【李白宋88:再谈量词搭配与名词短语自动解析】

白:
“所谓印太区域自古以来就是一个印太国家间互相交流、学习、融合的平台。”

一个-国家,赋予国家单数特征,与“间”矛盾。一个-间,不搭配。所以只好 一个-平台。这是利用subcat相谐性的传导来排除不合适的量词搭配。

李:
这么做量词搭配 感觉不大合算 实现繁难 还容易错。对于普适性量词如 “个” 和 “种” 最大的heuristic 是最大跨度原则 有更有效的实现办法。

先说老办法容易错。容易错 源于相谐的软性要求 和 排除法 的脆弱性。举个例子:

“我们可以建造100个印太国家间互相交流、学习、融合的平台。”

利用 “间” 的相谐 颇不容易。最大跨度原则最简单而且有效的实现就是 见到 “一个” 先挂起来。 然后 该干嘛干嘛 等定语从句 和 其他乱七八糟的前置修饰语都扫荡干净了 一头一尾 拼接一下就完了 无需额外发力。所谓原则 必有漏洞 一定可以找到反例。但比起一个一个的相谐排除法 感觉可靠性更大 更符合国人的表述习惯。国人特别喜欢用这种跨度很大的左右边界搭配的np:

一个 blah blah 又 blah blah 的 N
这种 blah blah blah blah 的 N

写着写着 突然觉得似曾相识 好像就这个量词话题 在某个时间点 说过几乎完全相同的话 相似的论点和论据。 懒得查了 也不好查 这种感觉很真切 说明聚焦一个领域唠嗑 免不了会有车轱辘话 也说明一个人的观点很难轻易改变 尤其是实践中提炼出来的观点。

汉语中框式结构很值得利用。量词结构是一,前置词后置词搭配是另一个常见的框式结构。

白:
不搭配和搭配是不对称的。不搭配一票否决,搭配就近解决,这两个原则一点都不矛盾。

李:
“一个间 还是 两个间?”

一票否决如何鲁棒呢?这里牵涉好几个层面的方法论问题:

第一 我们说的是强搭配还是弱搭配,“个” 与 “种” 通常被认为是弱搭配,基本上是一个名词的标配。

第二 维护搭配词典是一回事,维护不搭配词典 又增加了一个维度和工作。前者是系统标配知识 后者要不要费那费力气 可以讨论。

白:
一个间,有反例吗?可以探讨。遇到一个+NP+间,中间推理过程可以省,记住最终结果(NP+间结合,一个留下不结合)就ok。推理过程离线做,最终结果在线用。

李:
强搭配一票肯定 基本不错。如果要考虑更细致的话 大概是如果有多个强搭配 最大跨度胜出。不过 这已经有点吃力不见得讨好了,因为二分法的强弱搭配 忽视了强弱的连续性。强不搭配 如果维护的话,可以考虑一票否决。弱搭配 或 弱不搭配 还是不如最大跨度。

白:
维护不等于人工维护。

李:
“间” 是方位词 属于后置词。n+间 基本上是 PP,做状语为多,通常还到不了要与量词纠缠的环节。

宋:
@wei 说的框式原则,或者说括号原则,应该是认知层面的规则,应适用于各种语言,确实有用。

白:
间是催化剂,自己不参加有关量词的反应,但偶尔可决定量词搭配的方向。就如“张三与李四的婚姻”当中的“婚姻”,决定了“张三与李四”是序偶(ordered pair)还是列表(list)。后者有分配性,前者没有。“鲁迅的书不是一天能读完的”通过谓语部分的周遍性补语“完”,确定话题主语“鲁迅的书”是“例”还是“类”。都是这个道理。不一定亲自下场子,但对别人的subcat特征取值有决定性影响力。特征不是专门为句法一个任务抽取的(否则确实有是否值得的问题),如果背后有N个任务等着要特征,搂草打兔子,何乐不为。

李:
做量词搭配很多时候是醉翁之意不在酒。怎么讲?我们知道,最常见的量词词组是不定量词组 “一个”、“一种”、“一类”、【一+量词】或有定量词组“这个”、“这种”、“这类”、【这/那+量词】。这些量词组本身语义很虚,除了不定有定的语义(大体上是英文冠词的语义)外,量词本身几乎没有意义(汉语用量词的地方,对应到英语往往是空白),它附着对了或错了,对其头名词的语义解读影响不太大。但是,量词组对于名词短语(NP)起到了左边界的作用,因此量词与右边界头词(head word)的搭配,这种框式结构,对缺乏形态的汉语搞定NP这种最基本最常见句子成分,具有非常重要的形式指征的作用。

从框式搭配结构的角度看量词处理,我们发现,对于比较长的往往内含定语从句的名词短语,人在交流的时候也利用了这个搭配,总是先来一个量词组,等于是跟听众说,注意,我这里给你打左括号了,下面我要说一个具有N多修饰语的实体名词了。换句话说,如果没有量词搭配这种形式标识,为了交流的顺畅和避免歧义,国人不会这么经常地使用长NP。

鉴于此,在短语抱团的浅层解析过程中,善用量词搭配,在最大跨度原则的范围里,容忍某些“出格”或不和谐的修饰语,是解决长NP的非常有效的know-how之一。

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【语言学随笔:从缩略语看汉字的优越性】

董老师给了一个有趣的例子,发现对于汉语灵活的构词法带来的新出现的类似四字成语的简练表达,所有的巨头机器翻译系统都错得离谱:

“东方日报的上述评论说,以黑护商、以商养政、以政庇黑,警匪共治的恶劣政治生态,已经在一些地区出现。”

这里面很多表达法(以黑护商、以商养政、以政庇黑,警匪共治)蛮新的,很像是缩略语带来的新成语, 人还没来得及做翻译样板让机器学,机器自然一头雾水。神经机器翻译的亮眼成就本质上还是人工翻译的成就,人工没翻译过的,再牛的机器翻译也抓瞎。其实 这些新成语人理解没问题 翻译还是费思量。等优秀翻译琢磨出来最好的翻译 并在新语料中出现足够多次 相信机器很快就取法乎上 比翻译平均水平高 是可以期待的 (以前说过,成语的本质是记忆 而记忆电脑是大拿 人脑是豆腐)。问题在语料的搜集更新和重新训练能不能赶上新词涌现并流行的速度。

我自己来尝试翻译一下这里面的成语:

以黑护商、以商养政、以政庇黑,警匪共治

To protect businessmen by using black society
To sponsor politics by businessmen
To protect black society by politics
To maintain social order by police as well as black society

不知道及格否

郭兄说,@wei 我看不及格凡此种种十恶不赦之罪状,被你又是protect又是maintain,还有 sponsor 全漂泊了。中文四个字四个字的,那个味道,也被翻译得荡然无存。

可不是吗,用的都是正面动词(通常描述功能 benefit statement),至少不负面,而原句都是负面行为,满拧,肯定不及格。不急 总有高人会信达雅翻译出来,结果机器远超我 是铁定了 虽然我也学了一辈子英语和语言学。

想起来当年,“抓纲治国” 是我英语口试前遇到的难题(1977年高考口试,抓纲治国的翻译困境 在我的一篇 《朝花》 有记),后来发现官方翻译是:grasp the key link and run the country well,现在回看,绝对算不上高明 四字新成语的味道尽失。今天想了半天 终于为华主席的抓纲治国想出来一个可能更好的译法。请比较:

新华社翻译是: grasp the key link and run the country well
提议改成:Grasp the key manage the C

如果问什么意思,就解释说:Chairman Hua was following late Chairman Mao’s political ideology on class struggle, but at the same time he wants to boost the economy.  So he phrased his new strategy as above, which means we should grasp the key-link of class struggle and hence manage the country well,

类似套路的缩略语新成语层出不穷,老的有:

五讲四美 (讲文明、讲礼貌、讲卫生、讲秩序、讲道德; 心灵美、语言美、行为美、环境美)
(哈,试了一下有道翻译,是:Five speakers four U.S.)

Five F’s and four B’s
5 focuses and 4 beauties

focus on manners, focus on courtesy, focus on hygiene, focus on social order,  focus on morality;
beauty in mind, beauty in speech, beauty in action, beauty in environment.

三要三不要
3 do’s 3 don’ts

要搞马克思主义、不要搞修正主义;要团结、不要分裂;要光明正大、不要搞阴谋诡计
follow Marxism, do not follow revisionism;
unite, do not split;
be fair and square, do not play tricks

一带一路
官方翻译是: one belt one road

不得其解,昨天才搞明白是中国倡导 由中国带头 沿着古丝绸之路 开发新的经济贸易开发区 一方面帮助消化过剩的产能 一方面带动区域经济 实现共赢 让区域内国家分享中国经济高速发展的火车头效益 从而树立中国崛起的和平领军形象。

感觉还有更多也许更好的选项 反正是成语 反正光字面形式 谁也搞不清真意 总是需要伴随进一步解释 不如就译成:

一带一路 ===》 one Z one P (pronounced as:one zee one pee)

怎么样,这个翻译简直堪比经典翻译 long time no see (好久不见)和  “people mountain people sea” (人山人海)了。认真说,Zone 比 Belt 好得多。

One zone one path.
One zone one road.
New zone old road.
New Silk Road Zone.

感觉都不如 one Z one P 顺口。

缩略语方面 一般而言 英语不如中文灵活多变而且不重样 汉字作为独立词素载体的优越性突显了。英语缩略语也可以非常灵活 任何常用的ngram术语 都可以用首字母缩略 简直太自由了 但由于字母的本性不是词素 而是临时借来代表词素 而且一共才有26个字母形式 结果是英语的缩略语造成的重复歧义 多到了成为行业黑话的程度。

ABC 可以是 (i)美国广播公司;(ii)人工智能 大数据 云;(iii)字母表的代称;(iv)起码知识;…… 以及另外一千种可能性。从术语到缩略语是直通道 多对一 反过来一对多则把人搞死 也无法快速查对搞定 徒增记忆负担。

汉字缩略语的撞车现象 则急剧减少。虽然汉字缩略语也需要词典绑架才能真正搞清原意 不大能从字面意义去蒙 但第一,望文生义比两眼一抹黑 让人体验好;第二 也是更重要的是,基本没有歧义的缩略语查找方便 随时可以查对绑架和纠正语义误差。比较:

共党 vs. CP
中共 vs. CCP
解放军 vs. LA
人民解放军 vs. PLA (其实“人民解放军” 中文完全可以缩略为 “人解军”)

为什么英语不能学中文 用词素 而不是用字母 来做缩略语呢?主要原因是英文合成词里面的词素 不如 汉字词素 独立 没有汉字词素的灵活性:一个汉字往往对应多个词素语义,在缩略语的场合,汉字还有“变色龙”的词素特征,就是说 一个汉字可以临时扩展自己的词素语义 临时代表这个汉字本来不具有的语义。这后一个特征 英文缩略语里面的字母也同样具有(临时代表的功能),但英语的问题在字母集太小 比汉字少了两个数量级,这个表达能力的优越性被其不可避免的歧义性完全遮蔽,反而成了流弊。与汉字词素大体对应的英语词素的平均长度大约四个字母 突然退到一个字母来代表 可见问题的严重。

汉字使成的这种灵活的缩略语构成法在流行的网络语中被推向极端,譬如:普大喜奔(普天同庆、大快人心、喜闻乐见、奔走相告)。这类有点过分了,几乎转变成完全的黑箱子了(类似黑话 行话了),但即便如此,也比英文用首字母缩略的手段高明,因为起码这种东西没有歧义,一查词典即可理解。

当然英语也可以变通,交叉使用字母和词(素),来多少规避一点缩略语歧义的缺点。People’s Republic of China 的缩略语 PRC 就远不如混合式 PR China,上面的“抓钢治国”(grasp key manage C),“一带一路” (one Z one P),也是这个策略的体现。

把汉语归类成孤立语,总是带着点贬义似的,应该叫 独立语。词素极少不独立和自由的,因此构词特别灵活多样能产。口语中的词素音节 落实成汉字以后 又因为汉字形式比起语音形式的更具有沉淀性 加上汉字数量远多于音节数量使得汉字的表意性更少障碍(望文生义比听音生义更容易)使得其构词能产性和灵活性跨越了时代和地域。虽然说 语言学中 作为标记体系的汉字系统 常被认为是第二位的 不过是语言词素的一个载体而已,但汉字的确对汉语有一个非常正面的跨越时代和地域的反作用。汉字的这些方面的优越性是有根据的。

 

【相关】

【李白刘董85:汉字优越吗?】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白刘董85:汉字优越吗?】

李:
想到一个事儿,关涉词素这个议题,语言学基础课里面已经说得清清白白。但在大众认知中,甚至在专业人士的讨论中,还是常常概念不清。表现在那些流行的“汉字优越论”的各种演讲中。

汉字优越论因为与文化自信和民族自豪感搅合在一起,天然政治正确,因此无论怎样拔高、夸赞,无论符合不符合语言学基本原理,都容易大行其道 深入人心。其中最流行的说法是,几千个汉字可以表达的概念,比几万个英文词汇表达的概念,还要丰富。

