.

(我(身体好) 和 ((我的身体)好) 也是如此。身体好先行成为谓语,就把 “的” 字悬在空中了,当然我们也可以强行,把小词用 X 抹去,过河拆桥:

(我S 的X (身体好)Pred)。

白:
“孤苦伶仃的王冕父亲死了。”

谁孤苦伶仃?

“不符合规定的流程取消了。”

不符合规定,还是不符合流程?

李:
不符合规定的流程, 取消了。
不符合所规定的流程, 取消了。

白:
“的”的辖域本来就有歧义。

李:
或者就霸王硬上弓,出现“的”就X抹去,等到将来建立“所有”关系(反填逻辑语义)需要借助“的”的时候,再复活它。

白:
大小主语关系和定中关系,落到有价名词身上,填坑效果是一样的。区别只是名份的区别,没有实质意义。“的”字的介入,只是在没有实质意义的区别天平的一端加重了砝码而已,结果做出的区别仍然是没有实质意义的。

李:
“的”的句法默认就是 possessive,突然悬空了,句法上的确不好看。两害取其轻,管他“的”不“的”,见贼杀贼,抹去就抹去罢。

白:
所以伟哥建议去掉“的”在这个具体场合有他的道理。问题是,如果能判断出属于这个具体场合,也就等于解开这道题最难的部分了。感觉画树纯粹是面子工程,就该直接画图,管他交叉不交叉。

李:
实际上是把显性句法形式的定语关系,与隐性的逻辑语义所属关系,都化作隐性对待了。使定中有形式,但无PSG表达。属于不得已为之的。最终还都是图,而不是树。图比树多了个维度,摆脱了语言线性次序的束缚。

白:
画树只是为了对应栈操作。实际上栈操作可以通过“过继”机制实现有控制的交叉。也就是以树为“拐棍儿”,达成图的目标。把树神圣化、教条化,就走向反面了。

李:
PS树从来就是拐棍。用的时候,还要再转一次。

白:
所以,有没有桥,和有没有路,是两回事。没有直通的桥,还可以有借路的桥。过河拆桥,是拆的借路的桥。最终看到的和最终关心的其实是路。

李:
PSG 的交叉把边界节点算进去了,到了 DG 边界节点不算 两头相安无事。真正交叉的逻辑陷阱 不应该包括边界点 因为逻辑层是脱离了线性次序的,思维的本性就是天马行空,无拘无束。

白:
“王冕父亲死了”无论把“王冕”和“父亲”的句法标签确定为“定中”还是“大小主语”,都显得多余。它们之间逻辑上只有领属关系。

李:
当然 的确也有合理的交叉 可以跳进其他结构的内部去这种。但毕竟统计上罕见多了 而且凡是出现那种情形 人的理智和情感就多少感觉拧巴。换句话说 跳进内部 里通外国 干涉别国内政 必须要有非常强大的理由 不是儿戏。

在长期批评中文的种种文法不严谨的缺点以后,可以为中文句法表达的丰富性点个赞了。寸有所长 有些优点是缺陷的孪生子。说的是谓语的丰富性。与欧洲语言谓语必须由动词当纲不同 汉语谓语丰富多彩多了。名形动三大类 NP、AP、VP 都可以上台主演谓语的戏,PP 更不要说,介词跟情态词类似,是副动词,做谓语都天然合理。更绝的还有这“主谓谓语”。

这小护士大眼睛 盘儿靓 爱读书 一心为病人 非常漂亮暖心。

S【这小护士】Pred【NP(大眼睛) sV(盘儿靓) VP(爱读书)PP(一心为病人) AP(非常漂亮得暖心】

NP sV VP PP AP 连在一起 做并列谓语 毫无违和感。厉害了,汉语。搁在英语 就要叠床架屋了。

那个味道好
(i) That taste is good
(ii) The taste of that thing is good.

这么简单的句子也有歧义了。虽然一般人不问这里面的区别,对歧义无感,但汉语的主谓谓语句式的确提供了另一种解读的可能性。第二种解读在口语里面,“那个”后略有停顿(应该加逗号或留个空格):“那个 味道好”。

汉语中,主谓谓语居然可以嵌套,一个大S,一个中s,和一个小s:

(i)   小 s:味道好
(ii)  中 s:菜味道好
(iii) 大 S:这场宴会菜味道好,饭不怎么样。

【这场宴会S【菜s【味道s 好】】】

这个现象真地有些奇特,头小身子大,是集体领导的奇葩。凡遇到中文特别的句法,神经翻译就真地神经了:

 

【相关】

【李白之48:关系不交叉原则再探】

【李白之47:深度分析是图不是树,逻辑语义不怕句法交叉】

【李白王89:模糊语义与真假歧义,兼论PSG与DG】

【李白之29:依存关系图引入浅层短语结构的百利一弊】

《语义三巨人》

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白96:想哪扯哪,不离其宗】

白:
“《舌尖3》被骂看了吃不下饭,不如来吃炭烧牛蛙吧”
看见了“如来”。

李:
不是问题 trigram 搞定的事儿 : 不如/来。

难的是,

如来请打的 不来也没问题。
要不如来 要不活佛 总之是神就行。

其实,“如来请打的”(if coming please call a taxi)并不能完全排除“如来(佛)”义,虽然语用层面可能性几为0:菩萨请打的 不来也没问题。

白:
“墙内开花墙外香,我转基因抗虫水稻获得美食用许可”

李:

此处不破别处破,唉。“食用”的是“许可” 哈。“许可”、“计划” 等以前论过,是另类,修正一下。

白:
“李书福买奔驰了”

李:

李:

这个 VG 与 这个谓语算是啥关系?形式上似乎是主谓,又好像是说因果关系:

if 看了then 吃不下饭

这类东西中文巨多,算是中文区别于欧洲语言的一个特点。突然想到试试有道翻译,结果:

哈 它不跳坑,搞不清就无视,反正给你一个顺溜的句子出来。这就是神经MT:(1)化有为无:“看了”;(2)无中生有:“我”(此处的无中生有倒是赶巧对路了)。这还不算神经最大胆的地方。更糟糕的是指鹿为马,也见过不少,以前举过一些例子。

白:
“哈佛机器人研究全景图:超越想象,完爆科幻”
机器人-研究-全景图,完美SVO
A panoramic view of harvard robotics
翻得很不错

他为什么可以不管SVO的顺序,直奔主题呢?因为离他最近的那些样本就是这么做的,没有给通用规则的坑留下施展干扰的半点机会。反过来说,基于规则/符号的方法,理应给出例句距离测度的更好估值才对。做不到是不尽职。

所有例句均取自机器人处于研究阶段且机器人尚不具备独立研究能力时期的信息来源,所以科幻场面基本不在考虑之列。包括“机器人专家”究竟是机器人领域的人类专家还是机器人本身就是专家,也是同样问题。

李:
“全景图” 也是那个“另类” 与 “计划” 一样:

机器人-研究-计划

当然,假以场景,任何例外都可以存在:

机器人研究计划后决定马上改变原计划,立刻向人类发起攻击。

白:
After the robot research project decided to change the original plan immediately, immediately launched an attack on the human.
这里果然中招

李:
可以预示的,如果不这样才奇怪了。与“研究计划”类似的,是食品和菜名:“烤土豆”。后者更有意思,VO 关系不变,但一个是【 VO】,一个是 【(被)V 的 O】。

关于符号系统和符号推理,貌似亦步亦趋直接模拟人的思维过程。感觉不仅缺乏弹性,常常也很拙。以前说过,“符号主义基本是人类自己跟自己玩。符号系统很多时候就是个自娱自乐的游戏”。不止一次遇到过这样的情形:符号命名不好,系统受到批评或遇到疑虑,后来把符号重新命名了,原来的批评者就接受了。所以说,很多时候就是一个助忆符的选择问题。复杂的符号系统特别讲究命名,虽然命名没有任何理论价值。有一个符合人类思维习惯的命名方法,复杂的符号系统才可能建成,并持续被维护。这跟复杂的程序必须用高级语言去写,没人可以维护一个复杂的汇编语言程序的道理相同,虽然理论上高级语言并没有汇编语言不能实现的能力。

关于“休眠唤醒”(【立委科普:结构歧义的休眠唤醒演义】),想到几点:

1. 唤醒就是 patching,补漏,机制上就是对结构就如nodes一样,可以局部重新来过,更新:老的关系可以切断,新的关系可以建立,因为条件不同了。

2 需要建立两套feature系统,一套明,一套暗:明的系统按部就班,可以是 deterministic,但可以随时更新;暗的那套深藏不露,平时就当没有。唤醒的时刻 就是变暗为明的时机。

 

 

【相关】

【立委科普:结构歧义的休眠唤醒演义】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白95:走在路上……】

李:
走在路上,琢磨句法的事儿。

句法任务如果要分解的话,可以这样来看:

1. 谁与谁发生关系?
2. 关系中谁主谁副?
3. 发生关系的次序。
4. 发生什么关系:进一步可分
4a)词法的;4b)句法的;4c)(逻辑)语义的;
4d)话语的(discourse:譬如 话题);4e)领域的(譬如 IE)。

自然,到了领域,其实已经超越了句法范畴,进入语用了。但语用本质上还在句法的延长线上,正如 discourse 关系解构也是句法的延伸一样。逻辑语义通常被认为是句法深度解析的终点。

白:
2可以推出3?被吃掉的就是副的。除非多爹的情况,一副多主。这时出现交叉,画括号也不都管用。没做成主做了副的邻居,会把做主的额度过继给自己的主。

李:
这四点相互关联,但也不妨适当分开,各个击破。

1+3 的任务可以定义为打括号,找分界点。有了 1+3,2 就可以推出来。反之,有了 1+2, 3 也应该可以推出来。

关于1,我们通常的(PSG式)思维定势就是,看哪类词与哪类词发生关系:

S –》 NP VP
NP –》 Det N

之类。这是预设邻居不发生关系,除非发现了关系。可以叫做【兔子不吃窝边草预设】。 其实,我们的语感和大量的语料事实告诉我们的,是与语言学家和乔姆斯基相反的一个预设:邻居总是发生关系,除非发现他们老死不相往来。日久生情是人之常理,语词也是如此:远亲不如近邻,做邻居自有做邻居的道理。摩肩擦踵坐怀不乱,是例外,不是常态。这个预设可以叫做【邻里友爱预设】。这个预设的一个强有力的证据就是,即便是所谓语序自由有丰富形态的语言如俄语、世界语,发生直接关系的语词仍然在邻里之间为多,真正的远距离勾搭很少,并不比语序固定的语言相差太多。

根据【邻里友爱预设】这个原则去做 parsing,可以第一步只找例外,也就是找分界点。譬如中文里面的 “也/都/还” 这些词就是:这些词往往是主语谓语的分界标志。它们对左邻居没有丝毫兴趣,总是像个门卫守护着右邻居。比较下面的 minimal pair:

你走好
你走就好。

可见“就”这个小词的分界作用是如此之大。对于“你走好”,可以假设 “你-走” 发生关系,“走-好” 发生关系,这个不需要规则,这是标配,形式化标注可以是下列三种之一,都大同小异:

  1. PSG1:((你 — 走)– 好)
  2. PSG2:(你 –(走 — 好))
  3. DG:(你 –(走)– 好)

重申一下【邻里友爱预设】:只要挨着,不分阴阳男女,都会发生关系,除非遇到了 “就” 这样的 outlier:“你走就好”。(你 — 走) no problemo,*( 走 — 就) 就不行了。(就 — 好) 可以发生关系,但前提是 “好” 没有其他可能了:

你走就好运作了。

(你 — 走),OK;“就” 挡道,跳过。(好 — 运作)与(运作 — 了) 都可以,对于 DG 无所谓。

((好 — 运作)– 了)
(好 — (运作 — 了))

“朋友买的”,的字结构 OR 语气小句?

A:朋友买的
B:朋友买的什么?

小句 desu。等价于 “(这是)朋友买的”。

A:朋友买的 ……
B: 朋友买的难道不好?

搞不清是小句还是名词性的字结构,如果是前者,等价于 “朋友买(这事儿)难道不好?”。如果是后者,说的是 “朋友买的(东西)难道不好?”。虽然说有差别,但人好像不 care,而且也的确多数时候无法区分。所谓变色龙即是如此:CL_or_NP(CL:clause)。

“烤白薯”的故事,以前说过,NP OR VP?

A:我吃了烤白薯。
B:吃了白薯啊,好羡慕。

NP desu,因为“吃”的只能是“物儿”(NP),不能是“事儿”(VP)。

A:我喜欢烤白薯。
B:  你喜欢烤白薯这事儿呢,还是喜欢烤过的白薯这物呢?