这种说法不能说完全没有道理,但本质上似是而非,经不起语言学基本面的推敲。

要害在,这是苹果与梨子在比较。

汉字是语言材料的最小单位,是词素(又叫语素,morphome)。英文词汇表中的词不一定是最小单位,里面也有复合词(compound:black-board),也有派生词(work-er)。如果是词素与词素比较(这才是 apple to apple comparison),语言之间在数量上的差别绝不会如此悬殊。上面的 blackbooard(黑板)和 worker (工人)就不是两个单独的单位,而是跟汉字一样,一一对应,应该分解为四个语素。

正确的符合语言学常识的说法是,几千个常用的汉字对应西方语言几千个词素(词根或词缀),它们可以合成几万个常用词汇,代表了日常语言中所需表达的概念的绝大部分。

这样一来不就是半斤八两了吗。显现不出汉字的优越性,还是心有不甘。

其实,真要深究,还是可以更加合理地为汉字优越找到一些语言学的根据,而不是人云亦云地拿自家的“字典”(词素表)与人家的“词典”做粗暴比较。

虽然世界上演化这么多年到今天的主要语言,无论东方西方,无论汉藏还是印欧,在这个信息飞速流转的地球村,都有足够的语言材料来表达所需要的概念了,但是汉字为词素的中文还是有一些额外的方便。这额外的方便可以算在汉字优越头上,只是要表达清楚这个优越性,需要一些语言学。

比较英语的词素(词根 词缀),汉字为词素的中文,其造词法更具有产生性。

换句话说,国人可以更轻易地“造词”。这也可能是缺点,反正语文老师对小学生“生造词”一直是很不以为然的,过犹不及。他们的责任就是约束学生的造词能力,怕学生没必要地造出太多的词出来,行文不规范。但是,原理上说,这是语言的灵活性和适应性的体现,应该算是优越的语言学特点。

今天听中文网络广播,听到一个超出我的词汇范围的词(术语叫OOV,Out of Vocabulary,其边界因人而异,我的OOV词对于我来说就是“生造”词)“区隔”(后来查了万能的互联网,发现是一个被共同体已经接受的词),因为这词于我是第一次听到,我愣了一下,但很快就从汉字及其关联词汇(“区分”、“分隔”)意会到其语义。这说明什么,说明汉字组词有很强的随意性(明明有常用词“区分”,也不妨再造一个几乎完全等价 的词来),对于听者和说者的顺畅交流通常不构成障碍。增加的是灵活性、多样性,以及从灵活性而来的新鲜感(谁愿意老“墨守陈词”)和从多样性逐渐带来的细微差别(nuance)。

为什么同为语素,汉字组合成词,比起英语语素组合成词,更加能产呢?

要起床了。先停下,以后再聊(老话说,且听下回分解……)。

刘:
@wei 我对汉字优越论也持怀疑态度。不仅仅是你说的原因。我觉得汉字的表义性对词义的理解有好处也有坏处。好处当然是可以减轻学习新词的负担,看到新词也容易猜测意思(如你所说英语词素也有类似作用)。但从另一方面来说也会带来坏处,就是容易望文生义。有些词义仅从字面解释容易造成误导,另外一个坏处我觉得是带来翻译的困难,这一定程度上阻碍了外语新词的传入。

白:
“电脑”的命名跟汉字的优越性不知道有没有关系。

刘:
前不久还见周志华在微博上吐槽把Robot翻译成机器人使得这个词在中文里面的意思发生了变化

白:
还有,intelligent和smart都翻译成智能,中国凑AI热闹的人群一下子大了好多。

魯:
嗯嗯,Robot建议翻译成“若博”,信达雅…. 哈哈哈哈

白:
“肉薄”貌似也可以。

董:
把翻译中出现的瑕疵或缺陷,都算在汉字的“不优越”头上,欠公平。别人也许会举出“可口可乐”、“出水芙蓉”等来说“优越论”。其实,一种语言都有自己的特点,有好的地方,也会有不足的地方。汉语重义,英语重形。在思考和研究语义时也许可以更多地借重汉语。

姜:
有个机构试图把“Internet”翻译成“因特网”并强力推广,但大家都不认,都觉得叫“互联网”好。“互联网”易于理解,不必另造新词,民间其实也早就一直这么说了。

李:
@刘群 很同意,这正是我想要说的。

构词的灵活是很大的优点,也有副作用。不过,正反比较,我还是觉得,好处大于缺点。我这么说,除了源于汉字这个现象的思考,还源于我对世界语构词法的观察和研究。柴门霍夫对于构词法的设计,与汉字构词非常贴近,但更加“优越”。其结果是,学会几千个语素以后的世界语者,都可以随心所欲造词。副作用是,每一个造了新词的人,都留下了争论的空间。

根子在:新词所对应的概念到底是黑色的(必须最终通过词典注册来绑架),白色(透明)的(完全是compositional),还是灰色的(介于二者之间)?

譬如,电脑不叫 komputero,可以临时造一个词 叫 kalkul-ilo(calculator),留下的争论空间就是,你到底是指的 “电脑” 还是 “计算器”?

再如 筷子不叫 kuaizio,可以生造为 “mangh-ilo”(用餐工具),留下的争论空间就是,到底是 “筷子” 还是 “刀叉” ?

白:
我觉得望文生义出现误差是免不了的。

李:
对啊。
好在在说话的现场,这些误差和副作用会自然消解,所以,富有造词法灵活性的语言 譬如汉语和世界语,还是长处大于短处。对于严谨的场合,譬如学科论文 专利文书,这种灵活的透明造词法,常常让位于黑箱的新词,所以专业术语最好是音译(等价于生词)或直接用外文,或者起码在透明翻译后面再括号里注明外语的等价物,凸显其黑箱子特性。因为是黑箱子,留下的争论空间没有了。必须先给这个新词做一个定义,杜绝了望文生义的可能性。

白:
临时词就没有是否“地道”一说了。比如“马桶抽子”,是不是一定叫“抽子”不重要了,指出是疏通工具,就够了。

李:
所以,我同意董老师,汉字的表意性,及其汉语的自由度很大的造词法,大面上看是一个很大的长处。不求甚解,一般比两眼一抹黑好,至少对于人这点可怜的脑记忆量。到了电脑,再大的词汇都不是问题了,但词典是要“绑架”才有定义的,这个绑架的工作就不得了。好在最近有个深度神经的好东西,word embedding,有点神奇,可以在定义绑架这件事儿上发力。前提是那些个生词要有足够的大数据垫底。

白:
辅助望文生义的话,战斗机器人叫“肉搏”,对话机器人叫“若博”,那啥机器人………、

李:
需要的不是带标大数据,本质就是 clustering ,非监督的,所以还不真正构成太大的知识瓶颈。原理上属于 propagation,自动从有知推展到无知。

白:
非监督是正解

董:
说到翻译,还有“马桶”。一个不好的翻译例子是“抽水马桶”(flush toilet)–别误解为用来抽水的、像抽水机那样的用具。因为V+Nde结构,多数可以是用来V的N.

白:
往里抽不是往外抽

李:
马桶幸好是常用登录词,每个人的词典都内在绑架了,所以看上去透明的,其实是黑箱子。万一一个老外新学汉语,或者一个儿童第一次接触,就糊涂了,这与 马 这个词素有什么关系呢?

白:
@wei 跟“扎马步”不知道有多少关系。

李:
马桶为什么不给马用 而是给人用呢?好处是半透明,即便老外不懂为什么有马在里面,起码能蒙对这是一个桶一样的物件。

沙发 和 软椅 也是如此。后者黑箱子,必须扩大词汇量。前者不用,但。。。

白:
从“马拉松”到“半马”“全马”“北马”“厦马”,洋词儿变地道的土词儿了。
不是捆绑那么简单,有内生的能产性最恐怖了。

李:
“半马”“全马”“北马”“厦马”等,对于我还是要登录(记忆)捆绑才能理解。大概谁开始说 大半马,也许我们不用捆绑也悟出来了。

白:
捆绑+派生+简化.

有了例子,后面就是泛化了。京巴,也有点这个感觉,其实“大巴、中巴、小巴”究其根源也是这种类型。

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

 

【语言学随笔:汉字优越吗(1)?】

想到一个事儿,关涉词素这个议题,语言学基础课里面已经说得清清白白。但在大众认知中,甚至在专业人士的讨论中,还是常常概念不清。表现在那些流行的“汉字优越论”的各种演讲中。

汉字优越论因为与文化自信和民族自豪感搅合在一起,天然政治正确,因此无论怎样拔高、夸赞,无论符合不符合语言学基本原理,都容易大行其道 深入人心。其中最流行的说法是,几千个汉字可以表达的概念,比几万个英文词汇表达的概念,还要丰富。

这种说法不能说完全没有道理,但本质上似是而非,经不起语言学基本面的推敲。

要害在,这是苹果与梨子在比较。

汉字是语言材料的最小单位,是词素(又叫语素,morphome)。英文词汇表中的词不一定是最小单位,里面也有复合词(compound:black-board),也有派生词(work-er)。如果是词素与词素比较(这才是 apple to apple comparison),语言之间在数量上的差别绝不会如此悬殊。上面的 blackbooard(黑板)和 worker (工人)就不是两个单独的单位,而是跟汉字一样,一一对应,应该分解为四个语素。

正确的符合语言学常识的说法是,几千个常用的汉字对应西方语言几千个词素(词根或词缀),它们可以合成几万个常用词汇,代表了日常语言中所需表达的概念的绝大部分。

这样一来不就是半斤八两了吗。显现不出汉字的优越性,还是心有不甘。

其实,真要深究,还是可以更加合理地为汉字优越找到一些语言学的根据,而不是人云亦云地拿自家的“字典”(词素表)与人家的“词典”做粗暴比较。

虽然世界上演化这么多年到今天的主要语言,无论东方西方,无论汉藏还是印欧,在这个信息飞速流转的地球村,都有足够的语言材料来表达所需要的概念了,但是汉字为词素的中文还是有一些额外的方便。这额外的方便可以算在汉字优越头上,只是要表达清楚这个优越性,需要一些语言学。

比较英语的词素(词根 词缀),汉字为词素的中文,其造词法更具有产生性。

换句话说,国人可以更轻易地“造词”。这也可能是缺点,反正语文老师对小学生“生造词”一直是很不以为然的,过犹不及。他们的责任就是约束学生的造词能力,怕学生没必要地造出太多的词出来,行文不规范。但是,原理上说,这是语言的灵活性和适应性的体现,应该算是优越的语言学特点。

今天听中文网络广播,听到一个超出我的词汇范围的词(术语叫OOV,Out of Vocabulary,其边界因人而异,我的OOV词对于我来说就是“生造”词)“区隔”(后来查了万能的互联网,发现是一个被共同体已经接受的词),因为这词于我是第一次听到,我愣了一下,但很快就从汉字及其关联词汇(“区分”、“分隔”)意会到其语义。这说明什么,说明汉字组词有很强的随意性(明明有常用词“区分”,也不妨再造一个几乎完全等价 的词来),对于听者和说者的顺畅交流通常不构成障碍。增加的是灵活性、多样性,以及从灵活性而来的新鲜感(谁愿意老“墨守陈词”)和从多样性逐渐带来的细微差别(nuance)。

为什么同为语素,汉字组合成词,比起英语语素组合成词,更加能产呢?

要起床了。先停下,以后再聊(老话说,且听下回分解……)。

 

【李白王董84:再谈POS迷思,兼论 PennTree 的误导】

王:
动词名化确实不好处理的难办事,以前做词性标注,准确辛率不高,就栽在这,n,v,vN上了,还有区别词b。当然现在语法理论,一个小小助词“的“就有管住核心谓词的能力,使之由V变N。

白:
A、“粉红凤凰”,B、“红绿色盲”,C、“真假和尚”。
A、粉修饰红,粉红修饰凤凰。
B、红绿并列,但并不是用本意的叠加修饰“色盲”,而是用不能区分这两种颜色来定义色盲的具体类型。
C、真假并列,通过分配律把共享中心词“和尚”送给二词修饰,表示“真和尚、假和尚”。
修饰成分间的关系很不简单呢。

李:
我对 b 的第一解读是 c 的并列
看了讲解才悟出来 也许还有 nuance
感觉差异已经细微 微妙到很少需要在意区分的程度了

@wei wang 中文中的所谓动词名物化 nominalization
很大程度上是一个伪问题 一个语言学迷思
强加到 POS 模块 作为其难点 更是一个自找的麻烦
工作 学习 睡眠 吃饭 下雨 打雷
这些词 类别很清晰

王:
@wei,对此我也迷惑

李:
(逻辑)动词 万变不离其宗 没有 POS 区分的必要性

Wang:
这点我同意李老师。所以,我说现代语法理论,是否需要调整一下?只是不敢妄论。
如果都能走对,倒无妨,就怕转得有对有不对,就确实是问题了

李:
在 POS 先于句法的通常架构里
把句法的不同用场 强加到 POS 标签去 是真实世界的天下本无事 x人自扰之。
真有好好的路 硬是自己挖个坑 然后就自己跳进去 然后抱怨路不平。

王:
当然,我现在已经跨越POS这个,不使用POS而直接走句法了。不过对别人而言,这词性标注依然存在。即便标注,我也认为动词体征的,就一直动词体征走向去,比较好。

李:
汉语语法学界上世纪50年代的词类大争论,大争论当年没争出结果来,是时代的局限。

王:
我的看法是,也不去争论。

李:
词无定类(“词无定类 入句而后定”)走向一个极端,无法服人,但其思想有闪光之处。

王:
而是拿到系统中去跑,能跑得好的,自然就是好的,至少这正是我们所需要的

白:
结构强制在技术上一点不复杂,问题是算句法还是算词法,但这都不是技术问题,是旗号问题。旗号与我何干?