这儿的变色龙形式化就是:VP_or_NP。

白:
只在的字结构反填“买”的残坑这个环节有微妙差别,外部没差别。的 升格是一样的(自修饰)。填 的 的坑的萝卜是一样的。

李:
一个是V(事儿)一个是N(物儿),与“烤白薯”有异曲同工之不妙:“喜欢烤白薯”。究竟喜欢烤还是喜欢白薯?关键是 who cares,90% 的时候听到上面的句子,听者不觉得有歧义,也不感觉诧异,只有语言学家逻辑学家这两家,吃饱了喜欢咀文嚼字瞎琢磨,感觉不舒服。

当年玩HPSG的时候,最喜欢 unification 系统的 typed structures 中的一条,就是 unspecified。做老实人,不知道就不知道,也不care。信息 unspecified,等到合适的时机,自然就被补上了。这是信息融合(fusion)的理想世界。太理想了,以至于很难落地,现如今是昨日黄花,无人问津了。

白:
不一样的就在于是不是回填“买”的坑。回填是在第三层了。第三层确实可以不 care。

买的 回填 买,也有不同解读。“买的是次品”vs“买的不如卖的精”。关键是“买”是双宾动词,标配坑太多了。一个被省略的成分还原回来已经是够脑补的了,再进一步脑补她带不带谓词性的坑,这会伤元气的。烤白薯 毕竟真实的坑和模式在,无需脑补。

买的不如卖的精,租的比买的合算,这时是需要care的。

李:
买的(东西)不如卖的(东西)精吗?
买的(人)不如卖的(人)精吗?

买的不如卖的精明。
买的不如卖的精致。

白:
精到底是什么的简称,有标配的。非标配特征必须显性出现才激活。unspecified是保守策略。先标配,有trigger再翻盘是激进策略。难说保守策略就一定好,也难说两种策略就不能在一个系统里和平共处。

李:
unspecified 与 default fillers 可以也应该共处。

 

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白梁于94:爱因斯坦是卓别林的崇拜者, 谁崇拜谁?】

梁:
“爱因斯坦是卓别林的崇拜者。” 谁崇拜谁?

李:
好句。歧义句。

爱因斯坦的崇拜者是卓别林
卓别林的崇拜者是爱因斯坦

也都歧义。

以前提过,“者” 是一个看上去像词法后缀(-er),但其实常常跳到句法层面的词素,V-者;VP-者:

违者; 违规者;违反规定者;违反中央三令五申的七项规定者

某人的崇拜者:(1)【(对)某人的崇拜】-者 == 【崇拜某人】-者;(2) 某人【(对别人)的崇拜】-者。

中文好鬼。

如果改成“对象”,就避免的这个讨厌的“者“带来的歧义:“某人的崇拜对象”。崇拜的宾语(即“对象”)必须他指,而修饰语只能是施事。

我是鲁迅的崇拜者;鲁迅的崇拜者是我。

这个没有歧义。是语言外的知识补脑进来消灭了歧义:我是小人物,鲁迅是大人物;我是当今人,鲁迅是历史人物。常识告诉我们:小人物崇拜大人物,而不是相反。时间铁律告诉我们,活人可以崇拜过世的人物,但历史人物绝不可能了解,更不可能崇拜今人。

爱因斯坦卓别林是同时代人,印象两人见过面的。好像见过两人的合影照片。相互崇拜都是可能的。外部知识不能提供区别性消歧支持。

梁:
印象很深,小时候听过“Einstein was a great admirer of Charlie Chaplin’s films.“

李:
“邓公是毛公的批评者“,也同样歧义。在毛时代,邓是属下,根本不敢批评毛,只有被批的份儿(三上三下)。在邓时代,邓继大位,毛已作古不能批,只能被批。

于:
@梁焰 @wei 语句的意义由语法不一定能确定,而是语用确定,现在不已经是常识了吗?

白:
现在讨论的是语用确定落实到什么地方

于:
@白硕 语用似是考虑语境吧?语境似包含:说者、听者、时间、地点、事件、意图等等。同一语句的不同语义,依赖于语境的变化。目前语境的研究也有一些进展
语境的可计算性方面取得了一些进展

白:
希望有轻武器对接parser,不要一上来就是重武器,30年搞不完那种。

于:
@白硕 轻武器很难。据我所知,语境计算似刚刚起步,跟parser对接还得等等。不过,可以写文章了

阮:
很多领域应用中,语境相对明确,感觉可以有轻武器。

于:
@阮彤 那就得领域限定,情境也也就相应限定了。限定一定程度,理论上会有轻武器。

白:
批评者作批评对象理解,太少见了。可以做例外处理。至少要一个什么局部占优势的语境才能激活这个例外才可以。标配还是施事。有崇拜者,没有崇拜,更没有崇拜的内部(填坑)结构,自然就打住了。

李:
句法可以高高在上,暂时不烦心深层的逻辑语义。等到落地的时候再看要不要烦,到那时候,绝大多数的问题已经烟消云散。能够留在雷达上的,就是那个落地所指向的实际应用领域场景。进入场景,就是另外一个世界了,领域知识(包括领域本体图谱和领域实体图谱),业务逻辑等开始发力。

白:
现在已经有了“xx对象”这种清晰的表述,再用“xx者”这么暧昧的表述,纯属段子手了。所以“xx者”已经是标配的施事专业户了。

从轻发落的一个办法是,对一个有n个坑的动词V,“V者”只负责填一个坑而不锁定哪个坑。V的pos标记是S/nN,“者”的pos标记是N/S,二者结合并考虑反填的结果就是N/(n-1)N。在这样的句法体系里不必确定逻辑主宾语,也不必确定施受事,只对未饱和坑做加减法。等到说“谁的什么者”的时候,又可以少一个坑。所以,我们不在乎引入“者”的内部结构。这样处理,只不过为了在句法层面找一个能说明“谁和谁有关系”但不必深究“是什么关系”的合适边界。“是什么关系”语义层面自会给出“标配解”,如果必要,语用层面再给出“精确解”。虽然也是高高在上,但是句法本身就能确定的句法结构绝不留给语义。如果V是不及物动词或形容词(S/N),则一切不确定性消失,与“者”结合后形成的就是N。

有意思的是,英语有词法主动被动两个后缀,对歧义完全免疫,比中文的类后缀“者”与“对象”的对比彻底:

A is B’s admirer : A admires B
A is B’s admiree: B admires A

哈 网上有争论说 admiree 不如 admired:-ee 是一个接受度不够广泛的后缀,见:https://www.quora.com/Does-the-word-admiree-exist-as-opposed-to-admirer

高:
killee
lovee

李:
lovee exists in theory; loved (one), beloved are used orally.  We never know, as language is evolving, someday this suffix might be more widely adopted or might fade away……

 

 

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白宋93:汉语语序的自由与不自由】

白:
我觉得汉语语序没有那么强的作用。坑也不是非要凑齐了再咋地。应该有一种符号化的mechanism,很方便地刻画这种对语序的包容。大家之前都被误导了

李:
语序我觉得汉语没有那么强的作用
没有那么强的作用我觉得汉语语序
汉语我觉得语序作用没有那么强的
汉语语序作用我觉得没有那么强的
…………

尝试结论一下:(1) 宏观语序没有那么强,虽然统计上一定是少数几种语序最常用,但语序灵活性在。(2)微观语序相对固定。譬如 上句中 “汉语语序” 不能说成 “语序汉语”,“我觉得” 不能说 “觉得我”,“那么强” 不能说 “强那么”等(不过 “没有那么强” 倒是可以说 “那么强没有”:这个有点赶巧了,遇到“没有”这个多用法的小词),但“主题化”句式有一定的打破语序的特殊作用:

语序 【停顿】 汉语作用没有那么强

汉语微观语序(phrase内部)不大自由,与有性数格一致关系的欧洲语言对比强烈:有一致关系的语言,就不需要语序来制约谁是修饰语谁是head了。汉语宏观语序(phrases 之间)的自由度,比我们通常以为的,要大很多。我们确实有意无意被误导很久了。

白:
分析用,“不能说”只是在结构作为一个组件参与排岐的时候才有用。其他情况基本不用。

李:
微观中 最显著的关系是 mods 与 head,语序不固定就产生歧义,必须固定。尤其是定中(比较:“木头沙发” vs “沙发木头”)

白:
填坑与盖帽,本来就是两种性质的东西。

李:
到了 副词-形容词组合:很好 vs * 好很 (但是我们有个 “好得很”);状语和动词: 认真工作 vs 工作认真,居然两可,虽然句式不同。

phrases 之间,语序很自由,但仔细看,也有说法。一般来说,宾语提前很常见,但是主语后置不可以,少数例外是“来 去”这些“自动词”:

三个人来了
来了三个人

宾语提前的自由度 大于主语后置,这多少因为前者的说法常见,被共同体约定俗成以后,只好牺牲后者的自由度:太多的自由容易乱套,所以一个元素的自由增加建立在另一个密切相关的元素自由减少的前提下。

白:
喜欢死我了

李:
哈 这个以前议过(【李白82:汉语重叠式再议】):“我稀罕死她:是我喜欢她
她稀罕死我:既可以是 她喜欢我,也可以是 我喜欢她。汉语鬼不鬼?”

S 喜欢死 O:(1) S 喜欢死 O;(2)O 喜欢死 S == O 让 S 喜欢死(O) 【使动解读】

我喜欢死iPhone X 了
iPhone X 喜欢死我了。

歧义:他恨死我了。
不歧义(常识带入):这破玩意儿恨死我了

宋:
汉语的语序,还是有硬约束的。“张三打李四”,一定是张三动手,李四挨打,这个语序不能乱。一般来说,施动受三个短语组成小句,无约束的全排列有6种,能使用的只有3种:施动受,施受动,受施动。当施受无法根据同动词的语义关系来区分时,后两种也不能用。

白:
施受动到底是句法关系还是语义关系?语义关系句法是可以不管的。

宋:
施受动是语义概念,但在汉语句中受语序限制,应该是语义的形式规则。句法分析可以不管,但语义分析要管。我想,用语义适配性解决不了“张三打李四”的语义分析问题,还要使用这种语义的形式规则。

李:
施动受(SVO)是逻辑语义。逻辑语义解析是分析的根本目标。归在哪个模块 分几步走 那是系统内部的事情 但目标不变。

以前说过 常识永远是软约束 而显性形式(关于“显性形式”,见【立委科普:漫谈语言形式】)可以是硬约束 软的不能代替硬的。当一种形式让我们理解了反常识的时候 我们意识到了硬约束。乔姆斯基的绿色思想(“Colorless green ideas sleep furiously”), 精妙不过如此。

硬约束举例:

1 语序: 白米饭吃了我
2 小词 “被” 和 “把”:我被白米饭吃了。白米饭把我吃了。
3 直接解说(包括用小词也用实词):白米饭对我不是吃的对象,反过来我成了白米饭食用的对象。

白:
白米饭把我吃胖

李:
“吃胖” 那种句式(vt 加 结果补语a 构成) 不是硬约束的反例,反而是硬约束的论据。这类词法变式 有严格的规则可循。不仅仅是汉语,很多语言都有一套类似的词法,自动变使动 等等。

有了结果补语,合成词词法从自动变为使动,模式的语序也相应变动,逻辑语义在这个变式中是确定的,因此其中语序仍然是硬约束。如果我们说“我把白米饭吃胖了”,虽然反常识,但语义是确定的。

直接量(小词)、语序 这些显性形式 是硬约束的基本材料,在硬约束实现到pattern的时候 是它们的组合在 enforce 硬约束。

NP1 把 NP2 Vt 了
NP2 把 NP1 Vt+Buyu

其所以后者可以转变自前者,乃是 pattern 里面所规定的语序与小词的硬约束在起作用。无论 “把” 在一种 pattern 里面引入的是受还是施 它都是硬约束能够实行的一个硬件。否则 施受和语句理解就无从谈起。如果常识语义这种软约束可以一统天下 决定我们的理解过程 如果语言学显性形式这些硬约束可以排除在理解之外,人类就不存在新的思想 不存在童话和小说 也不存在知识的更新和应付动态世界的可能。

事实上 常识是最没有信息量的知识 我们的语言交流 其关注点总是集中在非常识和反常识的部分 那才是我们的真正的信息营养。俗话说 狗咬人不是新闻(不具有太多的情报性) 人咬狗才是。