王:
至于语言学方面,那是另外的一回事

李:
对于具有 consistent ambiguity 的词,
本体上就是无定类,但是一说“词无定类”就扩大化了,以为所有词都是必须要句法,要上下文,这就陷入了鸡和蛋的死循环,当然不能服人。
这个迷思从哲学上不难看穿。可是实践中却坑了人太多 太久 而且还继续在坑人。

王:
@白硕 说的是,确实不是技术问题

李:
如果一个东西 在有些场景下看着是 红色 有的场景下看着是 黑色
自然的结论就是给个 X 的本体标签,让 X 统辖 红 黑 两个标签,至少这个信息的外延是清晰的,是红黑的区域,不是蓝 不是绿 不是紫 等等,这才符合事实 恰如其分。

王:
这是否分两种情况?
1)本来是多义词,兼有多种词性的;2)已经定了就一种(比如纯动词),走着走着,变了,

李:
不说多义词。多义词(细微差别不算)那是两个词,凑巧长得一样了,其归属自然也可能不同。

王:

李:
只说 2)
2) 没有 POS 半毛钱的关系。
汉语中的 POS 任务中 纠缠了几十年,原来一开始就把任务定义错了。

王:
请问,那么怎么“ X 统辖 红 黑 两个标签”

李:
对于我们讨论的动词名物化,这个 X 就是 V,可以读成逻辑动词。这个 V 是词典给的,没有歧义,何用区分?

王:

李:
到了结构里面做了主语或者宾语,它没有改变 V 的本性:词义没变,归属自然也没变。所改变的是句法 role。

王:
同意

白:
没有X统辖那么简单。以“出版”为例,被赋予了动词特有的零碎,比如加“不”,仍然可以再通过“的”强制为名词;但是反过来,已经被名词特有的零碎强制过的,不可能再被强制回动词。
本性是动词,强制为名词,然后就凝固了,不接受变回动词的再次强制。

李:
没问题啊。
这些个细节 与标签没大关系,标签还是 X。只要词义不变,标签就没有道理变,这是本体 taxonomy 决定的。词义变了,标签有可能变。在同一个词义下给不同的POS标签,对于汉语这样缺乏形态的语言,是不合理的。

王:
我的看法是,不去改变词性
这本书的出版,—-出版依然是动词,—可以看作是一个成句中谓词
这个成句,是一个小句(子句),可以做主语,或宾语,这样,句法上也顺上了,而且,词性也没去改变

李:
换句话说,汉语这样的语言,POS 应该用的是逻辑类

白:
问题是啥叫词义变。“真孙子”里面的“孙子”,我感觉词义变了。

李:
世界上所有的语言的词汇,都有逻辑类。这是语言共性。但是形态语言 在逻辑类之上,经常使用形态变换,把逻辑类穿上不同的衣裳。穿得好的话,可以脱离场景做句法。例如 俄语,morphology 很大,句法就简单了。极端来说,别说 POS 标签,就是本质上是上下文结构决定的 role,也可以脱离上下文 在词上反映:宾格就是宾语 role。

王:
同意@wei 在同一个词义下给不同的POS标签,对于汉语这样缺乏形态的语言,是不合理的。

白:
填坑使用的不应该是逻辑类,应该是角色。比如“这本书的出版怎么没通知我”当中,“这本书的出版”填坑时就是N。“这本书出版怎么没通知我”当中,“这本书出版”填坑时就是S。

王:
这本书的出版—-看作一个小句 ,小句也相当于名词作用。出版–作为一个事件出现
事件—>没通知我。

李:
填坑不外两点:
1. 句法上要的是什么形式(包括标签或子类,或直接量),这是输入条件;2. 语义上是什么 role,这是输出角色,是“理解”的形式化。不能混淆输入和输出。输入条件用逻辑类,没有问题。句法的工作,起点就是词典信息。逻辑类是词典信息的重要方面,是词典本体信息体系里面层级最高的那几个标签。

白:
但,“通知”的内容那个坑,就必须是个X,混儿。见人说人话见鬼说鬼话。

李:
“出版”的坑:
(1)第一个坑
输入条件:publication (本体链条属于逻辑名词)
输出角色:【受事】

(2)第二个坑:
输入条件:human_or_organization
输出角色:【施事】

这才是 “出版” 的真实面貌。至于语言应用中,上述类似 HowNet 定义出来的 subcat pattern, 应该如何松绑输入条件 来应对鲁棒与活用,那是另一层面的勾当。

王:
就是说,不能因为一个“的”字,把本来清晰骨架,垫走了样。

李:
“通知”的坑:

(1)
输入条件:thing_or_event

(这就是白老师所谓变色龙,其实本体链条上,不过是在逻辑n与逻辑v上,再抽象一个统辖的 n_or_v,thing 就是逻辑名词的通俗表述,event 就是逻辑动词的通俗表述)

输出角色:【content】

(2)第二个坑是施事【谁】
输入条件:human (具体语言还有格、词序、介词类的条件制约)
输出角色:【施事】

(3)第三个坑是对象【向谁】
输入条件:human (具体语言还有介词、格、词序类的条件制约)
输出角色:【对象】

回来总结一下:坑里面使用逻辑类或者逻辑类下辖的子类 甚至 直接量(等价于具体词义搭配)是天经地义的。至于这些条件的松绑,所谓 preference semantics 那是语言应用中的窍门。为了鲁棒必须松绑,松绑会一步步从具体逻辑子类,向高层的逻辑类去。

王:
同意李老师

李:
HowNet 是独立于语言设计的,它的最上层 top 节点 其实就是逻辑类,event 就是 v
thing 就是 n。其实还应该再往上走一步,thing_or_event,但反正有 OR 算符,所以走不走也无所谓了。

白:
可以看成一个lattice,and就低不就高,or就高不就低。

李:
HowNet 其实是两个东西在里面。第一个是本体,董老师对人类认知和常识体系的总结和设计。第二个是语言落地(汉语,英语,……)。这第二步是通过给汉语词汇标注 HowNet 本体标签的方式实现的。这时候的本体已经落地到具体语言了。

白:
修饰语隐含的被修饰语和真实的被修饰语做or

李:
PennTree 在英语NLP中已经很多缺陷,时代的局限,误导了很多人。

白:
总感觉HowNet不完全满足这个架构

李:
PennTree 的那一套标准用到汉语更是误导,不如直接用 HowNet 来作为标准。

白:
想都不要想,肯定不会用PennTree

李:
至于选取 HowNet 顶层或者中上层的哪些标签作为中文 POS 的任务,可以再议。POS 选得细了,就几乎等价于 WSD 任务了(事实上,白老师很多时候在讨论中就是把二者看成同一回事儿,道理很显然,WSD 说的是词义区分,词义的taxonomy 链条就是逻辑词类)。

王:
现在很多评测都是以宾州树库来做基准的。我也想过,就算那个F值即便很高,那么真实应用就是那么高的吗。

李:
HowNet 在语义领域可以独树一帜,能够站得住,相信也能够经受时间,其中原因之一,是由于董老师是中国人,讲的是“裸奔”的汉语。裸奔的汉语与逻辑最贴近,有自然的亲密关系。这对排除语言的干扰,从逻辑的高度审视语义,有天然的好处。如果要讲中国人对世界文明作出自己的独特贡献,HowNet 可以是一个代表。

王:
李老师对其他语义词典是如何评价?

李:
哪些?

王:
比如wordnet ,同义词词林

李:
早就不用 WordNet 了,麻烦比好处多。擦不完的屁股,以至于用了两年后,不得不全部推翻,宁肯自己零敲碎打,不完备,增量积累做语义标签,也不愿意陷入 WordNet 泥坑。

王:
主要是想说直接是树状,而非网状的这类

白:
标签体系必须是DAG

王:
分类体系做得不好,还是后期建设不好,比如冲突出现?

李:
其实 WordNet 是可以改造得好一点的 好用一点的,但只听说有人说改造,但没见到有人愿意坐冷板凳去真地改造它。

白:
标签体系的数学基础,一是type theory,一是lattice。lattice解决单类型的上下位问题,type解决复合类型的构造问题。

王:
上下位好理解,这复合类型就不好理解了,请白老师讲解

白:
@wei wang 带坑呗

王:
明白了,我还以为复合类型,穿插把不同上下位的分支。又结成了网

白:
上下位是为不带坑的type准备的,带坑的都是复合type。

王:
@白硕 带坑是一个词带n个坑,这几个坑是另外的词

白:
@wei wang 对的

王:
是否有的词,本身就自己萝卜和都带了,这样的词如何分类?比如一些成语

白:
标签也分层。微结构,比如“扫地”,合起来是一个坑,微结构又可析出一个萝卜一个坑。

李:
subcat 既是子类(atomic 的标签),也蕴含了潜在的结构pattern,说 vt 其实是说有这类动词子类 挖了个宾语的坑。

白:
地不扫,何以扫天下

王:
@白硕 那看成一个整体,仍在统一分类体系,

李:
HowNet 开始用的时候也有问题(有些问题与 WordNet 类似,没那么严重),给董老师反映过。问题的根源在 董老师需要一个逻辑完备自足的义元体系,为了这个自足和完备,标注的时候就务求细而全。

HowNet 中的一个个单字的标签特别丰富,特别细,把这个字(词素)各种可能语义都反映了,甚至包括只存在于 idiom或合成词 中的词义。这其实给使用带来很多噪音。我一开始是试图 删减。后来发现对于单字的标签,删不胜删,最后决定索性单字的标签不用。要用的自己临时增量式加入,宁肯 under labeling,不能 over

王:
@wei “后来发现对于单字的标签,删不胜删,最后决定索性单字的标签不用。”
单字,是义原的核心,就是不用单字最基本的,而直接使用信息能独立的,更有代表性?更便于处理?

李:
不好用啊。很多汉字 看上去不过一两个词义,结果里面标了五六个词义,仔细想 确实都存在。但是用起来就是眉毛胡子一把抓了。

王:
嗯,我觉得建造体系可以这样建,想怎么用就是应用来选了

李:
如果这五六个词义的确都是自由语素的词义,虽然统计上出现频率不同,但逻辑上这样标注没有问题。但有些词义从来不作为自由语素的语义出现,只存在于合成词中,那就没有理由标注了。这个问题,董老师后期版本有了 config,可以筛选。做了弥补。这个问题在 WordNet 中更严重。

王:
嗯,谢谢李老师,白老师的解答。时间不早,明天上班,我先拜拜。

李:
晚安 @wei wang

王:
晚安!真的我还没聊够的感觉,特别是,语义分到什么类别,很关键,对系统有很大影响,也深有体会

白:
据我的经验,先别说具体类别,先说长什么样,更容易把握。数学上什么样,计算机里什么样。实体、属性、关系、值,这是一个层面。事件是另一个层面。时间空间因果模态,又是一个层面。知网中很先知先觉地引入了“变关系、变属性、变状态”等事件子范畴,相当高明。真的很赞.

董:
讲一个真实的故事。1988年由日本发起的五国机器翻译项目正在进行。在一次饭桌上,日方的项目负责人内田裕士谈起该项目的语义研究落实问题是说:”这个项目的语义研究,是不是请中方负责,具有中华文化背景的人对于语义有更高的敏感性。”
只是觉得只要由中方来负责,总归是好事情。我就表示同意了。可是对他的那句有关“中华文化背景”的断语,还真没有完全理解,但饭桌上也不适合讨论下去。后来时隔近20年,内田先生来北京,那次我们只是几个人一起吃饭。我问他:“你还记得20多年前,我们在讨论MMT的语义研究时,你说过一句话。你说’具有中华文化背景的人更适合做语义研究吗?我一直想问你你为什么会这么说呢?’”
他说的很简单:”因为是你们有汉字”。那时候我已基本完成了HowNet的研究和开发。HowNet正是以汉字为理念依据的。前两天我跟李维讨论。说到洋人不懂汉语,跟他们讲深了他们不理解。

白:
这些要是落在知识图谱里,不得了。

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白82:汉语重叠式再议】

【立委按】
我稀罕死她:是我喜欢她

她稀罕死我:既可以是 她喜欢我,也可以是 我喜欢她。
汉语鬼不鬼?
虽然鬼,语言学家有解读,明镜似的。2018了,不要看不起语言学家。世界上怕就怕认真二字,我们共和党人就最讲认真。一切都讲大数据,我们语言学家就最讲数据。
你知道吃饺子过年有几种说法吗?

 

白:
“逆回购逆了好几笔了。”
副词词素用作重复

李:
这是汉语动词用前缀重叠(reduplication)回指(coreference)的现象:

“abc 都 a 了这么久”

动词 reduplication 是汉语常见的手段,用起来有说法:

【1】 一般只重叠一个词素(单音节),但不排除整词重叠:

“学习学了这么久”
“学习学习了这么久”

(说话说了一半,打了个叉就打这半天:咱接着练,把动词重叠的话说完。)

动词重叠有两个语义:

(1)表示回指(可以看作是有unification的并列):就是说的同一个动作事件,所带的成分不同,信息需要融合(fusion)。这是汉语句法的一个趋向,同一个动词后带成分不宜多,最好分开来说,分开说就用重叠手段。

(2)表示动词的 short duration,这不是句法现象,而是词法手段:如,休息休息;看看书;说说话。

【2】. 绝大多数多音节动词的重叠都是只重叠第一个音节

背后的原因可能是绝大多数双音节(或三音节)的动词的内部结构都是动词词素打头
结果语言共同体就形成了这个习惯,然后就泛化了,以致于甚至V不打头的(合成)动词也可以使用第一个音节重叠来做回指,这就是白老师举的例子,合成动词里面的副词甚至也就可以重叠来代指整个合成动词(把合成动词当成一个黑箱子了):

“ab 就 a 了这么久啊”
“abc a得我是灰土土脸”

不管ab 或 abc 里面是啥结构了,就用第一个音节 a 代指 ab(abc)。

但是,汉语的词法很多时候是半透明的,所以还是有人做动词重叠深入到词法内部,把其中不打头的v词素,外化到句法来重叠,这样就形成了这么个等价的 minimal pair:

“逆回购逆了好几笔了”
“逆回购购了好几笔了”

(by the way,“逆回购”这个合成词里面有合成嵌套。词典动词 “回购” 的内部结构是【副词+headV】;到了“逆回购”,结构还是 【副+headV】)。

再举几个有趣的例子:

“望风而逃也逃不过如来佛的手掌。”

“你金屋藏娇藏了几年了?”
“金屋藏娇藏了几个娇?”

不能说:* 金屋藏娇金了几年了
(所以黑箱子用第一个音节重叠的接受程度,很难延伸到3音节以上的成语)

“你金屋藏娇藏了几年了?” 这句,“你” 既可能是逻辑主语,也可能是逻辑宾语,貌似做宾语可等价于: “你被金屋藏娇藏了几年了?”

如果是 “她” 几乎就定死在宾语角色了:

“她金屋藏娇藏了几年了?”

另外,汉语合成动词的大多数是v打头,这很显然,因为汉语合成动词的词法结构不外是:

1 动宾: 洗澡
2 动补:打碎
3 并列:打击
4. 状谓:狠批
5. 主谓:头疼

123 都是 v 打头,5 成词的数量不多,主要就是 4 是副词打头。

白:
狠不狠批是态度问题

李:
“狠批谁也不敢(狠)批你呀”
* “狠批谁也不敢狠你呀”

可见 “狠” 回指 “狠批” 是有诸多限制的。至于 “x 不 x” 这种重叠式,x 既可以是动词 也可以是形容词/副词。“狠不狠” 这种选择疑问的焦点在 “狠” 上,不必解释为 “狠” 代指 “狠批”。

严打:“严不严打 全看老邓一句话。”
重判:“重不重判 要看平民组成的陪审团。”

后退:
1 后退不后退
2 后不后退
3 ? 后退不退
4 * 后退不后

总结一下,全重复永远不错,重复v词素基本不错,前重叠可重复第一音节,后重叠如果想重复第一个音节,要小心了。

白:
小心,3和4都不灵

李:
@白硕 3 “后退不退” 个人语感上不是完全不可接受。麻烦出在 “不退” 也可能是句法谓语, “后退” 成了话题主语,而不一定是 【x不x】的词法重叠式来表示“选择疑问”了。

“前进不进 后退不退 你这是唱的哪出戏?”

“后退不退 ?总司令一直在纠结中 难以决策。”
“后退不后退 ?总司令一直在纠结中 难以决策。”
“后不后退 ?总司令一直在纠结中 难以决策。”

显然后两种说法更地道 但 “后退不退” 不是不可以,至少与 *“后退不后” 不可同日而语。

白:
其实我说的“小心,3和4都不灵”的意思是:“小心不小”和“小心不心”都不灵。
后来讨论淹没了,没顾得上掰扯。同理还有:“遗憾不遗”和“遗憾不憾”也都不灵。

总感觉“ab不a”/“ab不b”格式有一种“ab可为,为不为?”的意思在里面。如果ab的到来是不受控的, 那么“ab可为”的预设就不对劲了。

李:
小心 的同义词是 “当心”,“当不当心” 你懂的。“考不考虑” 你也是懂的。“重不重叠” 我们都知其然,不一定知其所以然。还好 做 parsing 即便 over generate 也关系不大,做生成要小心了 保守一些为好。

白:
12都ok,关键是34。

李:
?“当心不当”
“担心不担”

白:
小心、当心,担心,语义差别小,34准入性差别大。

李:
说话就过年了,看到一个“绝妙中文”的段子:

可以 parse 看看:

想到:“好喝不?不好喝。喝不好 不喝好。”

“喝不好” 歧义:述补结构 or 主谓结构。again 前者偏词法 后者属于句法。

白:
喝不好,其实还有述宾结构一个选项,但很隐晦地被压制(喝读第四声)。参考一下:平行的“说不对”三个选项就都灵光了。
1: 述补结构,不能正确地说;2、主谓结构,“说”这件事是错误的;3、述宾结构,说的内容是“不对”。

之前郭维德师兄还举出过:说了算,算了说,说算了,算说了……

李:
语文老师布置作业:请用“好”、“过”、“年”三字在“吃了饺子”后面造句,谁造得快,发给谁新年红包。

小明数来宝似地一口气说下去:

吃了饺子好过年
吃了饺子好年过
吃了饺子过好年
吃了饺子过年好
吃了饺子年过好
吃了饺子年好过

学过概率又学过语言学的人就是不同:6 种排列 全顺!

【小明,这里有红包…….】

提出你知道“吃饺子好过年”有几种说法吗,结果我的朋友圈有一个学生留言道:

1. 吃饺子好过年
2. 吃饺子过好年
3.吃饺子过年好
4. 吃饺子好年过
5. 吃饺子年过好
6. 吃饺子年好过
7. 过年好吃饺子
8. 过好年吃饺子
9. 年好过吃饺子
10. 年过好吃饺子
11 过好年吃饺子
12 过年好吃饺子
13 过吃饺子年好
14 过好吃饺子年
15. 吃好过年饺子
16. 过好吃饺子年
……….

罢了 罢了 不做排列练习了

白:
还有很多:
过年吃好饺子
过年饺子好吃

李:
原因:

1.  汉语很灵活,词序比想象的要灵活许多
2. 常用词有多义或多用法 (汉语说:我裸奔我怕谁)
3. 动宾离合词“过-年”很厉害,与句法动宾“吃-饺子”一样自由,造成何种合理合法的组合

换个话题,自然还是中文计算:

“牛顿稀罕死我。” 领导回家,见牛顿(Nutan,我家的猫)在门口迎上来撒娇,不由说道,然后就是奖励它,给它 treats。


Xander左白,牛顿右黄,和平安详

经常在日常生活中听到一些自己作为南方人不会说但可以听懂的话。上面的话其实是说:我稀罕死牛顿了。可北方话为什么要倒过来说呢?

语言学讲稿中常举逻辑SVO倒置的例子有,英语的“like” vs. 法语的 “plaisir”(please),核心谓词的语义相同,但所要求的S和O正好倒置:

NP1 “like” NP2 == NP2 “plaisir” NP1
(“喜欢牛顿” 等价于 “被牛顿取悦”)

感觉 “牛顿稀罕死我”是使动用法:“牛顿让我稀罕死(它)了”。现代汉语中的这种转换必须有补语才成。一个单纯的及物动词是不成的:“我稀罕猫” 与 “猫稀罕我” 完全不同。
但 “我稀罕死猫” 与 “猫稀罕死我” 完全等价。

汉语鬼着呢。

(当然等价的前提是知道牛顿是猫,否则【human】对【human】可能产生结构二义,麻烦大了。)

“我稀罕死她”:是我喜欢她
“她稀罕死我”:既可以是她喜欢我,也可以是我喜欢她。

汉语鬼不鬼?

虽然鬼,语言学家有解读,明镜似的。2018了,不要看不起语言学家。世界上怕就怕认真二字,我们共和党人就最讲认真。一切都讲大数据,我们语言学家就最讲数据。

“我稀罕死她”也是【human】“我”对【human】“她”,为什么没有二义呢?大概是因为子非鱼,吾非她,无法知道她是不是被取悦,干脆潜意识排除这种解读。“她稀罕死我”,有所不同,虽然吾非她,但她的主语位置隐含了标配的逻辑语义解读,不好轻易排除“她喜欢我”这种默认解读。至于第二种解读,我了解我的心,自然更不能排除。这说明,一种句法结构哪怕是二义的,共同体的语言认知心理往往有一个标配(默认)的逻辑语义映射。

中文处理,没完没了,语义计算,妙趣横生,李白对话,对到年终,祝白老师和群友新年快乐,2018 咱接着说。

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【新年新决心:追求喝好酒,不求酒好喝,祝你新年快乐】


左牵白,右擎黄,老夫聊发少年狂。料理日本平安夜,鬓霜圣诞又何妨。

Merry Xmas and Happy New Year to all!


Xander(白)敏捷,牛顿(Nutan 黄)安闲,平时打闹不断,难得和气一团。

哈,那位说了,好奇妙好诡异的中文!快跨年了,咱来分析分析:

因此上,新年新决心 New Year Resolution:坚持喝好酒,不问酒好喝,向 Xander 学敏捷,向牛顿学安闲。拥抱人智学图谱,挖掘知识看语言。祝各位快乐新年!

Note:敏捷指 agile software development;人智乃AI;图谱是knowledge graph(KG);挖掘是 text mining

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白79:中文深度解析的地基是词法分析器】

白:
“我电话费用不完”谁家分词系统强?

李:
这不仅仅是“分词”问题,而是词法分析(morphology analysis)问题,对比:


Note: M=Modifier, S=Subject, H = Head;
N=Noun, NP=Noun Phrase, AP=Adjective Phrase, CL = CLause

这里,“不”(还有“得”)是现代汉语的中缀(infix),派生词构词法如下:

用完 –》 用得完
用完 –》 用不完

而三元组“用不菲”却不成词:

“用不菲的价格购得”。


Note:M=Modifier, R=Adverbial, X=Functional, H = Head;
N=Noun, NP=Noun Phrase, AP=Adjective Phrase, VG=Verb Group, PP = Prepositional Phrase

白:
不菲 应该成词吧,不完 不该成词。

李:
对。但是 “用不完”成词,是派生词。上述词法分析除了派生(derive)了这个词,而且得到了这个派生词的分析结果:

(i)原词:“用完”
(ii)原词词典“绑架”的词法结构:述补
(iii)词法特征:【否定】【结果(述补结构)】【可能(情态)】

这不是切词,这是以派生的方式做词法分析,对比同为情态的等价表达“不能用完”:

(i)头词(Head):“用完”
(ii)句法短语:VG(动词组)
(iii)词法特征:【否定】【可能(情态)】

特别有意思的是,“用不完”的构成不是 “用” 与 “不完” 的拼接(concatenation),而是 “用完” 与 中缀“不”的派生式构建。这不是语言学上的合成构词法(compounding),而是派生构词法(derivation)。由于汉语被普遍地粗线条指认为缺乏构词法手段的所谓孤立语,大众一股脑把所有的构词都叫作 compounding(也叫“小句法”),但是现代汉语其实不是这么单纯。欧洲语言的构词手段大多在现代汉语也有体现,包括 类词尾(quasi-inflection)如表达完成体的“了”,也包括利用类缀(quasi-affix 如前缀。中缀、后缀)的派生(derivation),以及大量使用的重叠(duplication)构词手段(如:高兴–》高高兴兴)。我的博士论文对这些现代汉语的词法(morphology)现象及其计算机处理,有详尽论述,语言学味道浓一些(见:Ph.D. Thesis: THE MORPHO-SYNTACTIC INTERFACE IN A CHINESE PHRASE STRUCTURE GRAMMAR)。

现在已经清楚,为了中文自动分析,所谓中文分词,不仅仅是把要词“切分”出来, 而是应该输出白老师所说的微结构及其词法特征(时、体、态等)和句法特征(如类别、子类等) ,除此之外 还要通过“词典绑架”输出语义特征(叫 lexical semantic features)及其背后的本体知识层级体系(类似于董老师的HowNet,内含常识)。这样的词法分析器(lexical analyser)才算是完成了词法任务,为下一步的句法分析和语义分析打下基础,从而为汉语的深度理解开辟了道路。

所谓实体识别 (NER),属于合成词范畴,也是题中应有之义。还有 Data Entity 的合成,譬如各种度量表达法(长度、体积等)也是合成词。当然也要包括与句法纠缠的离合词(“洗澡”)的识别和绑定。

中文深度解析(deep parsing)的大楼不是凭空可以建造起来的,词法阶段就要夯实。

白:
“用不完”搞成词没啥意义

李:
这个没的争的。根本不是什么“搞成”词的问题,而是词法分析的问题。说到底,这个中缀的词法意义必须抠出来,因为它是 open-ended,绑架不全。最终系统要知道 “不能用完” 与 “用不完” 不过是用不同的词法句法形式,表达相同或相近的语义。否则何谈语言理解(NLU)?