白:
歧义丰富的情况和歧义贫乏的情况,常识的作用是不一样的。歧义丰富时,常识帮助消岐。歧义贫乏时,常识无感,反常识帮助建立修辞性理解。

李:
但是 硬材料不一定是硬约束 只是硬约束可以利用的元素,硬约束离不开 pattern,pattern 才是实行硬约束的执行者,也是协调软约束的场地。是 pattern 告诉我们有个著名的软约束协调的问题 譬如 pp attachment:vt np pp,pattern 是重中之重。FSA++ 就是 pattern 描述和实行的利器和理想的形式平台 formalism,因为它最直接 直观 抓住 pattern 的描述。

白:
举个例子啊这两筐、这筐、两筐,都OK。两这筐不ok,可分析用,也不care。这pattern长啥样,挺关键的。

李:
白老师是要说 语序没大关系 不需要作为硬条件么?问题是,有的时候,它的确就是硬条件,不 care 的前提是它不留歧义的余地或隐患(其他条件足够补偿这个条件的缺失)。但这事儿很难说,至少是睡不好觉。睡不好觉是因为我们不知道它留下隐患的几率有多大。任何一个条件理论上都可以抽掉,在有些 cases 并不影响解析,但其他的一直想不到的 cases 呢?总之,如果觉得某个 pattern 的词序是硬性的(譬如 SVO 不能倒过来 OVS),那么最好还是强制实施。“两这筐” 这种要不要强制排除,存疑。毛姑姑,作为分析不强制问题不大。(当然,作为生成,则必须强制,否则不是人话。)

一般而言,我们在NLP中玩条件平衡术,松一点或紧一点,带入词序或不带入词序,主要是因为自然语言的组词成句的排列,在“法”的平面是非常稀疏的,人类已经或可能说出来的序列比起全排列只是一个极小的子集。因此,作为分析的 parsing patterns 不必要把“合法”的约束,予以全面的强制,只要针对可能的歧义做出区别即可。

完全不需要语序制约的语言理论上存在,因为语序不过就是一种显性形式,总是可以以其他的显性形式代替来表达逻辑语义。可以假想一种语言有足够丰富的格标记(通常用后缀或前缀这种显性形式:介词可以看成是前缀,常用来表示格),董老师定义了近100个逻辑语义,算是非常细了,那么我们假想一种语言有相应的 100 个格标记可以使用,一一对应,没有歧义。再假想这种语言还有足够丰富的一致关系(agreement)标记来表达哪个词与哪个词发生逻辑语义的关系。

可以假想一种语言有足够丰富的格标记(通常用后缀或前缀这种显性形式:介词可以看成是前缀,常用来表示格),董老师定义了近100个逻辑语义,算是非常细了,那么我们假想一种语言有相应的 100 个格标记可以使用,一一对应,没有歧义。再假想这种语言还有足够丰富的一致关系(agreement)来表达哪个词与哪个词发生逻辑语义的关系。

有了这两样东西(小词或语缀常常是表达这些东西的显性形式),语序这种形式就可以完全排除了。因此,任何排列组合都不影响解析。可惜,实际中没有这种自然语言:即便声称自由语序的语言如俄语和世界语,也不是可以完全排除语序条件而达到解析的。

 

【相关】

【语义计算:汉语语序自由再辩】

【语义计算沙龙:语序自由度之辩】

【立委科普:漫谈语言形式】

【尼沙龙笔记:图灵测试是语言理解的合理表示吗?】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白92:自然语言漏得筛子似的,未必要补漏】

李:
火车上要注意安全,贵重物品随身带,行李箱放在能看到的地儿哈!贼春节不放假

乍看 以为贼是修饰语 一愣 还有骂春节的呢。要是改成小偷就好了:“小偷春节不放假”

严格说 放假是个复合概念 它挖了两个坑: 【谁1】 给 【谁2】 放假,就是
【谁1】 放 【谁2】 的假。小偷是谁1 还是 谁2 呢?好像既是谁1也是谁2 小偷通常是单干 不成组织 自己给自己放假。如果是盗窃团伙 也许应该是谁2,需要头儿批准才能放假回家过个年。

梁:
“红杉树最便宜的是多少钱一包? “ 新春快乐!!!

白:
咋不说中南海呢……

“睡觉我喜欢开着空调”“牛肉我喜欢三分熟的”两例中,“睡觉”和“牛肉”的句法功能相同吗?

宋:
什么是句法功能?主谓宾定状补吗?

白:
@宋柔 如果是,该怎么定?

李:
句法不如逻辑语义容易有标准答案,因为句法是形式归纳,而形式归纳有不同的形式角度,所以句法学家特别爱吵架 历史上甚至著名的语言学家之间也针锋相对,充满了不毛之争。逻辑语义则较少争议:人类趋向于有一把共同的尺子。

从词序的形式角度,从discourse的话题的表达,二者是相同的功能。从逻辑语义角度,则差别很大。

这个句首的 Topic 与 句末的“的字结构” 是回指的关系,因为 的字结构里面的 AP 与 NP 有逻辑修饰关系。

白:
相同之处都是把被修饰语前移为话题,不同之处是一个体词一个谓词。只画树,难以体现话题跟谁关联。

“那些字帖我只临了王羲之的。” “王羲之的”并不修饰“那些字帖”而只修饰“字帖”。

树藏起来了很多东西,不能作为讨论的基础。

李:
句首谓词比较讨厌,可以说是话题,但具体逻辑语义可以表示条件、时间、伴随情况等。

睡觉的时候,我喜欢开着空调。
睡觉的话,我喜欢开着空调。

白:
关键是,谁睡觉?至于睡觉和开着空调什么关系,在句法层面才真的不重要。二者搭上扣(有关系)即可。但是谁睡觉,过这村就没这店了。

李:
不重要。
甚至谁开空调 也不重要。非谓语动词省掉主语是有道理的:我喜欢(我 or 别人为我 or 机器自动)开着空调。

白:
“着”表遗留状态,谁造成状态确实不重要。“门开着”天生就是自足的,不需要额外萝卜。睡觉不同。“墙上挂着画”谁挂的也无关紧要。

李:
一般认为 主语可以顺着梯子下:“我喜欢游泳”。

白:
穿透

李:
谁游泳?尽管是个很无聊的 “理解” 问题,大家通常认为是 “我”:我喜欢我洗澡(其实加了“我”逻辑语义是全了,听上去反而别扭,或增加了言外之意:我喜欢自己洗澡,不喜欢人家给我洗澡)。

可是:“我喜欢下雪”。谁下雪?老天、上帝,反正不是“我”。

白:
下雪❄已经针插不进水泼不进了。来个老天也只能是状语。

李:
我喜欢反右。谁反右?其实是组织 群众 最终是领袖。
md 我其实恨透了反右。自己就是个右派 只不过生不逢时 没下地狱。

白:
“我恨透了做家务”,好象不是恨别人做家务唉。

李:
如果省掉 “做”呢?“我喜欢家务。”

白:
没有做,就没有穿透的问题。

李:
这个“做”都无关痛痒 更崩提“谁做”了。总之 语言不像逻辑那样完整 自有其道理。逻辑不必分轻重主次 讲究的就是完备 自洽。而语言漏得筛子一样 却有效传达了语用的需求。

白:
各坑有各坑的权重。算术往往比逻辑聪明。应该有相应robust的逻辑联结词,没有是逻辑不尽责。比如我上次说的,超过三分之二的布尔变量取值为真。还应该有不拘泥于语序的符号连接运算。这些都需要改造逻辑、改造形式语言理论。可以有不刻板的逻辑。可以有允许灵活语序和自由省略的形式语言。

李:
自然语言最大特点还不是歧义 而是不逻辑 常省略 含糊其辞。交流的常态就是说者糊里糊涂说 听者糊里糊涂听,奇的是二者还不觉得糊涂 可以一样谈得热火朝天 酒逢知己。

梁:
对,使用语言,是为了有效传达信息。你已经知道的,我就不说了。什么不知道,你问我呀,等会我补上就行了。

李:
除了语言学家和段子手 没人在乎细节 不 care 语义模糊。正常交流中 90% 的含混之处 双方都不感知,只有少数的细节感兴趣了,于是发现含混,要求澄清。

于:
@wei 日常谈话语义并不模糊。@wei 省略并不意味含混

李:
省略和歧义都是含混的缘由。省略了,就有个默认标配。而标配在共同体宏观上有一个约定的填补 但在个体之间未必一致。省略在语言学上叫零形式,因为形式为零 理论上无法不导致含混,至少是留下了争论的余地。段子当中很多这种例子,捧哏的突然不捧了 处处别扭,把所有的标配推翻。

白:
一般是抬杠的余地。对标配不合作,总是可能的。

李:
是啊 显性形式就堵塞了这个漏洞 没有含糊的余地。法律文书很讲究这个,结果读起来就不像人话。

日常对话:

a 打败了 打败了
b 好哇 好哇 真太开心了

a 你开心啥?
b 不是打败了吗?

a 是啊 你们队打败了
b 好哇。对了,打败了谁家?

a 我们队打败了
b 好哇 一样值得庆贺

a 你们队败了 我们队打败了你们队 快快 喝一杯
b ……

于:
@wei 省略是因为对方知道。如果把所有信息补齐,就太啰嗦了,对话根本进行不下。

李:
子非鱼啊。你怎么知道对方知道 即便你以为对方知道?

于:
@wei 如果对方不知道,大多对话就结束了。 当然教育除外

李:
上面的多轮对话 互相并不知道 也一样没结束

白:
有sentiment,一样可以做出猜测,只不过猜测一直在动态修改。
胜败,与喝彩,的传导路径。谁是哪一头的,可以顺着这个传导路径慢慢明晰。

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白91:休眠唤醒需要打离婚证】

李:
以前说过,local n元组搞定分词,通常认为n等于5足够(5-gram 平天下,见【李白71:“上交所有不义之财!”】 )。今天有个例子,可以看看 bigram trigram and 10+ gram 的各自说法:

这所以自由 时尚 叛逆和反潮流著称的学校 连塔也不得雍容。

Bigrams: 这所 所以 ……
trigram: 这所以 ……
10+ gram: 以 …………著称;这所…………学校

毛估估一下这场分词拔河赛的力量对比:“这所” 和 “所以” 单算的话,大概势均力敌,感觉 “所以” 稍微更强一点。 到了trigram “这所以” 形势基本明朗了。 【这所/以】 (or 【【这/所】/以 】)远远强过 【这/所以】,虽然小概率反例会永远存在。 到了 10+ gram,由于框式结构的搭配要求, “以 ……著称”(介词动词搭配)和“这所……学校”(量词名词搭配), 【这所/以】的分词及其解析,占绝对优势 可以板上钉钉了。

可是谁等得起 10+ 呢?或者我们找到一个投机取巧的算法 把搭配距离缩短,或者咱就将就在 ngram (n 小于等于5)里面玩分词。原句(from yours truely today)以及插图(courtesy of yours truely too)是:

“一直觉得作为地标 这塔缺了点啥 想来是太过苗条。这所以自由 时尚 叛逆和反潮流著称的学校 连塔也不得雍容。”

白:
还有“所……学校”之间的chemistry。强化所/以分离

李:
都是远距离。所以得有个合理的距离缩短机制:

白:
距离拉近时和平分手即可。

李:
和平分手很难 有一屁股屎要擦:(i)“所以” 先成了连词后,要保证里面的两个词素 仍然看得见 这是其一。(ii)尝试分手的时候 要一分为二,数据结构 凭空要多出一个 token 出来。(iii)一分为二 各就各位以后,要重新查词典 得到各自全新的特征。(iv)然后才是参与到 parsing 去,该搭配搭配。哪里那么容易分手啊,离婚证也不好领。如此“休眠唤醒”(???),对平台很有要求的。

一个方案是,所有的多字词在一开始就把每个字当成 token 进入数据结构,然后把初步的词典为基础的分词当成是合成词的“绑架性”黑箱组词(组字成词,而不是切词),组词以后,由于黑箱原理,立马屏蔽下层的词素 使不见天日,让其休眠,以防添乱。这样的话 休眠唤醒一分为二的时候 就不需要从根基上动土。但这种处理 在单字层做了太多的虚功。不是完全不可行,但也没见人真地践行到 real life 系统去。

白:
退一张北京到上海的票,可以卖北京到济南和济南到上海两张票。12306都能搞定的数据结构,很难么?“所/以”这一近距离无优势而有远距离呼应可能性的分词方案,相当于分别挂两个订单,如果这两个都找到买主,我就退票。

所不是量词的情形也有可能:“他所以为荣的那点本事,早就过气了。”

所有认准一条标配的道儿,但不准备走到黑的,都可以挂出反悔订单,外面时机成熟了,立刻造反。

组合订单(多笔交易要么同时成交要么同时撤销)必然引入同步,同步必然损失效率。所以一定是trigger驱动,而不是挂单驱动。无 trigger则无时间开销,至于空间开销,那是毛毛雨。

李:
trigger word driven?以前我主张的休眠唤醒之术,就是trigger词驱动(见【歧义parsing的休眠唤醒机制再探】的“难过”)。

不过,关于时间空间开销 其实好像都不是事儿。fact of life is 比起图像 比起语音,比起当今有如军备竞赛一样地使用计算资源的那些 monsters,动辄成百上千的GPUs集群,目前的 NLU 太小儿科了 简直像过家家。 给个 high end pc,就乐颠颠地研发或耍弄 deep parsing。老朋友那天跟我说,现在的问题是 给你100万倍的计算资源 你能做什么?我懵了 打死我 我也用不了这多资源。只会螺丝壳里做道场 玩具一般。还梦想着建通天之塔 探究人类语言最微妙的奥秘。

郭:
机器翻译,用的计算资源也不少。

李:
那天说了 神经mt与语音转写同理 已经不是 nlu 了:都是鹦鹉学舌 离开理解越来越远。看看这篇分析:

The Shallowness of Google Translate

It’s pretty lengthy. Pointing the fact of no understanding in deep learning.  We all know it is true.  What we did not know was how far a system can go without understanding or parsing on an end to end deep neural network modal.  All criticisms here are valid but still MT has never been this impressive and useful in practice unless you make the wrong choice to use it for translating literary works or for translating domain documents where it has no human translation data to learn from.