白:
“用不完”在句法层次一样处理。放到构词法层次,难不成就是为了凑一个长词优先?

李:
句法与词法本来就是一伙的,从万米高空俯瞰,都是形式分析。句法如果能分析出词法分析同样的结果,亦无不可。以结果论英雄。但语言学上,它就是一个派生词,这个没有多少疑问。其实,“凑成一个长词优先”不仅是词法的“凑”,背后有其所以为词的原因在。词法句法在中文纠缠,并不说明二者没有顺序。顺序的一个体现就是长词优先。

白:
好的分词系统,即使“用不完”分成三个词,总体得分还是占优的才对。

李:
如果较真的话,中缀现象在通常的句法里面还真不好处理妥善。我们可以用近似、逼近的句法去处理中缀,但派生词的处理在词法是一个常规的过程,是词法里面避不开的一类。

白:
“我电话费用也用不完”

李:
这与沙滩望远镜看女孩有点异曲同工(自注:这是NLP领域最著名的代表结构歧义的例句:I saw a girl with telescope.  句末介词短语做 girl 定语,与做 saw 的状语,二者都说得通,是为“真歧义”)。这种人为的真歧义(1. 我电话费,用也用不完; 2. 我电话费用, 也用不完),系统怎么做都不能算错。理想的情况是输出两个结果,但人脑理解貌似也是先绑定一个结果(不同的人可能绑定不同的路径),有时间咀嚼的话,再想到另一个结果。人际交流和理解中,多数人不拘小节,根本不在乎这种歧义区分,除非是遇到较真的人,或在段子里。问题是,就算一个高明的系统可以区分这种较少出现的“真歧义”与大量存在的“伪歧义”,下一步接不上还不是白费。还不如就绑定一个。

“v 也 v 不完” 这种重叠手段与派生手段纠缠的汉语现象,不是应该把 “用不完” 置于句法的充分理由。首先,这种纠缠现象非常局限,基本上还在词法范畴内部,不像离合词“洗澡”,已经明显溢出到句法了,经常是“远距离”离合,那才真地需要词法(包括词典)与句法有一个灵活的接口。

白:
“电话费用不用得完成任务了再说。”

允许“用也用不完”成词,那就得允许“用不用得完”也成词吧?其后果是,即使“完成任务”算一个词也压不住了。

李:
压不住就不压呗。弯不过三。压不住的,基本上是长尾的尾端。

白:
这不是自然的压不住,是人为的压不住。不把那东东搞进词法就没这事儿。不是天灾,是人祸。拿解释天灾的逻辑解释人祸,欠妥。

李:
关于词法、句法,对于多层系统,就是一个连续体,有顺序,但没有一个黑白分界线,这与教科书里面的词典、词法、句法、语义等组件的各自完全独立不是一回事儿。
譬如说 1层到10层是黑色的词法,20层到40层是黑色的句法,但11层到19层呢,那就是灰色地带。可以说是词法后期,也可以说是句法前期,安排什么现象到灰色地带,是根据现象的特性来决定。因此争论某某是扔进词法还是句法这样的问题,前提的假设就是两个前后模块,而不是离散又连续的多层系统。

撇开抽象的模块分界,真正有意义的问题是,“凑成一个长词”(并参加分词大餐)是好处大于坏处还是相反?其实,答案是相当清楚的,利大于弊太多。与其指望一个“聪明”的分词程序来应对 “v -也(都)-v-不-完”这个五元组,不如把“长词”做出来心里踏实:这样再“笨”的分词程序也不至于出乱子。五元组分散开来进入分词所可能造成的副作用,较之合成了五元组长词(并同时做了词法分析)可能引起的后续的切分问题,前者比后者严重得多,也频繁得多,根本不是一个数量级上的问题严重程度和频繁程度。因此,恕我直言,白老师的“人祸vs天灾论”或者是唯心的,或者是误导的。

白:
关键是长词是什么时候做出来的,我很赞赏前面说的灰色地带的说法。长词是句法分析介入以后做出来的。做出来以后就可以反悔分词方案。这样分词和句法两方面就都是可控的。走的路线类似分词1-句法1-分词2-句法2………这种。

李:
有道理。不过白老师举例来说的人祸论实在不能让人心服。事实上,分词系统免不了要用 heuristics,对于每一个heuristic,无论如何表达,也无论如何安排先后次序及权重永远可以找出反例来,这是 heuristic 的本性。但我们最好不用(罕见的)反例来结论某种安排是人祸。如果不那样安排,这个人祸是避免了,另外一个更大的人祸很可能就在身边,因为所谓“没有了人祸的更高明的方案”其实并不能保证周全。这不是说方案与方案之间没有优劣,而是说,门户之见很容易让我们看到别人方案的缺点,忽视了自己方案的副作用。

白:
可以有一些另外的表述,比如结构冻结,比如分词永远在进行时,都能让人更好地理解所说方案的建设性。人贵在举一反三。如果从反例中只能看到个别、长尾、噪音乃至门户之见,那很可能就忽略了真正有意义有价值的问题。

李:
对,道理是这样的。不过,直觉还是很担心五元组进入分词程序的。晚上睡不好觉。汉语是二字词为主,五元散列的情况让人心慌,老觉得会当成外国人名给打入了另册。如果v是二字词,则另当别论,可以句法处之:“反正学习也学习不完”。换句话说,不是不知道这个现象可能需要句法:即便五元组参加了分词,同样的组合在句法还是要重复一遍,否则上面的7字组就不能做统一的分析和处置。这算是支持句法处置的一个可以接受的 argument,但是,词法结构规则在句法重复,听上去不经济,实践中个人认为并不是问题。多层系统的框架下,重复的不止这一项,否则也解不了乔老爷的递归魔咒。

刚开始入行的时候,老想着 generalizations(语言系学生的通病,被教授洗脑了,一直以 generalization 为语言学家天职),总是避免规则的冗余和重复。后来有几次看到了机器学习出来的符号规则,重复冗余简单到无语,反而受了启发。如今对重复冗余的耐受强多了:只要简单,何妨啰嗦,完全抛弃了铁路警察各管一段的理念。现在是词法做了句法做,句法做了到语义也不妨再做,螺旋式上升,相互照应,只要为了一个共同的目标就好。

 

【相关】

Ph.D. Thesis: THE MORPHO-SYNTACTIC INTERFACE IN A CHINESE PHRASE STRUCTURE GRAMMAR

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白78:毛主席保证】

李:
“毛主席保证。”
这句口头禅是到北京后学会的。

白:
至少40年前就有这话

李:
我范进中举进了京城,可不就是三四十年前嘛。

以前在外省的时候,我们偶然也说:

“(我)向毛主席保证”

“我”有时候省略,但从来不省略“向”。进了京城,乍一听诧异,再一听别扭,久而久之 反而觉得别致有味道:京片子“裸奔”(参见【汉语就是一种“裸奔” 的语言】),还是比咱乡下人放得开。连对神一样的毛主席, 也照样裸奔。不明不白,把毛陷于非施事非对象的模糊尴尬地位。

毛主席保证,上面这个对毛主席裸奔的故事,句句是真。但为什么不索性省略说:

“毛主席保证,上面这个毛主席裸奔的故事,句句是真。”

因为即便裸奔 也还是要达到交流的目的。所有的内衣都脱掉是不行的。如果省掉了介词 “对”,毛主席就是裸奔的人(【施事】)了。造谣污蔑伟大领袖搁文革那会儿,是要杀头的。

毛主席没保证,我们可以说毛主席保证。毛主席没裸奔,我们不能说毛主席裸奔。说到底就是习惯表达法的绑架原理,这就是约定俗成的真意。名无固宜,俗成了,任何记忆住的符号串就可以表达任何意义,不顾文法,不要逻辑,不讲道理。

为什么NLP闹了这么多年,各派各路不可开交,但有一点是大家心知肚明的共识,就是 词典主义 (lexicalist approach) ,不管以一袋子词统计模式的形式,还是以词专家 (expert lexicon)的符号形式。总之,词典主义高于(抽象)文法,词典王国就是那花和尚,完全可以无法无天。

白:
其实不是没结构、不讲结构,而是固定用法捆绑了一个微结构。微结构不需要讲逻辑,是因为它的逻辑不需要分析,只需要呈现。而且不光在词汇和构词法的独立王国里活动,其能量经常外溢。

李:
外溢的例子,离合词算一个:绑架的词义,外溢到句法了:

“洗tm什么破澡?不洗!连个喷头都没有。要洗 就洗星级饭店的澡,这不带星的澡,真心没法洗。”

 

【相关】

科学网—【泥沙龙笔记:汉语就是一种“裸奔” 的语言】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白77:基本短语是浅层和深层parsing的重要接口】

白:
句法的作用,第一是把远距离相关的成分拉到一个滑动窗口里来,第二才是在同一个滑动窗口里有多选的话,考虑语序因素来进一步缩小范围。

李:
说得好。第一个作用一多半是由 phrase chunking 完成的,这被认为是 shallow parsing,相当靠谱的一种操作。

白:
问题出在,如果在phrase chunking过程中出现多种可能性,混乱到chunk的边界都有分歧,这时候带着不确定性跑会很累。又回到休眠反悔的话题。边界不一致倒也罢了,中心词都不一致,更不好对付。

李:
问题不严重。关键是 chunking 基本上针对 basic XP (baseNP etc),只要具有前后条件查询的机制,搞定 boundary 一般没有问题。对于所谓 right-branching 递归,譬如 PP 的后修饰,等,shallow parsing 一般把这个问题推后,不去牵扯。

白:
形容词副词介词限定词这些都不担心,担心的是从句。从句递归以后,边界和中心词混乱的概率明显增加。

李:
shallow parsing 绝对不要管从句,连稍微复杂一点的多层 phrase 都被排除在外。这样一来,虽然理论上,窗口聚焦的任务不可能完成,但实践中,其实问题也不大,因为特别复杂和嵌套的句子,并不是语言事实的大多数,这是其一。其二,窗口的大小除了 chunking 把前后的修饰成分吃掉以外,系统还可以选择性跳过挡道的东西。事实上,deep parsing 其所以可以在 shallow parsing 的基础上进行,正是这个理由,不过做的时候小心一点罢了。这样来看,chunking 的核心就是搞定 boundary 和 确定 head。这两个都不难。一旦搞定这两点,结构的基础就打牢了。至于结构歧义,它被自然地推后了。

白:
另外就是NN结构,经常是伪歧义,所以N+N这种,最好是白名单管理,条件不满足是断开的,有罪推定。而A+N,就应该是无罪推定。条件不满足就应结合。

李:
N+N 统计上看,就是合成词为主。A+N 就是合成词以后的短语层内部修饰,大体如此。

歧义分两种。短语内部的结构歧义可以休眠唤醒,不影响分析向深度进行。因为短语对于句法已经包裹得严严实实,里面藏一些搞不清的关系,属于人民内部矛盾。

白:
嗯,比如“两个英雄的母亲”你管他几个母亲几个英雄呢,反正对外的全权代表就是“母亲”。剩下的慢慢来。

李:
清官难断家务事,句子层的语法关系,一般没必要进入短语内部去参合(当然可以找到例证,短语内外的关系是有相关性的,别说短语,甚至句法的东西也有需要进入词法内部去协调的,但是统计上可以忽略这种 interaction)。

白:
远距离相关,要拉近的就是“母亲”,“英雄”无所谓。

梁:
人民内部矛盾,家里家外有别。

李:
第二个结构歧义是basic短语之间的,这个问题比较大。典型的譬如 pp-attachment,汉语中的“的”所涵盖的 scope 问题。deep parsing 的主要难点就是与这些短语之间的歧义战斗。但是可以设想一个简单的 deep parser 绕过这些问题,遵循休眠政策,就是一切关联一律就近原则。这样 parse 出来的句法树,不能直接对应逻辑语义和理解,但是作为一个结构基础,还是能起很大作用。

白:
这个是权宜之计,只不过有休眠兜底,不怕。

李:
原因是,理论上,这样一颗全树贯穿了所有节点,从任一个节点到任意的另一个句素节点,都有路径可达,不过是直接还是间接而已,道路是畅通的。譬如 PP-attachment,如果从VG未达想要check的PP,不过就是通过NP间接达到PP,一样可以找到你想要找到的某种PP。如果语用或产品是建立在这样 pseudo-deep-parsing 的基础上,完全可以考虑把 domain 的知识,ontology,heuristics 等等带进来,去求解想要的信息目标,这比关键词不知道要强多少倍。

白:
可以“句法制导”地去做。

李:
而且,到了这个地步,也可以根据情形,重新做局部 re-parsing,这个 re-parser 可以设计成特地为了休眠唤醒而制作的。

白:
休眠的数据结构设计好了,re-parsing可以很有章法。

李:
它有两个以前没有的有利条件:(1)量上,聚焦了。面对的不是大海,而是其中一个子集。面对的甚至不是全句,而是句子的某个部分。(2)语义限制条件可以放开手用,除了 domain 知识可以引入外,其他语义条件也可以用,因为这里求的是精准,而recall已经有娄底的了。

白:
最近也可以换成其他条件,比如统计上最般配之类。

李:
对,这个很有意思,不过实现起来有一定难度。理论上没有问题。最般配是有大数据基础的。怎么用好,看功力了(更多的是工程的功力)。

剑桥有一个老学者,以前很熟,他做过类似 Preference Semantics 的 Subact 语义条件的统计工作。有非常有意义的结果,可惜那个方向的结果,距离工程上应用还有一些实现上的挑战。但是,这些都是具体的细节问题,宏观上,这一路一定会大幅度提高 deep parsing 和 理解的能力。没有疑问。

传统 parser 的一个致命的问题是内外不分,CFG 的 chart parser 是从词到短语到从句到所有的句法结构,一锅端。这个大大地限制了其 parsing 的深度、广度、鲁棒和效率。

白:
基本三条路:全息,带着所有选择跑;回溯,带着一个选择,备着所有其他选择;休眠,带着一个选择或一组一致对外的选择在主战场上分析,其他选择也不闲着,在另一个战场上以一定概率梦游。我看好休眠。

李:
phrase 这一刀很关键。实际上,phrase 是一个极其重要的层面。phrase 可以看成是有三妻五妾的大红灯笼的乔家大院。甭管内部争风吃醋你死我活。大院只有一个院子主人对外,就是老爷。其他的妻妾佣人宠物财物统统不作数。国家大事只在老爷之间进行。小家内部的矛盾可以无视,只在需要的时候用到。

白:
个别老爷之间有些扯不清楚,先用某种规则糊弄鬼子。

李:
休眠和梦游(唤醒)一般不在一个时间区间,所以一般没有瓶瓶罐罐的牵累。

白:
不清不楚的只能通过梦游获得扶正的机会。大院的边界是武断的,而这武断如果有大数据支持,就更胆儿肥了些。

李:
base-phrase 的边界不是挑战,不用大数据。倒是院子之间的关系, PP-attachement,等,大数据可以派上用场。

白:
我说的就是后一种。

李:
那个我验证过,绝对可以用上,也非常有效。就是在线实现非我所能。本质是 offline knowledge,real time use, 还不能 pre-computing,需要工程好手,也许有戏。

首发科学网 《新智元笔记:基本短语是浅层和深层parsing的重要接口
 

 

【相关】

《泥沙龙笔记:parsing 的休眠反悔机制》 

《泥沙龙笔记:连续、离散,模块化和接口》 

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白73:汉语parsing的合成词痛点】

李:
半夜醒来,一看有好例子,白老师给的三个作业,精神头就来了。这些结果是在没有利用量词搭配的情况下的parsing,不久会加上搭配的。

最后这句笑话闹大了。
有意思的是,加了一个新词 “停落” 没做其他任何改变,就成这样了:

白:
这个很powerful

李:
量词搭配没利用,但 “颗”和“树”还是连上了,“候鸟”和“停落”的主谓也连上了。定语从句也对了,但逻辑关系却错了:“大树”不应该是“经常停落”的逻辑宾语。

finally:
那个图是程序自动生成的,还是用手现画的啊?

白:
显然自动的

李:
开玩笑,这是NLP群,要是手画那还了得。
Wait, 再一想 其实也不错: 候鸟停落大树。 “停落”的确是及物的,“大树”是表示地点的逻辑宾语。那就全对了?白老师。 这就是我说的 parser 开发,越到后来越多让创造者惊喜的地方。用句白老师的话说,“我窃喜”。

白:
O的标签是句法的,映射到语义,有若干种逻辑角色,取决于动词的实例。比如“贴”、“盖”、“钉”,都有条件携带一个表示处所的坑,叫啥随便。

李:
那是,O 具体要映射到哪一个更细更合理的逻辑语义,决定于什么动词。只要 O 对了,这个映射在后一步极为简单。就是一个简单的映射词表或词驱动规则:停落:O(物体) –》地点。事实上,抽取(IE)的完成就是类似上面的映射。所以我说,parsing 靠谱了,IE 就是个玩儿。

白:
所以基本满分了

李:
暴露了一个问题:OOV(生词问题):“停落”不在词典的时候,表现不好。汉语构词法太灵活。本来某个合成词的规则应该把 停+落 合成的,可是这是一个痛点,火候不好掌握。

这一讲可以叫汉语parsing的“合成词痛点”。

这方面我们在系统也做了一些工作,但很不全,而且动力不足: OOV 是长尾,silent majority,花了功夫,可测试集里面见效不会大。如果统计把汉字词素的语义距离都弄出来了(这对统计不难),然后凡是落单的bigram汉字都合成为一个双音节合成词(汉语文法界有很多讨论现代汉语双音化构词趋势的文章)。这个法子可以对付一多半“合成词痛点”,估计。

白:
你看看“证券资金交收处理办法”能有几个收进合成词。

李:
还是OOV问题:“交收”不认识

白: 这个不懂业务是很难做对的。“交收”是一个业务术语,既包括交券也包括交钱,就是说“证券资金”是联合结构。类似这种,在我们的业务文件中不知道有多少,交给句法做没道理,不交给句法,句法在这里的接口又是什么?

李:
加了合成词“交收”以后的parse如下:

记得中学时代入迷冰心的文字。她最善于“生造”合成词。虽然生造,汉字被她用得行云流水一般。不克服合成词痛点,是没法 parse 冰心的。就是语义距离计算为主,“交”与“收”应该在距离阈值之内。

白: 生造的接续感觉,用机器学习似乎可行。规则看样子搞不定。

我:
oov合成词痛点 更多表现在领域化过程中 普通词汇以及普通合成词油水不大。生词习得(lexicon acquisition) 是领域化基石和重要一环。

首发科学网 《新智元笔记:汉语parsing的合成词痛点》

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白宋毛72:NLP的测不准与追求完美】

李:
这两天琢磨中文词的扩展中的交叉现象,很有意思:

1. 选择疑问句谓词(P)模式 【P 不 P】: 学不学; 能不能;好不好
2. 动补(V-Buyu)词的可能态模式 【V 得 B】:学得会;可能态否定式【V 不 B】:学不会

12交叉: 学不学得会 ?
回答是:学得会 / 学不会 (或者:能学会 / 不能学会)

上述两个扩展模式也可以倒过来交叉,于是我们有 21 交叉:

学好
–> 学得好; 学不好
–> 学得好不好?

回答是:
学得好,学得不好,而不是 学得好, 学不好

后一种交叉,实际上用的 更多的不是“得”而是“的”:

学的好不好?

谓语重心落在“好”上,而不是“学”上。这与前一种交叉不同。很有意思的现象。

白:
得字后面的补语,有定性定量之分。“接不接得住”可以,“接得住不住”不行;“打不打得倒”可以,“打得倒不倒”不行。所以“住”、“倒”是专司“定性”的,是一个二值的状态,没有程度之分。另一方面,“扎不扎得紧/扎得紧不紧”“拴不栓得牢/拴得牢不牢”都能说,但补语“紧、牢”对应的是一个连续度量,但又有一个预期的极化状态阈值。所以,面临可能补语与程度补语的句式竞争时,可能补语占优势。第三种情况是“长不长得高/长得高不高”,补语“高”并不见得一定是预期的极化状态,“高不高”只是一种关于程度的中性的疑问,这时,程度补语就反过来压制了可能补语。第一种,纯定性,只能是可能补语;第二种,强定性弱定量,可以是程度补语但是与可能补语紧耦合;第三种,弱定性强定量,程度补语与可能补语松耦合。

长不长得高,和长得高不高,完全两回事。

李:
长没长高
== 长高了没长高
== 长高了没有

但是: * 长没长得高

白:
长高,相对于自己;长得高,相对于平均水准。程度补语。

可能补语的“长得高”,对成年人是梦想,对小孩是废话,除非侏儒症。所以可能补语义微弱。否定形式“长不高”则信息量大。对小孩,形同诅咒。或者,是成人身份的一种变相认同。

“没”是现时的未然,程度补语无论肯定否定,都是现实的已然,语义上也不相谐。可能补语与“没”结合,参照时点一定移到了过去,如:“谈没谈得拢”。现时已经出结果了,只有过去某时点上这还属“潜在”。

所以,“学得好不好”本来是关于程度补语的疑问,到了“学没学得好”,就变成了关于可能补语的疑问了。

李:
分析得好 细致入理。

谈没谈得拢 只有天知道
谈不谈得拢 就看你本事了。

上次白老师说分词 (大意):分词不仅是切 还要粘。至理名言。
句子就跟西瓜似的 可以拿着刀🔪来切;但字就跟珍珠似的 也可以拿串子来粘它、串它(concatenation)。结果都是 词,我们建筑语言大厦的砖瓦。这砖瓦必须有来路出身 有档案背景,因此目标也算是明确,即,所谓词应该是“词典的词”。词典就是档案 背景全部可在其中绑架,才能支持语言理解。

最有意思的是离合词,因为离合词不仅要串,而且还要跳着串。“谈不谈得拢”, 这个 5-gram,需要分词分出 “谈拢” 来 才算分词到家。

谈不谈得拢 == 谈得拢谈不拢 == 能谈拢不能谈拢 == 能谈拢 还是 不能谈拢

说到底 都是围绕着动补词 “谈拢”。 其他的小词(function words)或重叠(reduplication)手段,不过是给这个核心谓词语义添加语法意义而已: 诸如 疑问(选择问句)、时体、情态。

宋:
年满18岁,具有本地户籍,在本地居住满十年者

汉语的现象说明,词不一定是单向连续的短字符串,不一定边界清楚。非词语素和词的界限并不是绝对的。

李:
这个quasi-后缀“者”, 以前论过,它要求的是 VP,而不是 V。严格说不是 VP,而是 谓语 Pred。如果主语 NP 后面接谓语 VP 的话,那么总可以把主语去掉,加上这个“后缀”,来构成一个带有定语从句的 NP:VP者 == VP的人,这个 “的” 带的是定语从句 VP 。

当然实际语料的分布中,会发现 80%(?) 以上的“者”之前的 VP 其实就是一个 V ,所以把它当成英语的 -er (-or)一样看成是词的后缀,可能会带来一些便利,但必须留个 VP 的后门,来对付 定语从句的 VP 很长很复杂的状况。

宋:
手工业者

李:
“手工业者” 算是 另一个用法 看扩展性决定是细线条的规则 还是直接枚举入词典。

白:
者—N/S
关键是辖域、分配律。

李:
“者” 翻译成英语应该是 whoever+VP,不是简单成为 V-er 就可以顾全的。Whoever 是主语的形式,放在谓语前,与中文的结构关系类同,“者” 不过是放在谓语后而已:

年满18岁,具有本地户籍,在本地居住满十年者有资格报名。
–》
Whoever VP(年满18岁,具有本地户籍,在本地居住满十年) is qualified to sign on

白:
“子女不服管教者,配偶不在本地者”

不是主语,是领项,反填至N/N的残坑。

李:
fun,then,those who/whose

汉语的大主语(或 Topic 或“领项”)是一个中文里蛮独特的句法语用混杂的现象,对应英语的结构,错综复杂一些。

白:
其实从填坑角度看就是一个纯句法现象:一坨,有个坑,萝卜可填。至于这个坑怎么来的,最初长在谁身上,不重要。其实就是一个纯结构现象,无关语用。只要摆对解读结构的正确姿势,它就自然浮现。

李:
“子女不服管教”,这话听上去感觉不完整 虽然主谓齐全 因为有个坑没填萝卜:“【谁(的)】 子女不服管教?”

“心脏病不好治。”这话听上去感觉是完整的,虽然也可以问,【谁的】心脏病不好治?

白:
有隐含的logical quantifier

李:
“心脏病” 有坑没坑?还是说 这坑有强弱之别?
“子女”对 【human】 的坑,强过 “心脏病” 对 【human】 的坑,后者信息量也更大,更需要满足。

宋:
老王的子女不服管教。老王的子女不服管教者被老王打了一顿。

李:
这里,“老王的子女”是全集,“【其中】不服管教者”应该是个子集。

“子女都是不服管教的。” 这话就显得完整了: 因为全称小词“都”虽然 mod 的是 VP,但却作用于 NP“子女”,使得其坑显得没有必要填了,因为隐含的坑就是 “【所有人的】子女”,与 “心脏病” 同:“心脏病”的坑隐含的默认萝卜也是“所有人”。

老年人的心脏病不好治。
心脏病其实不难治,但老年人的心脏病除外。

上句的第一个分句,默认萝卜是 for all human;第二个分句 做了显式的限定,修改了默认值。

回到原问题:到底坑有没有必要区分强弱?

作为对照:及物动词肯定是有强弱的。有的必须要宾语(“善于”,“赢得”),有的最好有宾语(“喜欢”,“看见”),有的可有可无(“呼吸”,“诊断”),没有的话,大众心理就补足了一个默认值,从本体(ontology)来的默认: “呼吸【空气】”,“诊断【疾病】”。

白:
“心脏病不好治。心脏病不会治。心脏病不去治。” 谓语不同,对“心脏病”的坑有影响。第三个例子,最不完整。

李:
心脏病不去治,【你】不想活了? == 【你】心脏病不去治,不想活了?
心脏病不去治,【你】治啥?== 【你】心脏病不去治,治啥?