他说 机器不过是处理了符号序列 它根本就没有丝毫 reading 的真实能力。reading、 parsing 和 comprehending 及 understanding 在英语都是一个意思。是 Elisa 效应让我们以为它理解了 就跟领导在家老跟宠物牛顿说话 坚信牛顿能听懂 也能表达 尤其是肚子饿的时候 牛顿表达能力惊人的丰富。牛顿的表达能力 虽然只是 meow 的不同变体 领导声称可以解码。

“传统” AI 和 NLU 就是理解了吗?也难说 因为符号体系内部也是人类自己跟自己玩。好的符号体系更像是好的助记符 摆弄出貌似逻辑的推理链条来 具有算法过程的透明性 如此而已。但起码 这看上去还在模仿人类的理解和思维。

理解的根基是举一反三 高度概括 以有限对无限 所以不需要大数据 大计算 大记忆。建立在三大基础上的深度 其实是靠蛮力。不是举一反三 而是举一百甚至上千 也未见得就能返一。

 

【相关】

【李白71:“上交所有不义之财!”】 

【立委科普:结构歧义的休眠唤醒演义】

【立委科普:歧义parsing的休眠唤醒机制再探】

【一日一parsing:休眠唤醒的好例子】

The Shallowness of Google Translate

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白宋郭90:句法与逻辑和语用的纠缠】

宋:
@wei 张三是打李四的凶手。其中,张三一打,是一凶手,两个依存关系交叉,你是怎样处理的?

白:
凶手有个X坑,动名皆宜。

宋:
@白硕 这个坑的语义是什么?

白:
使其成为凶手的事件

李:
“张三是打李四的凶手”的问题,这是句法与逻辑的纠缠,不在一个层次。“是” (表示上下位关系,taxonomy)与“的”(表示所属或限定的关系)在逻辑上没有节点地位,只有关系意义,纯粹是一个句法形式,是一个小词。因此,逻辑上的关系没有依存交叉,逻辑上,“张三” 与 “凶手” 发生 ISA (上下位)关系,“张三” 与 “打” 发生逻辑主语关系。这不是交叉 而是同一个起点。见下图:

【SV: 张三,打】
【VO:打,李四】
【限定:打(李四),凶手】
【ISA:张三,凶手】

这四个 binary 的逻辑依存关系没有交叉。反映了本句的逻辑语义,“是”,“的”,都是小词,没有作为节点的逻辑地位。

Me:
至于句法的依存结构,那是另一个平面的事体:

白老师所说的“凶手”挖了个【刑事案件】的坑,用得好的话,可以帮助句法消歧:因为 “打李四的凶手” 有一个句法歧义在:“打”的是“李四”,还是“凶手”?从“打人” 的本体知识,可以得知打人属于刑事案件(寻衅滋事),正好填“凶手”的坑,比“李四”更加合适。但其实要真用上这个知识,无论是经过常识推理,还是利用大数据的语义相偕的统计,里面还有不少沟沟坎坎,并不是那么容易。其他的消歧的 heuristics 也有,似乎更好用。

“打李四的二儿子的凶手”,“打” “李四”,“打” “二儿子”,还是“打” “凶手”?

白:
匹配这种X的原则:1、S优先;2、如果是N,表“事件”的类别名词优先。二儿子二者都不是,优先级最低。“打李四的黑社会团伙的凶手”有歧义了。凶手属于团伙、团伙属于李四的可能性存在。这种解释下,“凶手”的坑仍未填上,且处在“挨打”境地。关键是,“黑社会”、“团伙”、“凶手”负sentiment一致,搞成一伙很顺,偏要黑吃黑很拧巴。坑填上了,sentiment却拧巴,这不好接受。

李:
在 “打 【human-1】的…………【human-m】的【human-n】”的模式里面,“打” 最不可能的宾语是 【human-n】,虽然理论上不能排除。排除其他知识,“打” 最可能的O 是 【human-1】,打嘛,打不了那么远。动宾有某种就近原则的 heuristic 在。但是,如果 【human-1】的【human-2】里面,【human-2】有个很大的坑,需要一个【human】所有者,麻烦就来了:“二儿子” 恰好是 这么一个 【human-2】,他一定有个“老子” 的坑。除了孙猴子,没有老子的儿子是不存在的。于是,“二儿子” 要抢“李四”这个可能的老子,“打” 也根据就近原则想“打”这个“李四”。

白:
各种heuristics角力的最佳模型还是神经。

李:
打不赢还是打得赢,天知道。也许“神经”知道,谁知道呢。不知道神经什么时候能够把这些个鸡零狗碎的 heuristics 都考虑进去,省得专家费这个脑子。关键是,费尽了脑力,还是“测不准”。

白:
“打李四的二儿子的犯罪事实”:李四占位置优势,二儿子占大坑优势,犯罪事实位置最远,论坑反而要“打”当萝卜,填“打”的坑不占任何优势。这就是角力。任何一种heuristics只是从一个侧面做贡献而已。但自身暴露的弱点也会埋下祸根。是没爹更坏,还是没“爹”更坏?

李:
因素一多,人肯定干不过机器。但前提是不是有一个巨大的标准答案在(带标),数据不稀疏,然后一锅炒去看角力。

白:
“的”字的嵌套顺序也很有意思。

李:
“的” 不知道什么时候开始进入,继而被滥用的。古汉语的 “之” 可没有现代的 “的” 这么被滥用。有了 “的” 汉语裸奔性得到极度夸张。修饰语之间的内在次序约束被打破,想到啥(修饰语)说啥 根本不过脑子 直接就蹦出来。蹦出来后加上个 “的” 就齐了,显得符合语法。没有 “的” 的话,一个 NP 的前修饰语 怎么摆弄 很有讲究 各种约束。超过两个 的 以上的 NP 没有好东西。语文老师应该一律打回去重做。

白:
比如“张三打李四的二儿子的女朋友的犯罪事实”。又出来一个“女朋友”是张三的,还是二儿子的,的问题。其实就是一个“当量”问题,一个坑顶几个位置。一个首选位置顶几个次选位置。等等。一个反过来抢萝卜的猪队友相当于扣掉几个位置。如此等等。这个“当量”也就是神经里的权值。

李:
想到另外一个语义计算的问题:在句子 “我穿中号鞋大吗” 里面,这个“大”是怎么个说法?“大” 前有四个先行者:1. “我” 2. “穿” 3. “中号鞋” 4. 整句:“我穿中号鞋”。“大” 貌似针对的是 “中号鞋”,这样的话,那就是后置定语或后置补足语了,但感觉总有一点不对劲。比较:

(1) 中号鞋大吗
(2)中号鞋穿起来大吗
(3)中号鞋我穿起来大吗
(4)中号鞋对于我大吗
(5)中号鞋对于我的脚大吗

感觉, (5) 具有理解客观性形容词“大”所需要的完整信息:【对象:我】,还有 【小对象:脚】(二者是整体与部分的关系,这也是情感分析(sentiment analysis)中针对主观形容词(如“好”、“坏”)的大小对象的常见形态:“iPhone X 的屏幕很好”,其中【对象:iPhone X】,【小对象:屏幕】)。

“鞋” 可以从本体知识里面引申出【小对象:脚】出来,所以 3和4 在引申以后具有完整的信息。(1) 最差,需要对话双方有相当的默契和 shared 背景和上下文,才可以相互理解,否则就是无厘头,缺省了关键信息。(2) 缺乏大对象(主体),理解也不完整,反问或追问的话,应该问:谁穿“大”呢?“大”对谁而言呢?

郭:
@wei “我穿中号鞋大吗?” 觉得你的问题问偏了。

首先,这句dependency parsing应该没问题。那么,问题其实在语用。就是说,你丢给我这句话,我怎么接?

先回想下你自己的逻辑:
1. 中文可用两极对照来指代属性:“大小”就是指“size”
2. 两极中的一极是default:“大小”里的“大”就是这个default.

按此,这样三句,其实等价:

“我穿中号鞋 大 吗?”
“我穿中号鞋 小 吗?”
“我穿中号鞋 尺寸对 吗?”

这样,我已经有理由做一步 reduction,理解你其实要我帮忙回答:

“我穿中号鞋?”

或者更简单地:

“我 穿 什么尺寸 ?”

这就好办了!

李:
不错,不错。

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【NLP随笔:词法内部结构休眠,句法可以唤醒】

下班路上有一个关涉词法句法的灵感,有点意思,随笔记下,省得忘了。

开问:对于词典列举了的词条,还要不要记录内部词法呢?

当然,既然列举了,词法应该不重要了,一切都是绑架。(如果要记录词法,所记录的词法也是绑架。)词条就是一团泥巴,爱怎么捏都行,一切看方便和需要。尽管绑架不需要讲道理,自然也就不必讲词法,但是反观人对词条的语言学认知,其实还是在无法有法之间的灰色,并不真地就是一团漆黑,进了词典就都是黑箱子了,其实也有灰箱子,甚至相当白的箱子在内。

举个例子来说明这种灰色的法与非法状态。

“细心” 是一个2词素的词条 在所有的现代汉语词典里面 通常贴个形容词A的标签。因为它非常典型地起一个形容词的句法作用,与其他形容词同义词“认真”、“仔细”、“刻苦”类似:

(1)做定语:细心人。(认真人。仔细人。刻苦人。)
(2)做状语:细心做事儿。(认真做事儿。仔细做事儿。刻苦做事儿。)
(3)做谓语:她很细心。(她很认真。她很仔细。她很刻苦。)

语义上,“细心”挖了一个【human】的坑,“她”正好跳进去。无论句法上做定语状语还是谓语,逻辑语义上,“细心”都应该挂上这个【human】。

句法语义之下是词法,如果从词法内部看,这几个词条是不同的,而这一点对于人其实并不是黑箱子,而是有相当透明度的,可以轻易认定:

“细心”在词法内部是一个名词性结构N(而不是对外的形容词A),词法关系是“细”修饰“心”:细的心。

“认真”稍微模糊一些,但一般人感觉还是词法内部的动宾结构V(而不是对外的形容词A),词法关系是:“认”【这个、一个】“真”。

“仔细”的词法关系应该是并列,而被并列的两词素都是形容词A,倒是与句法A赶巧一致了,说的是“又仔又细”、“且仔且细”。

“刻苦”不太敢肯定,词源上看,“刻”是动词,“苦”是形容词,也可以做名词。内部词法结构是动宾,还是并列,存疑,先挂起来。

总之,同是句法形容词的几个同义词,内部词法结构可以完全不同。回到开题的问题,这种对于人(起码是语言学家)可以看见的词法结构,需要不需要在词典里面标记呢?