第一个【你】应该是病人,第二个【你】可以是医生。第一个【你】直接填“心脏病”的坑。第二个【你】作为医生,与“心脏病”的坑没一毛钱关系。

白:
是。对举可以削弱“萝卜的坑”。本来有一毛钱的入账,又有了两毛钱的债务。结果欠了一毛钱。成了别人家的坑

李:
最近想,退一步才好进两步,可谓真理。一辈子能够退一步的时机不多,总是忙忙碌碌,随波逐流,人在江湖,身不由己。如果因缘巧合遇到了退一步的机会,那么一定要惜缘。追求完美,不留遗憾,其实是常态生活的奢侈,但也可以是退一步的境界和机会。

为什么退一步反而可以追求完美不留遗憾呢?因为在高歌猛进的人生中,没有时间喘息和反思,难有机会从根子上改造,肩负的是历史的负担。只有在退一步的时机,才有可能重起炉灶,把历史负担当成经验教训的积淀。虽然慢了一拍,但磨刀不误砍柴工,最终可以更加完满。历史上,苹果公司的操作系统就在乔布斯的指挥下重起炉灶大放异彩。可怜的微软就总没有这样的机会,补丁摞补丁过了一辈子。

胡乱感叹一哈。

量子力学有个测不准哲学,其实对于语言学很适用。语言作为交流的工具,宏观上的可理解性是没有问题的。但是,测不准原理表明:从本质上来讲语言学不能做出超越统计学范围的预测。语言理解系统无论怎样逼近,永远也不可能在微观上 capture everything。那天白老师给了一个很妙的例句,是:“马可波罗的海上旅行”,让通常认为非常坚固的 4-gram 词 “波罗的海” 被另一个 4-gram “马可波罗” 遮盖了。可以设想一个分词系统的第一版本是 assume 4-gram 词以上就是正确的(实践中,匹配上 tri-gram词就相当靠谱了,这可算是一个分词的经验公式 heuristic),可以 identify 词及其概念。但对于上例,这个系统从最左向右匹配,赶巧就对了;若从右向左走,就错了。

毛:
有道理。这个例子确实巧妙。

李:
咱们进一步扩大疆界来逼近真实,就算搞定了 6-gram “马可波罗/的/海” (Note: 前一篇李白对话【李白71:“上交所有不义之财!”】中说过,其实搞定 5-gram 就可以认为是搞定了汉语分词,因为 5-gram 几乎是 local context 的极限了),咱们这就突破这个极限看看……。我要说的是,我们总可以找到一个context,使得以前的任何分词(及其分析)无效。

“我的朋友生了个双胞胎,绰号很奇葩,先生出来的叫千里马,后出来的叫波罗的海。我告诉他绰号也是有讲究的,有的可有的断断不可。千里马可波罗的海不可!(Note: 千里马/可/波罗的海/不可)。”

“朋友问为什么,我说因为有个测不准原理。千里马本体毕竟是动物,与人不远,可用。波罗的海本体自然物体,无法联想到人,故不可用。”

“马可波罗”乍看何其强大,甚至大过“波罗的海”(毕竟里面藏了一个万能小词“的”,是它的硬伤),也逃不过测不准的限制。最后大胆假设一下,立委牌中文深度分析器(deep parser)神奇地利用 long distance 句法或 休眠唤醒机制 帮助突破 local context,搞定了“千里马/可/波罗的海/不可” 的分析理解,so what?总还是会有“测不准”在,譬如:

“我舰/日航千里/马可波罗/的/海/不可/阻挡。(或曰:固有波罗的海,哪里有什么马可波罗的海?曰:先生一叶障目,知其一不知其二。马可波罗的海,乃印度洋别称也。)”

牵强?然而场景合理,语句合法,概率不是0。

想一想测不准,咱们搞AI,搞NLP的,怪丧气的:系统完美,只在梦中。但反过来想,其实是对完美主义者的有益警示:追求系统的完美和静态高指标从来不(应该)是核心目标,领域化能力和动态指标才是系统打遍天下的硬通货。不要想完美的事儿,只是要问:给你领域大数据,你多快可以让系统进入角色,让它上线转起来服务业务,然后对于 bug reports 的反应和修复速度有多快,系统在使用中日臻完善,虽然永远不会完备。

所谓追求完美不留遗憾,正解应该是对于架构和formalism的近乎受虐的追求,为的是到用的时候,到领域化的时候,到修复 bugs 的时候,可以庖丁解牛游刃有余。

毛:
你这个事情的性质不属于测不准,而属于词法/句法的不完备。测不准是对每个粒子而言的,每个粒子的位置和速度都有测不准的问题。而你讲的这个情况,是说不管什么样的词法/句法都有对付不了的特例,这就是不完备的问题。

李:
资源的不完备(不可能完备),在我就是系统的测不准,貌似也就是原观测对象的不确定性。

白:
@毛 是进出不同层次没有违和感导致的。一个字当作一个字,和一个字当作语言中的词的部件,是处在不同层次的。人偏偏要搅和在一起玩。这样会闹出悖论的,不过,NLPer似乎并不关心。

【相关】

【李白71:“上交所有不义之财!”】

【立委科普:歧义parsing的休眠唤醒机制再探】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白71:“上交所有不义之财!”】

聊一聊中文切词的 heuristics

李:
NLP 论文中常出现的一个术语 heuristics 怎么翻译好呢?想了 30 年了,用到的时候还是夹杂这个英文词,因为想不到一个合适的译法。最近想,大概是翻译成 “倾向性” 比较好。说的是某种统计上的趋向,而不是规律。

白:
启发式

李:
30年前,我有个同门学长乔毅常常鼓捣一些专业翻译,有一天他来跟我商量,问:“这篇说的是 heuristic 方法的 NLP,查了一下词典,是启发式,可这启发式翻译出来,等于没翻译,没人懂怎么启发的。到底 heuristics 是个什么方法?”

魯:
有些时候是ad hoc的意思

白:
翻俗了就是“偏方”。有例外的标配。

李:
当时我们琢磨半天,觉得所谓启发式,就是某种条件 (constraints),有时候甚至叫原则(note:原则都是有例外的),不是通常的 rule,因为 rule 隐含的意思是铁律,而这个“启发式”说的就是一种有漏洞的条件,经验总结出来的某个东西,模模糊糊是有统计支持的。明知有漏洞,但还挺实用。就这么个东西,困扰了我机器翻译专家30年。不是不明白,是明白了也还是不知道该怎么翻译。岂止一名之立旬月踟蹰,这是一辈踟蹰一名不立。

以上算是开场白。今天就来说说切词中总结出来的一些 heuristics。咱们倒过来说这事儿。把 input 想象成一个 ngram。首先说一条总的:切词中最大的 heuristic 是最大匹配原则,这是天则。

咱们来具体看看 ngram 的情形:

(1) 如果 input 是一个汉字 (unigram),当然就是一个词:因为无词可切。这是废话,但也不失为一个 heuristic,因为切词算法的最后一招就是 把字(语言学上术语是“词素”)当成词,可以保障100%召回率(recall)。因为汉字是非常有限的集合(【康熙字典】多少字来着?),可以枚举。所以废话(或常识)背后也有深刻的道理的。显然这个 heuristic 是有漏洞的,但是我们总可以用它来兜底。漏洞譬如那些所谓 bound morphemes:蝴,尴,它们理论上是不能成词的,如果万一被切词程序输出为词了,很可能是一个 bug(譬如原文在 “尴尬” 之间夹杂了空格或其他符号造成这种结果,或者原文说的就是这个汉字,不是指这个概念词素,那算是 legit 的 meta-word)。无论如何,切词模块在工程上和算法上几乎没有人不用这个 heuristic。

(2) 如果 input 是两个字(bigram) AB,而 AB 在词典里面,heuristic 告诉我们 AB 就是应该切出来的词。这个heuristic 是直接从最大匹配原则来的,几乎每个系统都这么办,尽管它当然有漏洞。漏洞就是所谓 hidden ambiguity, 理论上的 exhaustive tokenizations 中不能排除的 A/B 这种切词法。以前我们举过关于 hidden ambiguity “难过” 的 minimmal pair 的例子(见【立委科普:歧义parsing的休眠唤醒机制再探】):

这/个/孩子/很/难过
这/条/河/很/难/过。

其实,利用汉字作为 meta-words 的语用情形的话,一切的 ngram 都可以有一个违反最大匹配原则揭示 hidden ambiguity 的通例模式,是:

【ngram 】是n个汉字。

尴/是/一/个/汉字/。
尴/尬/是/两/个/汉字/。(尴/是/其一/,/尬/是/其二/。)
不/尴/尬/是/三/个/汉字/。
尴/不/尴/尬/是/四/个/汉字/。
尴/尬/不/尴/尬/是/五/个/汉字/。
………

虽然 100 个系统有 99 个半都明知这个 heuristic 有理论上的漏洞,而且也有实践中的反例,但是都心知肚明地 follow 这个最大趋势。因为好汉不吃眼前亏啊。在切词这种早期阶段,不 follow 这条带来的麻烦太大。识时务者为俊杰,英雄狗熊在这一点其实所见皆同,说明世界上傻子并没有那么多,除了“傻得像博士”。譬如我博士论文中就倡导过用 exhaustive tokenizations 的结果来 feed a Chinese HPSG chart parser, 有意违反这一原则,把 hidden ambiguity 从一开始就暴露出来,来证明句法或更大的 上下文 对于完美切词的重要作用。理论上没有问题,实践中也弄出了个可以应付博士学位的玩具系统(【钩沉:博士阶段的汉语HPSG研究】),但到了工业应用,立马就精明起来,随大流,从了 最大匹配的 heuristic。

白:
“马可波罗的海外奇遇”

李:
哈, “马可波罗”, “波罗的海”,4-grams 哎,人名和地名打起来了,也是奇例 。

回头说 hidden ambiguity,N多年后,我们还是高明了一些,退了一步,说,好好好,好汉不吃眼前亏,咱们还是 follow 这个最大匹配原则,但可以留个后门啊。后门就取名为休眠唤醒,《李白对话录》中多篇有论,有方法,有例示(【结构歧义的休眠唤醒演义】 )。这算是在理论和实践中找到了一个比较合适的折中,不至于面对 hidden ambiguity 的“切词命门”完全不作为。

白:
谁说切词的结果一定是流,不能是图?谁说即便是流,切的时候啥样,用的时候也必须啥样?谁说即便是流、即便用的时候跟切的时候也一样,但在更大上下文范围内发现用错了的时候必须不能反悔?

李:
白老师说的几点都对。但很长时间很多人并没有认识这么清。

接着练,(3)  如果input是三个字(trigram) ABC,heuristic 是怎么体现的呢?首先根据最大匹配heuristic,排除了 A/B/C,先踢出局。剩下有 AB 与 BC 的较量,如果二者都在词典的话。这时候,heuristic 说,汉语的二字词并不是都有相同的紧密度,即便用最粗线条的二分法,也可以给一些二字词比其他二字词更大的权重来解决这场三角关系(triangle)的危机。忘了说了,如果 ABC 在词典的话,AB 和 BC 都出局了,毫无疑问,因为最大匹配永远是切词阶段最大的原则。例外怎么办?后期休眠唤醒。

(4) 如果是四个字的 input(4-gram)ABCD,hueristic 又是怎样实施的呢?(别急,这么论事貌似进入了死循环,但其实胜利曙光已经在望,bear with me a bit)。根据最大匹配这个最高原则,ABCD 如果在词典(譬如成语),句号。ABCD 中任何一个连续的 bigram 如果在词典成词的话,A/B/C/D 也出局了,根据的还是最大匹配的 heuristic(或其变种,最少词数原则)。那么还剩下什么?如果是 ABC 和 CD 在词典,两家打架, heuristic 说,两家人家打架,人多者胜, ABC 胜过 CD(就是说,可以假定权重 heuristic 让位给词长 heuristic)。同理, AB 败于 BCD,其他的情形都是显而易见的,AB/CD instead of A/B/CD, AB/C/D and A/B/C/D,不赘述。

白:
如果ML,满大街都是heuristic。

李:
所以说 heuristic 应该翻译为 (有统计基础的)趋向性。学习也好,根据 heuristics 硬编码实现也好,总之是要 follow,不要与潮流作对,除了傻博士。

(5) 如果 input 是 5个字(5-gram)ABCDE,ABC and CDE can fight: if ABC is considered to carry more weight, then ABC wins.  后面的话不用说了。到了 5-gram,可以收网了。

其实迄今绝大多数切词算法,大多依据的是 local evidence,5-gram 几乎是 local 的最大跨度了。因此搞定了 5-gram 以内的 heuristics 的相互作用的原理,也就搞定了切词,虽然理论上所有的 heuristics 都是筛子一样,漏洞百出。这一点儿不影响我们前行和做 real life 系统。

金:
@wei 老师,想请教一下您对于深度学习做分词的观点:训练语料为手工分词文本,将文字按单字逐个输入,输出是结合输入语境对文字进行分词的结果。

李:
据说深度学习分词,精准度有突破。有突破我也不会用。除非有谁教会我如何简单地 debug,如何快速领域化。何况早就过了这一村了,工具架构算法齐全,不再需要与它纠缠了。

金:
如何领域化?在特定领域操作?