乍一看,似乎不需要,因为一般来说词法的目的是支持句法,句法的目的是支持(逻辑)语义,总之是通过形式的表象,解码语义的内涵,这就是 deep parsing 和 NLU 的真义。既然句法词类(A)、句法角色(定、状、谓)、逻辑语义(修饰【human】)都可以清晰地解析出来,回头再去深究词法内部的小九九,貌似无益。就让它深眠在语言结构的层级体系(hierarchy)的最底层,永远不见天日。

但是,既然不是黑箱子,人就不会永远放过,偶见天日还是有的,特别是在段子或俏皮话里面:

A:你怎么形容她?
B:两只巧手,一颗细心。

see,在人脑的语言认知过程中休眠在词法内部的N,居然冲破了句法A的标配属性浮现出来,成为堂堂正正的句法N,与量词结构搭配构成名词短语,听上去一点也不拗口。为什么那么自然,因为休眠唤醒了,因为他原本就是名词。

看来,休眠唤醒的确是人类认知语言的一个机制。如果我们想要模型休眠唤醒这个机制,那么词法内部的结构作为休眠的种子,就应该先在词典里面埋下来,它才可能被唤醒,发芽成语。

结论:词法内部结构,还是记录下来为好,如果真要做深度自然语言理解的话。

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白宋88:再谈量词搭配与名词短语自动解析】

白:
“所谓印太区域自古以来就是一个印太国家间互相交流、学习、融合的平台。”

一个-国家,赋予国家单数特征,与“间”矛盾。一个-间,不搭配。所以只好 一个-平台。这是利用subcat相谐性的传导来排除不合适的量词搭配。

李:
这么做量词搭配 感觉不大合算 实现繁难 还容易错。对于普适性量词如 “个” 和 “种” 最大的heuristic 是最大跨度原则 有更有效的实现办法。

先说老办法容易错。容易错 源于相谐的软性要求 和 排除法 的脆弱性。举个例子:

“我们可以建造100个印太国家间互相交流、学习、融合的平台。”

利用 “间” 的相谐 颇不容易。最大跨度原则最简单而且有效的实现就是 见到 “一个” 先挂起来。 然后 该干嘛干嘛 等定语从句 和 其他乱七八糟的前置修饰语都扫荡干净了 一头一尾 拼接一下就完了 无需额外发力。所谓原则 必有漏洞 一定可以找到反例。但比起一个一个的相谐排除法 感觉可靠性更大 更符合国人的表述习惯。国人特别喜欢用这种跨度很大的左右边界搭配的np:

一个 blah blah 又 blah blah 的 N
这种 blah blah blah blah 的 N

写着写着 突然觉得似曾相识 好像就这个量词话题 在某个时间点 说过几乎完全相同的话 相似的论点和论据。 懒得查了 也不好查 这种感觉很真切 说明聚焦一个领域唠嗑 免不了会有车轱辘话 也说明一个人的观点很难轻易改变 尤其是实践中提炼出来的观点。

汉语中框式结构很值得利用。量词结构是一,前置词后置词搭配是另一个常见的框式结构。

白:
不搭配和搭配是不对称的。不搭配一票否决,搭配就近解决,这两个原则一点都不矛盾。

李:
“一个间 还是 两个间?”

一票否决如何鲁棒呢?这里牵涉好几个层面的方法论问题:

第一 我们说的是强搭配还是弱搭配,“个” 与 “种” 通常被认为是弱搭配,基本上是一个名词的标配。

第二 维护搭配词典是一回事,维护不搭配词典 又增加了一个维度和工作。前者是系统标配知识 后者要不要费那费力气 可以讨论。

白:
一个间,有反例吗?可以探讨。遇到一个+NP+间,中间推理过程可以省,记住最终结果(NP+间结合,一个留下不结合)就ok。推理过程离线做,最终结果在线用。

李:
强搭配一票肯定 基本不错。如果要考虑更细致的话 大概是如果有多个强搭配 最大跨度胜出。不过 这已经有点吃力不见得讨好了,因为二分法的强弱搭配 忽视了强弱的连续性。强不搭配 如果维护的话,可以考虑一票否决。弱搭配 或 弱不搭配 还是不如最大跨度。

白:
维护不等于人工维护。

李:
“间” 是方位词 属于后置词。n+间 基本上是 PP,做状语为多,通常还到不了要与量词纠缠的环节。

宋:
@wei 说的框式原则,或者说括号原则,应该是认知层面的规则,应适用于各种语言,确实有用。

白:
间是催化剂,自己不参加有关量词的反应,但偶尔可决定量词搭配的方向。就如“张三与李四的婚姻”当中的“婚姻”,决定了“张三与李四”是序偶(ordered pair)还是列表(list)。后者有分配性,前者没有。“鲁迅的书不是一天能读完的”通过谓语部分的周遍性补语“完”,确定话题主语“鲁迅的书”是“例”还是“类”。都是这个道理。不一定亲自下场子,但对别人的subcat特征取值有决定性影响力。特征不是专门为句法一个任务抽取的(否则确实有是否值得的问题),如果背后有N个任务等着要特征,搂草打兔子,何乐不为。

李:
做量词搭配很多时候是醉翁之意不在酒。怎么讲?我们知道,最常见的量词词组是不定量词组 “一个”、“一种”、“一类”、【一+量词】或有定量词组“这个”、“这种”、“这类”、【这/那+量词】。这些量词组本身语义很虚,除了不定有定的语义(大体上是英文冠词的语义)外,量词本身几乎没有意义(汉语用量词的地方,对应到英语往往是空白),它附着对了或错了,对其头名词的语义解读影响不太大。但是,量词组对于名词短语(NP)起到了左边界的作用,因此量词与右边界头词(head word)的搭配,这种框式结构,对缺乏形态的汉语搞定NP这种最基本最常见句子成分,具有非常重要的形式指征的作用。

从框式搭配结构的角度看量词处理,我们发现,对于比较长的往往内含定语从句的名词短语,人在交流的时候也利用了这个搭配,总是先来一个量词组,等于是跟听众说,注意,我这里给你打左括号了,下面我要说一个具有N多修饰语的实体名词了。换句话说,如果没有量词搭配这种形式标识,为了交流的顺畅和避免歧义,国人不会这么经常地使用长NP。

鉴于此,在短语抱团的浅层解析过程中,善用量词搭配,在最大跨度原则的范围里,容忍某些“出格”或不和谐的修饰语,是解决长NP的非常有效的know-how之一。

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【语言学随笔:从缩略语看汉字的优越性】

董老师给了一个有趣的例子,发现对于汉语灵活的构词法带来的新出现的类似四字成语的简练表达,所有的巨头机器翻译系统都错得离谱:

“东方日报的上述评论说,以黑护商、以商养政、以政庇黑,警匪共治的恶劣政治生态,已经在一些地区出现。”

这里面很多表达法(以黑护商、以商养政、以政庇黑,警匪共治)蛮新的,很像是缩略语带来的新成语, 人还没来得及做翻译样板让机器学,机器自然一头雾水。神经机器翻译的亮眼成就本质上还是人工翻译的成就,人工没翻译过的,再牛的机器翻译也抓瞎。其实 这些新成语人理解没问题 翻译还是费思量。等优秀翻译琢磨出来最好的翻译 并在新语料中出现足够多次 相信机器很快就取法乎上 比翻译平均水平高 是可以期待的 (以前说过,成语的本质是记忆 而记忆电脑是大拿 人脑是豆腐)。问题在语料的搜集更新和重新训练能不能赶上新词涌现并流行的速度。

我自己来尝试翻译一下这里面的成语:

以黑护商、以商养政、以政庇黑,警匪共治

To protect businessmen by using black society
To sponsor politics by businessmen
To protect black society by politics
To maintain social order by police as well as black society

不知道及格否

郭兄说,@wei 我看不及格凡此种种十恶不赦之罪状,被你又是protect又是maintain,还有 sponsor 全漂泊了。中文四个字四个字的,那个味道,也被翻译得荡然无存。

可不是吗,用的都是正面动词(通常描述功能 benefit statement),至少不负面,而原句都是负面行为,满拧,肯定不及格。不急 总有高人会信达雅翻译出来,结果机器远超我 是铁定了 虽然我也学了一辈子英语和语言学。

想起来当年,“抓纲治国” 是我英语口试前遇到的难题(1977年高考口试,抓纲治国的翻译困境 在我的一篇 《朝花》 有记),后来发现官方翻译是:grasp the key link and run the country well,现在回看,绝对算不上高明 四字新成语的味道尽失。今天想了半天 终于为华主席的抓纲治国想出来一个可能更好的译法。请比较:

新华社翻译是: grasp the key link and run the country well
提议改成:Grasp the key manage the C

如果问什么意思,就解释说:Chairman Hua was following late Chairman Mao’s political ideology on class struggle, but at the same time he wants to boost the economy.  So he phrased his new strategy as above, which means we should grasp the key-link of class struggle and hence manage the country well,

类似套路的缩略语新成语层出不穷,老的有:

五讲四美 (讲文明、讲礼貌、讲卫生、讲秩序、讲道德; 心灵美、语言美、行为美、环境美)
(哈,试了一下有道翻译,是:Five speakers four U.S.)

Five F’s and four B’s
5 focuses and 4 beauties

focus on manners, focus on courtesy, focus on hygiene, focus on social order,  focus on morality;
beauty in mind, beauty in speech, beauty in action, beauty in environment.

三要三不要
3 do’s 3 don’ts

要搞马克思主义、不要搞修正主义;要团结、不要分裂;要光明正大、不要搞阴谋诡计
follow Marxism, do not follow revisionism;
unite, do not split;
be fair and square, do not play tricks

一带一路
官方翻译是: one belt one road

不得其解,昨天才搞明白是中国倡导 由中国带头 沿着古丝绸之路 开发新的经济贸易开发区 一方面帮助消化过剩的产能 一方面带动区域经济 实现共赢 让区域内国家分享中国经济高速发展的火车头效益 从而树立中国崛起的和平领军形象。

感觉还有更多也许更好的选项 反正是成语 反正光字面形式 谁也搞不清真意 总是需要伴随进一步解释 不如就译成:

一带一路 ===》 one Z one P (pronounced as:one zee one pee)

怎么样,这个翻译简直堪比经典翻译 long time no see (好久不见)和  “people mountain people sea” (人山人海)了。认真说,Zone 比 Belt 好得多。

One zone one path.
One zone one road.
New zone old road.
New Silk Road Zone.

感觉都不如 one Z one P 顺口。

缩略语方面 一般而言 英语不如中文灵活多变而且不重样 汉字作为独立词素载体的优越性突显了。英语缩略语也可以非常灵活 任何常用的ngram术语 都可以用首字母缩略 简直太自由了 但由于字母的本性不是词素 而是临时借来代表词素 而且一共才有26个字母形式 结果是英语的缩略语造成的重复歧义 多到了成为行业黑话的程度。

ABC 可以是 (i)美国广播公司;(ii)人工智能 大数据 云;(iii)字母表的代称;(iv)起码知识;…… 以及另外一千种可能性。从术语到缩略语是直通道 多对一 反过来一对多则把人搞死 也无法快速查对搞定 徒增记忆负担。

汉字缩略语的撞车现象 则急剧减少。虽然汉字缩略语也需要词典绑架才能真正搞清原意 不大能从字面意义去蒙 但第一,望文生义比两眼一抹黑 让人体验好;第二 也是更重要的是,基本没有歧义的缩略语查找方便 随时可以查对绑架和纠正语义误差。比较:

共党 vs. CP
中共 vs. CCP
解放军 vs. LA
人民解放军 vs. PLA (其实“人民解放军” 中文完全可以缩略为 “人解军”)

为什么英语不能学中文 用词素 而不是用字母 来做缩略语呢?主要原因是英文合成词里面的词素 不如 汉字词素 独立 没有汉字词素的灵活性:一个汉字往往对应多个词素语义,在缩略语的场合,汉字还有“变色龙”的词素特征,就是说 一个汉字可以临时扩展自己的词素语义 临时代表这个汉字本来不具有的语义。这后一个特征 英文缩略语里面的字母也同样具有(临时代表的功能),但英语的问题在字母集太小 比汉字少了两个数量级,这个表达能力的优越性被其不可避免的歧义性完全遮蔽,反而成了流弊。与汉字词素大体对应的英语词素的平均长度大约四个字母 突然退到一个字母来代表 可见问题的严重。

汉字使成的这种灵活的缩略语构成法在流行的网络语中被推向极端,譬如:普大喜奔(普天同庆、大快人心、喜闻乐见、奔走相告)。这类有点过分了,几乎转变成完全的黑箱子了(类似黑话 行话了),但即便如此,也比英文用首字母缩略的手段高明,因为起码这种东西没有歧义,一查词典即可理解。

当然英语也可以变通,交叉使用字母和词(素),来多少规避一点缩略语歧义的缺点。People’s Republic of China 的缩略语 PRC 就远不如混合式 PR China,上面的“抓钢治国”(grasp key manage C),“一带一路” (one Z one P),也是这个策略的体现。

把汉语归类成孤立语,总是带着点贬义似的,应该叫 独立语。词素极少不独立和自由的,因此构词特别灵活多样能产。口语中的词素音节 落实成汉字以后 又因为汉字形式比起语音形式的更具有沉淀性 加上汉字数量远多于音节数量使得汉字的表意性更少障碍(望文生义比听音生义更容易)使得其构词能产性和灵活性跨越了时代和地域。虽然说 语言学中 作为标记体系的汉字系统 常被认为是第二位的 不过是语言词素的一个载体而已,但汉字的确对汉语有一个非常正面的跨越时代和地域的反作用。汉字的这些方面的优越性是有根据的。

 

【相关】

【李白刘董85:汉字优越吗?】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白刘董85:汉字优越吗?】

李:
想到一个事儿,关涉词素这个议题,语言学基础课里面已经说得清清白白。但在大众认知中,甚至在专业人士的讨论中,还是常常概念不清。表现在那些流行的“汉字优越论”的各种演讲中。

汉字优越论因为与文化自信和民族自豪感搅合在一起,天然政治正确,因此无论怎样拔高、夸赞,无论符合不符合语言学基本原理,都容易大行其道 深入人心。其中最流行的说法是,几千个汉字可以表达的概念,比几万个英文词汇表达的概念,还要丰富。

这种说法不能说完全没有道理,但本质上似是而非,经不起语言学基本面的推敲。

要害在,这是苹果与梨子在比较。

汉字是语言材料的最小单位,是词素(又叫语素,morphome)。英文词汇表中的词不一定是最小单位,里面也有复合词(compound:black-board),也有派生词(work-er)。如果是词素与词素比较(这才是 apple to apple comparison),语言之间在数量上的差别绝不会如此悬殊。上面的 blackbooard(黑板)和 worker (工人)就不是两个单独的单位,而是跟汉字一样,一一对应,应该分解为四个语素。

正确的符合语言学常识的说法是,几千个常用的汉字对应西方语言几千个词素(词根或词缀),它们可以合成几万个常用词汇,代表了日常语言中所需表达的概念的绝大部分。

这样一来不就是半斤八两了吗。显现不出汉字的优越性,还是心有不甘。

其实,真要深究,还是可以更加合理地为汉字优越找到一些语言学的根据,而不是人云亦云地拿自家的“字典”(词素表)与人家的“词典”做粗暴比较。

虽然世界上演化这么多年到今天的主要语言,无论东方西方,无论汉藏还是印欧,在这个信息飞速流转的地球村,都有足够的语言材料来表达所需要的概念了,但是汉字为词素的中文还是有一些额外的方便。这额外的方便可以算在汉字优越头上,只是要表达清楚这个优越性,需要一些语言学。

比较英语的词素(词根 词缀),汉字为词素的中文,其造词法更具有产生性。

换句话说,国人可以更轻易地“造词”。这也可能是缺点,反正语文老师对小学生“生造词”一直是很不以为然的,过犹不及。他们的责任就是约束学生的造词能力,怕学生没必要地造出太多的词出来,行文不规范。但是,原理上说,这是语言的灵活性和适应性的体现,应该算是优越的语言学特点。

今天听中文网络广播,听到一个超出我的词汇范围的词(术语叫OOV,Out of Vocabulary,其边界因人而异,我的OOV词对于我来说就是“生造”词)“区隔”(后来查了万能的互联网,发现是一个被共同体已经接受的词),因为这词于我是第一次听到,我愣了一下,但很快就从汉字及其关联词汇(“区分”、“分隔”)意会到其语义。这说明什么,说明汉字组词有很强的随意性(明明有常用词“区分”,也不妨再造一个几乎完全等价 的词来),对于听者和说者的顺畅交流通常不构成障碍。增加的是灵活性、多样性,以及从灵活性而来的新鲜感(谁愿意老“墨守陈词”)和从多样性逐渐带来的细微差别(nuance)。

为什么同为语素,汉字组合成词,比起英语语素组合成词,更加能产呢?

要起床了。先停下,以后再聊(老话说,且听下回分解……)。

刘:
@wei 我对汉字优越论也持怀疑态度。不仅仅是你说的原因。我觉得汉字的表义性对词义的理解有好处也有坏处。好处当然是可以减轻学习新词的负担,看到新词也容易猜测意思(如你所说英语词素也有类似作用)。但从另一方面来说也会带来坏处,就是容易望文生义。有些词义仅从字面解释容易造成误导,另外一个坏处我觉得是带来翻译的困难,这一定程度上阻碍了外语新词的传入。

白:
“电脑”的命名跟汉字的优越性不知道有没有关系。

刘:
前不久还见周志华在微博上吐槽把Robot翻译成机器人使得这个词在中文里面的意思发生了变化

白:
还有,intelligent和smart都翻译成智能,中国凑AI热闹的人群一下子大了好多。

魯:
嗯嗯,Robot建议翻译成“若博”,信达雅…. 哈哈哈哈

白:
“肉薄”貌似也可以。

董:
把翻译中出现的瑕疵或缺陷,都算在汉字的“不优越”头上,欠公平。别人也许会举出“可口可乐”、“出水芙蓉”等来说“优越论”。其实,一种语言都有自己的特点,有好的地方,也会有不足的地方。汉语重义,英语重形。在思考和研究语义时也许可以更多地借重汉语。

姜:
有个机构试图把“Internet”翻译成“因特网”并强力推广,但大家都不认,都觉得叫“互联网”好。“互联网”易于理解,不必另造新词,民间其实也早就一直这么说了。

李:
@刘群 很同意,这正是我想要说的。

构词的灵活是很大的优点,也有副作用。不过,正反比较,我还是觉得,好处大于缺点。我这么说,除了源于汉字这个现象的思考,还源于我对世界语构词法的观察和研究。柴门霍夫对于构词法的设计,与汉字构词非常贴近,但更加“优越”。其结果是,学会几千个语素以后的世界语者,都可以随心所欲造词。副作用是,每一个造了新词的人,都留下了争论的空间。

根子在:新词所对应的概念到底是黑色的(必须最终通过词典注册来绑架),白色(透明)的(完全是compositional),还是灰色的(介于二者之间)?

譬如,电脑不叫 komputero,可以临时造一个词 叫 kalkul-ilo(calculator),留下的争论空间就是,你到底是指的 “电脑” 还是 “计算器”?

再如 筷子不叫 kuaizio,可以生造为 “mangh-ilo”(用餐工具),留下的争论空间就是,到底是 “筷子” 还是 “刀叉” ?

白:
我觉得望文生义出现误差是免不了的。

李:
对啊。
好在在说话的现场,这些误差和副作用会自然消解,所以,富有造词法灵活性的语言 譬如汉语和世界语,还是长处大于短处。对于严谨的场合,譬如学科论文 专利文书,这种灵活的透明造词法,常常让位于黑箱的新词,所以专业术语最好是音译(等价于生词)或直接用外文,或者起码在透明翻译后面再括号里注明外语的等价物,凸显其黑箱子特性。因为是黑箱子,留下的争论空间没有了。必须先给这个新词做一个定义,杜绝了望文生义的可能性。

白:
临时词就没有是否“地道”一说了。比如“马桶抽子”,是不是一定叫“抽子”不重要了,指出是疏通工具,就够了。

李:
所以,我同意董老师,汉字的表意性,及其汉语的自由度很大的造词法,大面上看是一个很大的长处。不求甚解,一般比两眼一抹黑好,至少对于人这点可怜的脑记忆量。到了电脑,再大的词汇都不是问题了,但词典是要“绑架”才有定义的,这个绑架的工作就不得了。好在最近有个深度神经的好东西,word embedding,有点神奇,可以在定义绑架这件事儿上发力。前提是那些个生词要有足够的大数据垫底。

白:
辅助望文生义的话,战斗机器人叫“肉搏”,对话机器人叫“若博”,那啥机器人………、

李:
需要的不是带标大数据,本质就是 clustering ,非监督的,所以还不真正构成太大的知识瓶颈。原理上属于 propagation,自动从有知推展到无知。

白:
非监督是正解

董:
说到翻译,还有“马桶”。一个不好的翻译例子是“抽水马桶”(flush toilet)–别误解为用来抽水的、像抽水机那样的用具。因为V+Nde结构,多数可以是用来V的N.

白:
往里抽不是往外抽

李:
马桶幸好是常用登录词,每个人的词典都内在绑架了,所以看上去透明的,其实是黑箱子。万一一个老外新学汉语,或者一个儿童第一次接触,就糊涂了,这与 马 这个词素有什么关系呢?

白:
@wei 跟“扎马步”不知道有多少关系。

李:
马桶为什么不给马用 而是给人用呢?好处是半透明,即便老外不懂为什么有马在里面,起码能蒙对这是一个桶一样的物件。

沙发 和 软椅 也是如此。后者黑箱子,必须扩大词汇量。前者不用,但。。。

白:
从“马拉松”到“半马”“全马”“北马”“厦马”,洋词儿变地道的土词儿了。
不是捆绑那么简单,有内生的能产性最恐怖了。

李:
“半马”“全马”“北马”“厦马”等,对于我还是要登录(记忆)捆绑才能理解。大概谁开始说 大半马,也许我们不用捆绑也悟出来了。

白:
捆绑+派生+简化.

有了例子,后面就是泛化了。京巴,也有点这个感觉,其实“大巴、中巴、小巴”究其根源也是这种类型。

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

 

【语言学随笔:汉字优越吗(1)?】

想到一个事儿,关涉词素这个议题,语言学基础课里面已经说得清清白白。但在大众认知中,甚至在专业人士的讨论中,还是常常概念不清。表现在那些流行的“汉字优越论”的各种演讲中。

汉字优越论因为与文化自信和民族自豪感搅合在一起,天然政治正确,因此无论怎样拔高、夸赞,无论符合不符合语言学基本原理,都容易大行其道 深入人心。其中最流行的说法是,几千个汉字可以表达的概念,比几万个英文词汇表达的概念,还要丰富。

这种说法不能说完全没有道理,但本质上似是而非,经不起语言学基本面的推敲。

要害在,这是苹果与梨子在比较。

汉字是语言材料的最小单位,是词素(又叫语素,morphome)。英文词汇表中的词不一定是最小单位,里面也有复合词(compound:black-board),也有派生词(work-er)。如果是词素与词素比较(这才是 apple to apple comparison),语言之间在数量上的差别绝不会如此悬殊。上面的 blackbooard(黑板)和 worker (工人)就不是两个单独的单位,而是跟汉字一样,一一对应,应该分解为四个语素。

正确的符合语言学常识的说法是,几千个常用的汉字对应西方语言几千个词素(词根或词缀),它们可以合成几万个常用词汇,代表了日常语言中所需表达的概念的绝大部分。

这样一来不就是半斤八两了吗。显现不出汉字的优越性,还是心有不甘。

其实,真要深究,还是可以更加合理地为汉字优越找到一些语言学的根据,而不是人云亦云地拿自家的“字典”(词素表)与人家的“词典”做粗暴比较。

虽然世界上演化这么多年到今天的主要语言,无论东方西方,无论汉藏还是印欧,在这个信息飞速流转的地球村,都有足够的语言材料来表达所需要的概念了,但是汉字为词素的中文还是有一些额外的方便。这额外的方便可以算在汉字优越头上,只是要表达清楚这个优越性,需要一些语言学。

比较英语的词素(词根 词缀),汉字为词素的中文,其造词法更具有产生性。

换句话说,国人可以更轻易地“造词”。这也可能是缺点,反正语文老师对小学生“生造词”一直是很不以为然的,过犹不及。他们的责任就是约束学生的造词能力,怕学生没必要地造出太多的词出来,行文不规范。但是,原理上说,这是语言的灵活性和适应性的体现,应该算是优越的语言学特点。

今天听中文网络广播,听到一个超出我的词汇范围的词(术语叫OOV,Out of Vocabulary,其边界因人而异,我的OOV词对于我来说就是“生造”词)“区隔”(后来查了万能的互联网,发现是一个被共同体已经接受的词),因为这词于我是第一次听到,我愣了一下,但很快就从汉字及其关联词汇(“区分”、“分隔”)意会到其语义。这说明什么,说明汉字组词有很强的随意性(明明有常用词“区分”,也不妨再造一个几乎完全等价 的词来),对于听者和说者的顺畅交流通常不构成障碍。增加的是灵活性、多样性,以及从灵活性而来的新鲜感(谁愿意老“墨守陈词”)和从多样性逐渐带来的细微差别(nuance)。

为什么同为语素,汉字组合成词,比起英语语素组合成词,更加能产呢?

要起床了。先停下,以后再聊(老话说,且听下回分解……)。

 

【李白王董84:再谈POS迷思,兼论 PennTree 的误导】

王:
动词名化确实不好处理的难办事,以前做词性标注,准确辛率不高,就栽在这,n,v,vN上了,还有区别词b。当然现在语法理论,一个小小助词“的“就有管住核心谓词的能力,使之由V变N。

白:
A、“粉红凤凰”,B、“红绿色盲”,C、“真假和尚”。
A、粉修饰红,粉红修饰凤凰。
B、红绿并列,但并不是用本意的叠加修饰“色盲”,而是用不能区分这两种颜色来定义色盲的具体类型。
C、真假并列,通过分配律把共享中心词“和尚”送给二词修饰,表示“真和尚、假和尚”。
修饰成分间的关系很不简单呢。

李:
我对 b 的第一解读是 c 的并列
看了讲解才悟出来 也许还有 nuance
感觉差异已经细微 微妙到很少需要在意区分的程度了

@wei wang 中文中的所谓动词名物化 nominalization
很大程度上是一个伪问题 一个语言学迷思
强加到 POS 模块 作为其难点 更是一个自找的麻烦
工作 学习 睡眠 吃饭 下雨 打雷
这些词 类别很清晰

王:
@wei,对此我也迷惑

李:
(逻辑)动词 万变不离其宗 没有 POS 区分的必要性

Wang:
这点我同意李老师。所以,我说现代语法理论,是否需要调整一下?只是不敢妄论。
如果都能走对,倒无妨,就怕转得有对有不对,就确实是问题了

李:
在 POS 先于句法的通常架构里
把句法的不同用场 强加到 POS 标签去 是真实世界的天下本无事 x人自扰之。
真有好好的路 硬是自己挖个坑 然后就自己跳进去 然后抱怨路不平。

王:
当然,我现在已经跨越POS这个,不使用POS而直接走句法了。不过对别人而言,这词性标注依然存在。即便标注,我也认为动词体征的,就一直动词体征走向去,比较好。

李:
汉语语法学界上世纪50年代的词类大争论,大争论当年没争出结果来,是时代的局限。

王:
我的看法是,也不去争论。

李:
词无定类(“词无定类 入句而后定”)走向一个极端,无法服人,但其思想有闪光之处。

王:
而是拿到系统中去跑,能跑得好的,自然就是好的,至少这正是我们所需要的

白:
结构强制在技术上一点不复杂,问题是算句法还是算词法,但这都不是技术问题,是旗号问题。旗号与我何干?

王:
至于语言学方面,那是另外的一回事

李:
对于具有 consistent ambiguity 的词,
本体上就是无定类,但是一说“词无定类”就扩大化了,以为所有词都是必须要句法,要上下文,这就陷入了鸡和蛋的死循环,当然不能服人。
这个迷思从哲学上不难看穿。可是实践中却坑了人太多 太久 而且还继续在坑人。

王:
@白硕 说的是,确实不是技术问题

李:
如果一个东西 在有些场景下看着是 红色 有的场景下看着是 黑色
自然的结论就是给个 X 的本体标签,让 X 统辖 红 黑 两个标签,至少这个信息的外延是清晰的,是红黑的区域,不是蓝 不是绿 不是紫 等等,这才符合事实 恰如其分。

王:
这是否分两种情况?
1)本来是多义词,兼有多种词性的;2)已经定了就一种(比如纯动词),走着走着,变了,

李:
不说多义词。多义词(细微差别不算)那是两个词,凑巧长得一样了,其归属自然也可能不同。

王:

李:
只说 2)
2) 没有 POS 半毛钱的关系。
汉语中的 POS 任务中 纠缠了几十年,原来一开始就把任务定义错了。

王:
请问,那么怎么“ X 统辖 红 黑 两个标签”

李:
对于我们讨论的动词名物化,这个 X 就是 V,可以读成逻辑动词。这个 V 是词典给的,没有歧义,何用区分?

王:

李:
到了结构里面做了主语或者宾语,它没有改变 V 的本性:词义没变,归属自然也没变。所改变的是句法 role。

王:
同意

白:
没有X统辖那么简单。以“出版”为例,被赋予了动词特有的零碎,比如加“不”,仍然可以再通过“的”强制为名词;但是反过来,已经被名词特有的零碎强制过的,不可能再被强制回动词。
本性是动词,强制为名词,然后就凝固了,不接受变回动词的再次强制。

李:
没问题啊。
这些个细节 与标签没大关系,标签还是 X。只要词义不变,标签就没有道理变,这是本体 taxonomy 决定的。词义变了,标签有可能变。在同一个词义下给不同的POS标签,对于汉语这样缺乏形态的语言,是不合理的。

王:
我的看法是,不去改变词性
这本书的出版,—-出版依然是动词,—可以看作是一个成句中谓词
这个成句,是一个小句(子句),可以做主语,或宾语,这样,句法上也顺上了,而且,词性也没去改变

李:
换句话说,汉语这样的语言,POS 应该用的是逻辑类

白:
问题是啥叫词义变。“真孙子”里面的“孙子”,我感觉词义变了。

李:
世界上所有的语言的词汇,都有逻辑类。这是语言共性。但是形态语言 在逻辑类之上,经常使用形态变换,把逻辑类穿上不同的衣裳。穿得好的话,可以脱离场景做句法。例如 俄语,morphology 很大,句法就简单了。极端来说,别说 POS 标签,就是本质上是上下文结构决定的 role,也可以脱离上下文 在词上反映:宾格就是宾语 role。

王:
同意@wei 在同一个词义下给不同的POS标签,对于汉语这样缺乏形态的语言,是不合理的。

白:
填坑使用的不应该是逻辑类,应该是角色。比如“这本书的出版怎么没通知我”当中,“这本书的出版”填坑时就是N。“这本书出版怎么没通知我”当中,“这本书出版”填坑时就是S。

王:
这本书的出版—-看作一个小句 ,小句也相当于名词作用。出版–作为一个事件出现
事件—>没通知我。

李:
填坑不外两点:
1. 句法上要的是什么形式(包括标签或子类,或直接量),这是输入条件;2. 语义上是什么 role,这是输出角色,是“理解”的形式化。不能混淆输入和输出。输入条件用逻辑类,没有问题。句法的工作,起点就是词典信息。逻辑类是词典信息的重要方面,是词典本体信息体系里面层级最高的那几个标签。

白:
但,“通知”的内容那个坑,就必须是个X,混儿。见人说人话见鬼说鬼话。

李:
“出版”的坑:
(1)第一个坑
输入条件:publication (本体链条属于逻辑名词)
输出角色:【受事】

(2)第二个坑:
输入条件:human_or_organization
输出角色:【施事】

这才是 “出版” 的真实面貌。至于语言应用中,上述类似 HowNet 定义出来的 subcat pattern, 应该如何松绑输入条件 来应对鲁棒与活用,那是另一层面的勾当。

王:
就是说,不能因为一个“的”字,把本来清晰骨架,垫走了样。

李:
“通知”的坑:

(1)
输入条件:thing_or_event

(这就是白老师所谓变色龙,其实本体链条上,不过是在逻辑n与逻辑v上,再抽象一个统辖的 n_or_v,thing 就是逻辑名词的通俗表述,event 就是逻辑动词的通俗表述)

输出角色:【content】

(2)第二个坑是施事【谁】
输入条件:human (具体语言还有格、词序、介词类的条件制约)
输出角色:【施事】

(3)第三个坑是对象【向谁】
输入条件:human (具体语言还有介词、格、词序类的条件制约)
输出角色:【对象】

回来总结一下:坑里面使用逻辑类或者逻辑类下辖的子类 甚至 直接量(等价于具体词义搭配)是天经地义的。至于这些条件的松绑,所谓 preference semantics 那是语言应用中的窍门。为了鲁棒必须松绑,松绑会一步步从具体逻辑子类,向高层的逻辑类去。

王:
同意李老师

李:
HowNet 是独立于语言设计的,它的最上层 top 节点 其实就是逻辑类,event 就是 v
thing 就是 n。其实还应该再往上走一步,thing_or_event,但反正有 OR 算符,所以走不走也无所谓了。

白:
可以看成一个lattice,and就低不就高,or就高不就低。

李:
HowNet 其实是两个东西在里面。第一个是本体,董老师对人类认知和常识体系的总结和设计。第二个是语言落地(汉语,英语,……)。这第二步是通过给汉语词汇标注 HowNet 本体标签的方式实现的。这时候的本体已经落地到具体语言了。

白:
修饰语隐含的被修饰语和真实的被修饰语做or

李:
PennTree 在英语NLP中已经很多缺陷,时代的局限,误导了很多人。

白:
总感觉HowNet不完全满足这个架构

李:
PennTree 的那一套标准用到汉语更是误导,不如直接用 HowNet 来作为标准。

白:
想都不要想,肯定不会用PennTree

李:
至于选取 HowNet 顶层或者中上层的哪些标签作为中文 POS 的任务,可以再议。POS 选得细了,就几乎等价于 WSD 任务了(事实上,白老师很多时候在讨论中就是把二者看成同一回事儿,道理很显然,WSD 说的是词义区分,词义的taxonomy 链条就是逻辑词类)。

王:
现在很多评测都是以宾州树库来做基准的。我也想过,就算那个F值即便很高,那么真实应用就是那么高的吗。

李:
HowNet 在语义领域可以独树一帜,能够站得住,相信也能够经受时间,其中原因之一,是由于董老师是中国人,讲的是“裸奔”的汉语。裸奔的汉语与逻辑最贴近,有自然的亲密关系。这对排除语言的干扰,从逻辑的高度审视语义,有天然的好处。如果要讲中国人对世界文明作出自己的独特贡献,HowNet 可以是一个代表。

王:
李老师对其他语义词典是如何评价?

李:
哪些?

王:
比如wordnet ,同义词词林

李:
早就不用 WordNet 了,麻烦比好处多。擦不完的屁股,以至于用了两年后,不得不全部推翻,宁肯自己零敲碎打,不完备,增量积累做语义标签,也不愿意陷入 WordNet 泥坑。

王:
主要是想说直接是树状,而非网状的这类

白:
标签体系必须是DAG

王:
分类体系做得不好,还是后期建设不好,比如冲突出现?

李:
其实 WordNet 是可以改造得好一点的 好用一点的,但只听说有人说改造,但没见到有人愿意坐冷板凳去真地改造它。

白:
标签体系的数学基础,一是type theory,一是lattice。lattice解决单类型的上下位问题,type解决复合类型的构造问题。

王:
上下位好理解,这复合类型就不好理解了,请白老师讲解

白:
@wei wang 带坑呗

王:
明白了,我还以为复合类型,穿插把不同上下位的分支。又结成了网

白:
上下位是为不带坑的type准备的,带坑的都是复合type。

王:
@白硕 带坑是一个词带n个坑,这几个坑是另外的词

白:
@wei wang 对的

王:
是否有的词,本身就自己萝卜和都带了,这样的词如何分类?比如一些成语

白:
标签也分层。微结构,比如“扫地”,合起来是一个坑,微结构又可析出一个萝卜一个坑。

李:
subcat 既是子类(atomic 的标签),也蕴含了潜在的结构pattern,说 vt 其实是说有这类动词子类 挖了个宾语的坑。

白:
地不扫,何以扫天下

王:
@白硕 那看成一个整体,仍在统一分类体系,

李:
HowNet 开始用的时候也有问题(有些问题与 WordNet 类似,没那么严重),给董老师反映过。问题的根源在 董老师需要一个逻辑完备自足的义元体系,为了这个自足和完备,标注的时候就务求细而全。

HowNet 中的一个个单字的标签特别丰富,特别细,把这个字(词素)各种可能语义都反映了,甚至包括只存在于 idiom或合成词 中的词义。这其实给使用带来很多噪音。我一开始是试图 删减。后来发现对于单字的标签,删不胜删,最后决定索性单字的标签不用。要用的自己临时增量式加入,宁肯 under labeling,不能 over

王:
@wei “后来发现对于单字的标签,删不胜删,最后决定索性单字的标签不用。”
单字,是义原的核心,就是不用单字最基本的,而直接使用信息能独立的,更有代表性?更便于处理?

李:
不好用啊。很多汉字 看上去不过一两个词义,结果里面标了五六个词义,仔细想 确实都存在。但是用起来就是眉毛胡子一把抓了。

王:
嗯,我觉得建造体系可以这样建,想怎么用就是应用来选了

李:
如果这五六个词义的确都是自由语素的词义,虽然统计上出现频率不同,但逻辑上这样标注没有问题。但有些词义从来不作为自由语素的语义出现,只存在于合成词中,那就没有理由标注了。这个问题,董老师后期版本有了 config,可以筛选。做了弥补。这个问题在 WordNet 中更严重。

王:
嗯,谢谢李老师,白老师的解答。时间不早,明天上班,我先拜拜。

李:
晚安 @wei wang

王:
晚安!真的我还没聊够的感觉,特别是,语义分到什么类别,很关键,对系统有很大影响,也深有体会

白:
据我的经验,先别说具体类别,先说长什么样,更容易把握。数学上什么样,计算机里什么样。实体、属性、关系、值,这是一个层面。事件是另一个层面。时间空间因果模态,又是一个层面。知网中很先知先觉地引入了“变关系、变属性、变状态”等事件子范畴,相当高明。真的很赞.

董:
讲一个真实的故事。1988年由日本发起的五国机器翻译项目正在进行。在一次饭桌上,日方的项目负责人内田裕士谈起该项目的语义研究落实问题是说:”这个项目的语义研究,是不是请中方负责,具有中华文化背景的人对于语义有更高的敏感性。”
只是觉得只要由中方来负责,总归是好事情。我就表示同意了。可是对他的那句有关“中华文化背景”的断语,还真没有完全理解,但饭桌上也不适合讨论下去。后来时隔近20年,内田先生来北京,那次我们只是几个人一起吃饭。我问他:“你还记得20多年前,我们在讨论MMT的语义研究时,你说过一句话。你说’具有中华文化背景的人更适合做语义研究吗?我一直想问你你为什么会这么说呢?’”
他说的很简单:”因为是你们有汉字”。那时候我已基本完成了HowNet的研究和开发。HowNet正是以汉字为理念依据的。前两天我跟李维讨论。说到洋人不懂汉语,跟他们讲深了他们不理解。

白:
这些要是落在知识图谱里,不得了。

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白82:汉语重叠式再议】

【立委按】
我稀罕死她:是我喜欢她

她稀罕死我:既可以是 她喜欢我,也可以是 我喜欢她。
汉语鬼不鬼?
虽然鬼,语言学家有解读,明镜似的。2018了,不要看不起语言学家。世界上怕就怕认真二字,我们共和党人就最讲认真。一切都讲大数据,我们语言学家就最讲数据。
你知道吃饺子过年有几种说法吗?

 

白:
“逆回购逆了好几笔了。”
副词词素用作重复

李:
这是汉语动词用前缀重叠(reduplication)回指(coreference)的现象:

“abc 都 a 了这么久”

动词 reduplication 是汉语常见的手段,用起来有说法:

【1】 一般只重叠一个词素(单音节),但不排除整词重叠:

“学习学了这么久”
“学习学习了这么久”

(说话说了一半,打了个叉就打这半天:咱接着练,把动词重叠的话说完。)

动词重叠有两个语义:

(1)表示回指(可以看作是有unification的并列):就是说的同一个动作事件,所带的成分不同,信息需要融合(fusion)。这是汉语句法的一个趋向,同一个动词后带成分不宜多,最好分开来说,分开说就用重叠手段。

(2)表示动词的 short duration,这不是句法现象,而是词法手段:如,休息休息;看看书;说说话。

【2】. 绝大多数多音节动词的重叠都是只重叠第一个音节

背后的原因可能是绝大多数双音节(或三音节)的动词的内部结构都是动词词素打头
结果语言共同体就形成了这个习惯,然后就泛化了,以致于甚至V不打头的(合成)动词也可以使用第一个音节重叠来做回指,这就是白老师举的例子,合成动词里面的副词甚至也就可以重叠来代指整个合成动词(把合成动词当成一个黑箱子了):

“ab 就 a 了这么久啊”
“abc a得我是灰土土脸”

不管ab 或 abc 里面是啥结构了,就用第一个音节 a 代指 ab(abc)。

但是,汉语的词法很多时候是半透明的,所以还是有人做动词重叠深入到词法内部,把其中不打头的v词素,外化到句法来重叠,这样就形成了这么个等价的 minimal pair:

“逆回购逆了好几笔了”
“逆回购购了好几笔了”

(by the way,“逆回购”这个合成词里面有合成嵌套。词典动词 “回购” 的内部结构是【副词+headV】;到了“逆回购”,结构还是 【副+headV】)。

再举几个有趣的例子:

“望风而逃也逃不过如来佛的手掌。”

“你金屋藏娇藏了几年了?”
“金屋藏娇藏了几个娇?”

不能说:* 金屋藏娇金了几年了
(所以黑箱子用第一个音节重叠的接受程度,很难延伸到3音节以上的成语)

“你金屋藏娇藏了几年了?” 这句,“你” 既可能是逻辑主语,也可能是逻辑宾语,貌似做宾语可等价于: “你被金屋藏娇藏了几年了?”

如果是 “她” 几乎就定死在宾语角色了:

“她金屋藏娇藏了几年了?”

另外,汉语合成动词的大多数是v打头,这很显然,因为汉语合成动词的词法结构不外是:

1 动宾: 洗澡
2 动补:打碎
3 并列:打击
4. 状谓:狠批
5. 主谓:头疼

123 都是 v 打头,5 成词的数量不多,主要就是 4 是副词打头。

白:
狠不狠批是态度问题

李:
“狠批谁也不敢(狠)批你呀”
* “狠批谁也不敢狠你呀”

可见 “狠” 回指 “狠批” 是有诸多限制的。至于 “x 不 x” 这种重叠式,x 既可以是动词 也可以是形容词/副词。“狠不狠” 这种选择疑问的焦点在 “狠” 上,不必解释为 “狠” 代指 “狠批”。

严打:“严不严打 全看老邓一句话。”
重判:“重不重判 要看平民组成的陪审团。”

后退:
1 后退不后退
2 后不后退
3 ? 后退不退
4 * 后退不后

总结一下,全重复永远不错,重复v词素基本不错,前重叠可重复第一音节,后重叠如果想重复第一个音节,要小心了。

白:
小心,3和4都不灵

李:
@白硕 3 “后退不退” 个人语感上不是完全不可接受。麻烦出在 “不退” 也可能是句法谓语, “后退” 成了话题主语,而不一定是 【x不x】的词法重叠式来表示“选择疑问”了。

“前进不进 后退不退 你这是唱的哪出戏?”

“后退不退 ?总司令一直在纠结中 难以决策。”
“后退不后退 ?总司令一直在纠结中 难以决策。”
“后不后退 ?总司令一直在纠结中 难以决策。”

显然后两种说法更地道 但 “后退不退” 不是不可以,至少与 *“后退不后” 不可同日而语。

白:
其实我说的“小心,3和4都不灵”的意思是:“小心不小”和“小心不心”都不灵。
后来讨论淹没了,没顾得上掰扯。同理还有:“遗憾不遗”和“遗憾不憾”也都不灵。

总感觉“ab不a”/“ab不b”格式有一种“ab可为,为不为?”的意思在里面。如果ab的到来是不受控的, 那么“ab可为”的预设就不对劲了。

李:
小心 的同义词是 “当心”,“当不当心” 你懂的。“考不考虑” 你也是懂的。“重不重叠” 我们都知其然,不一定知其所以然。还好 做 parsing 即便 over generate 也关系不大,做生成要小心了 保守一些为好。

白:
12都ok,关键是34。

李:
?“当心不当”
“担心不担”

白:
小心、当心,担心,语义差别小,34准入性差别大。

李:
说话就过年了,看到一个“绝妙中文”的段子:

可以 parse 看看:

想到:“好喝不?不好喝。喝不好 不喝好。”

“喝不好” 歧义:述补结构 or 主谓结构。again 前者偏词法 后者属于句法。

白:
喝不好,其实还有述宾结构一个选项,但很隐晦地被压制(喝读第四声)。参考一下:平行的“说不对”三个选项就都灵光了。
1: 述补结构,不能正确地说;2、主谓结构,“说”这件事是错误的;3、述宾结构,说的内容是“不对”。

之前郭维德师兄还举出过:说了算,算了说,说算了,算说了……

李:
语文老师布置作业:请用“好”、“过”、“年”三字在“吃了饺子”后面造句,谁造得快,发给谁新年红包。

小明数来宝似地一口气说下去:

吃了饺子好过年
吃了饺子好年过
吃了饺子过好年
吃了饺子过年好
吃了饺子年过好
吃了饺子年好过

学过概率又学过语言学的人就是不同:6 种排列 全顺!

【小明,这里有红包…….】

提出你知道“吃饺子好过年”有几种说法吗,结果我的朋友圈有一个学生留言道:

1. 吃饺子好过年
2. 吃饺子过好年
3.吃饺子过年好
4. 吃饺子好年过
5. 吃饺子年过好
6. 吃饺子年好过
7. 过年好吃饺子
8. 过好年吃饺子
9. 年好过吃饺子
10. 年过好吃饺子
11 过好年吃饺子
12 过年好吃饺子
13 过吃饺子年好
14 过好吃饺子年
15. 吃好过年饺子
16. 过好吃饺子年
……….

罢了 罢了 不做排列练习了

白:
还有很多:
过年吃好饺子
过年饺子好吃

李:
原因:

1.  汉语很灵活,词序比想象的要灵活许多
2. 常用词有多义或多用法 (汉语说:我裸奔我怕谁)
3. 动宾离合词“过-年”很厉害,与句法动宾“吃-饺子”一样自由,造成何种合理合法的组合

换个话题,自然还是中文计算:

“牛顿稀罕死我。” 领导回家,见牛顿(Nutan,我家的猫)在门口迎上来撒娇,不由说道,然后就是奖励它,给它 treats。


Xander左白,牛顿右黄,和平安详

经常在日常生活中听到一些自己作为南方人不会说但可以听懂的话。上面的话其实是说:我稀罕死牛顿了。可北方话为什么要倒过来说呢?

语言学讲稿中常举逻辑SVO倒置的例子有,英语的“like” vs. 法语的 “plaisir”(please),核心谓词的语义相同,但所要求的S和O正好倒置:

NP1 “like” NP2 == NP2 “plaisir” NP1
(“喜欢牛顿” 等价于 “被牛顿取悦”)

感觉 “牛顿稀罕死我”是使动用法:“牛顿让我稀罕死(它)了”。现代汉语中的这种转换必须有补语才成。一个单纯的及物动词是不成的:“我稀罕猫” 与 “猫稀罕我” 完全不同。
但 “我稀罕死猫” 与 “猫稀罕死我” 完全等价。

汉语鬼着呢。

(当然等价的前提是知道牛顿是猫,否则【human】对【human】可能产生结构二义,麻烦大了。)

“我稀罕死她”:是我喜欢她
“她稀罕死我”:既可以是她喜欢我,也可以是我喜欢她。

汉语鬼不鬼?

虽然鬼,语言学家有解读,明镜似的。2018了,不要看不起语言学家。世界上怕就怕认真二字,我们共和党人就最讲认真。一切都讲大数据,我们语言学家就最讲数据。

“我稀罕死她”也是【human】“我”对【human】“她”,为什么没有二义呢?大概是因为子非鱼,吾非她,无法知道她是不是被取悦,干脆潜意识排除这种解读。“她稀罕死我”,有所不同,虽然吾非她,但她的主语位置隐含了标配的逻辑语义解读,不好轻易排除“她喜欢我”这种默认解读。至于第二种解读,我了解我的心,自然更不能排除。这说明,一种句法结构哪怕是二义的,共同体的语言认知心理往往有一个标配(默认)的逻辑语义映射。

中文处理,没完没了,语义计算,妙趣横生,李白对话,对到年终,祝白老师和群友新年快乐,2018 咱接着说。

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【新年新决心:追求喝好酒,不求酒好喝,祝你新年快乐】


左牵白,右擎黄,老夫聊发少年狂。料理日本平安夜,鬓霜圣诞又何妨。

Merry Xmas and Happy New Year to all!


Xander(白)敏捷,牛顿(Nutan 黄)安闲,平时打闹不断,难得和气一团。

哈,那位说了,好奇妙好诡异的中文!快跨年了,咱来分析分析:

因此上,新年新决心 New Year Resolution:坚持喝好酒,不问酒好喝,向 Xander 学敏捷,向牛顿学安闲。拥抱人智学图谱,挖掘知识看语言。祝各位快乐新年!

Note:敏捷指 agile software development;人智乃AI;图谱是knowledge graph(KG);挖掘是 text mining

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录