白:
让领域的人再标注领域的文本,不就领域化了

李:
不愿标注呢?或 cannot afford 标注呢?错了怎么 debug?再加大标注量,重新来过?重新训练可以保证对症下药解决我面对的 bug reports 吗?

金:
嗯,看过之前您的文章,关于统计和规则之间的渊源。如果就用深度学习一个模型,是这样。最大匹配的话,错误如何修正呢?

白:
都已经是锦上添花了,再错能错哪儿去

李:
明明就是个词典打架的事儿,非要标注文本。词典是有限的,而文本是无限的。

白:
领域会突破词典。

李:
那是领域词典的习得问题(lexicon/term acuqisition),是个更实惠的活计。相比之下,领域标注分词不是个划算的事儿。

白:
未登录词也得分。领域会引进新的heuristic,使得通用成问题的地方不是问题。做减法。

李:
手工标注海量数据是一种不讲效率的办法,人类举一反三,标注反着来,是举三返一,不对,其实是举30也很难返一,隔靴搔痒。幸亏它有几个优点。一个是提高就业率,简单劳动,而且白领,有利于维稳和安定团结。另一个是为不愿意进入领域的人做自封的领域专家铺路。管它什么领域,管它什么任务,只要你给我标注,我就用三板斧进入领域。

白:
不利于语言学家的就业率,也是罪过

金:
二位老师的观点有深度,

李:
不仅是语言、语言学和语言学家,所有领域专家都有遭遇。不求甚解于是风行。天上掉下一块鸟屎,都会砸到一个速成的领域专家头上,譬如不懂语言学的计算语言学专家。

白:
背后的逻辑是不与虎谋皮。没那么简单这事儿。

金:
数据标注得有领域专家来做标准呢。

李:
要是可以选择的话,不自由毋宁死。可惜领域专家没有这个气节。乐不颠颠地为精算师去制定标准,然后让他们成为高高在上的超领域专家。

白:
“孙国峰硕士毕业于著名的清华五道口,后师从社科院金融研究所李扬成为金融学博士。他硕士毕业后便参与了中国外汇交易中心及公开市场的建设,并从此肩负起货币政策的实施、制定、监管之责,与中国金融市场及市场中的一代一代的交易们一起成长。”

看看这段话,“硕士”极容易被当成“孙国峰”的称呼性同位语。

金:
这个就是环境的作用了,不是我们能左右的。

吕:
孙国峰,硕士毕业于著名的清华五道口 ….

金:
我想到一个和目前情况类似的人,最早著书的人,是不是大部分是领域专家,因为国家,因为文化,因为其他原因投身著书行业,把知识标准化,流传下去?

白:
@金 这样的是例外吧。

金:
我只是想到这个情况,而且更极端的是这群人因为生存因素,去著书,还有可能从谷底爬上巅峰(可能故事听多了)

白:
@金 楼歪了,言归正传吧

所有的交叉歧义、组合歧义,其实在词典定好以后就是铁案了,一定能仅从词典就机械地自动遍历枚举所有情况,这是学术界早有的定论。

问题之一在概率分布。领域无关相当于先验分布,领域相关相当于后验分布。后验分布如果明显不同于先验分布,领域知识就有优势,否则就没优势。

阮:
比如说医疗领域,会有一些特殊的词,也会有特殊实体,句法的话,应该也是符合自然语言句法的,但分布应该不太一样。 我需要重新完全标注语料呢,还是标注一部分?标数据这事,谁来做,也确实很头疼。语言学家觉得和他们没关系,也看不太懂。而医学更加不知道标语料为何物。

白:
问题之二在未登录词。你说再多词典没定义都是扯,只要影响应用,没人会听你的。所以做好构词法,应付未登录词是刚需。神经是不分登录词未登录词的,就是说如果ABC、ABD都没见过,语料里标注了ABC,神经是有可能学会ABD的。并不是说要分词只有词典化一条路。而构词法是里,分词是表。学会构词法可能首先是通过分词体现出来的。神经不是“仅”学分词,而是“同时”在学构词法。比如“中证协”标注了,“中保协”没标注。神经可以学会“中保协”正确分词,但并不说明“中保协”一定在词典里。

李:
学构词法有个悖论。学会不在词典的词可能对于粗线条的任务有好处,但对于分析和理解自然语言没有什么好处,你必须同时学会这些不在词典的词的可计算的信息部件才算数,譬如句法 features,概念语义及其在本体链条上的位置,等。对于自然语言 parsing 和 understanding,切词的目的就是要获取关于该词的词典信息,作为进一步分析的基础。现在分了词了,却没有对应的词典词条,那不是白分?这就是我说的悖论。

今天遇到一个好玩的:上交所有 …,分词为 上交所/有。

白:
交叉歧义。长词优先。

李:
我实习生说 错了,她坚持改过来:上交/所有
原来她心里想的是:上交 所有 不义之财。我说难道你不知道,上交所 有 个 大名鼎鼎 的 白老师?

白:
严正声明:上交所没有不义之财。

李:
此地无银啊?
“上交所”在90后的头脑里是个未登录词,未登录的或可免责。如一不留神道破天机,纯属意外。明儿让她进来给白老师赔罪。

吕:
哈哈哈

金:
有趣

巴:
学生菜鸟一枚,特来给白老师赔罪。
请各位老师多多指教啦~

白:
@巴拉巴拉 应该找上交所的CFO,我前CTO不管这段。

巴:
哈哈哈哈,总之是妄言了,先赔罪总是对的。

白:
@巴拉巴拉 这群有意思,可以偷到很多艺

讨论NLP居然如此欢乐,也是醉了

唐:
Heuristic=educated guess, or sub-optimum solution, 这个在算法界没有歧异呀!
ngram取5就能处理大多数问题。 我们在网络安全上学习domain name也是这么用的。

李:
唐老师给个权威标准译法吧。
启发式 不中。

洪:
“上交所有不义财!“
如何正确词划开?
分词若有人使坏,
上交所的脸吓白。

李:
今年是金融反腐年,据说金融腐败和金融政变是关系到党国生死存亡的。

唐:
个人认为: heuristic 翻译成“次优解“更好。

李:
问题是 很多时候 必须遵循。次优的言下之意是不要遵循,应该追求更优的。除了傻博士 大家都明白,次优往往就是最优。

唐:
次优的意思是,大多数要用因为找不到最优。

李:
在给定时间空间 次优就是最优。

唐:
5-ngram对中、英文分词有效,对其他主要语种是否也有效?

李:
很多浅层的任务,如分词和POS,都是主要靠 local evidence,5-gram 基本上就是 local 的一个比较恰当的定义上限。

唐:
你今天的博文解答了我的一个问题: 为什么dns domain name分析只要5-ngram就行了!真是他山之玉可以攻石

 

 

【相关】

【立委科普:歧义parsing的休眠唤醒机制再探】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白70:计算语言学界最“浪漫”的事儿】

白:

根据什么知道“他人”不是三个动词共享的逻辑宾语?—-相谐性!

李:
【human】vs【physical-object】?丢失【physical-object】vs 丢失【human】?
丢失“孩子”呢?假如是直接量相谐的统计对比,“丢失-设备”与“丢失-他人”,前者完胜。
如果是上升到类别上去做对比,丢失-【physical】与丢失【human】就有可能会势均力敌,假如 “丢失-孩子” 的说法在语料里面特别高频的话。

直接量对比最好,可是总有数据稀疏不足为据的担心。类别对比克服了稀疏数据,也可能走偏。“申领”类似,似乎也可能申领【human】? “ 损坏”好像比较单纯,很难“损坏人类”(人类够皮实的?)。到了“转借”问题复杂了,是个双宾词,大数据里面,跟 【human】与跟【physical】的都很多。当然,现场已经让【human】(“他人”)占了坑,只剩下【physical】的可能,如果要把这一套符号逻辑加入大数据相谐的统计里面去,貌似也不是很好整,虽然琢磨起来总是头头是道的。

白:
三个动词共享的话,备选坑的subcat取最小公共上位。
损坏的坑不是human,甚至不是animate,看来只能是physical
大家都从它。

李:
最小公共上位,实现起来又多了一层,而且预设了 并列结构的正确识别。看看这个问题的完满解决牵涉了多少不同层面的预设:

(1)预设并列结构识别
(2)预设最小公共上位
(3)预设排除已经占据的坑的类别

这里面的每个预设,说起来都很合理,但揉进一个算法里面就感觉有相当挑战。这只是就这一个案例的应对思路所做的抽象。遇到其他案例,也会出现其他听上去合理的应对。然后把这些合理应对整合起来成为一套相谐性checking的算法,感觉上不是一点点的挑战。

白:
显然这时候就看出来中间件分离的好处。相谐性检查也好,求最小公共上位也好,都是matcher向中间件请求,中间件回应matcher的关系,中间件并不介入matcher自身的逻辑,不介入待分析文本的结构性判断。

梁:
两个词的相谐性,可以计算出来么?或统计出来吗?

白:

李:
处得久了 粘在一起 chemistry 就确定了。大数据可以。就是如何实施的 know how 了。

白:
“避免了一个十亿人口数量级的核大国彻底倒向美国和日本成为死敌”
和谁成为死敌?谁和谁成为死敌?

1、十亿人口的核大国和日本
2、美国和日本
3、十亿人口的核大国和缺省主语
4、十亿人口的核大国和美国

李:
我昨天下午也搞定了一个痛点: 就是 “学习材料” 类。完满解决这个问题 其实有几个坎儿。凑合事儿也可以,但总觉得对于这么普遍的现象,还是形成一个一致的比较完美的解决才好,类比以前对于离合词“洗澡”的解决方案那样。

说个有趣的汉语缩略现象:

南美北美 –> 南北美
上位下位 –》 上下位
进口出口 –》进出口
AxBx –> ABx

some more examples: 红白喜事,冷热风,高低端,东南向,南北向,软硬件,中青年,中老年,黑白道,大小布什 ……

这些个玩意儿说是一个开放集(合成词)吧,也没有那么地开放;说封闭吧,词典也很难全部枚举。它对切词和parsing都构成一些挑战。这是词素省略构成合成词的汉语语言现象,还原以后是 conjoin 的关系 (Ax conj Bx),至于 ABx –> AxBx 的逻辑语义,还真说不定,因词而异,可以是:(1) and:南北美 –> 南美 and 北美;大小布什 –>大布什 and 小布什;(2)or:冷热风 –> 冷风 or 热风;正负能量 –> 正能量 or 负能量;(3)range:中青年 –> from 中年 to 青年,中老年 –> from 中年 to 老年;(4)and/or: 进出口 –> 进口 and/or 出口;(5)一锅粥(and/or/ranging): 高低端 –> 高端 and/or 低端 or from 高端 to 低端。

白:
小微银行;三五度

李:
逻辑语义解析先放一边(很可能说话的人自己就一笔糊涂账,不要勉强听话人或机器去解析 and、or 还是 ranging),就说切词和parsing的挑战怎么应对就好。冷热风 在传统切词中是个拉锯战:【冷热】风 vs 冷【热风】;“南北美”:【南北】美 vs 南【北美】。

看官说了,还是 南【北美】 似乎对路。可那个撂单的“南”怎么整呢?

白:
词不都是切出来的,也可以是捏出来的

李:
【国骂】,切词切词,只让我切,不让我补,这不是憋死我吗?不具体说雕虫小技了,要达到的目标是:Input:南北美;output:【南美 conj 北美】。

问,难道切词或 parser 还能补语言材料?当然能。不能的话,bank 怎么成的 bank1 (as in bank of a river)和 bank2(as in a com李rcial bank)?举个更明显所谓 coreference 的例子:John Smith gave a talk yesterday. Prof Smith (== John Smith), or John (== John Smith)as most people call him, is an old linguist with new tricks.

白:
高低杠、南北朝、推拉门、父母官……

李:
This last example below demonstrates the need for recovering the missing language material:

A: Recently the interest rate remains low.
B: How low is the rate (== interest rate)?  // 不补的话,就不是利率了,而是速率。

所以 parsing 中适当补充语言材料,重构人类偷懒省去的成分,也是题中应有之义,虽然迄今绝大多数系统都不做,也不会做,或没有机制或相应的数据结构做。

白:
不该补的也要那个。反方向的还不普遍?比如“海内外”

李:
听上去好像我的系统做了似的。必须说句老实话,目前还没做。虽然没做,这些个东西老在心里绕。绕老绕去问题清晰了,candidate 策略s 也有了,就是等一个时间点,去 implement。做实用系统有一个毛病,千头万绪,大多是跟林彪似的,急用先做。不急用的,甭管心里绕了多少回,往往是一等再等,几十年等一回,那一回有时候似乎永远不来似的,有时都就等到白头了。其中一个办法描述如下:假如 “南北韩” 不在词典里,但“南韩”和“北韩”都在,“南北”也许在,也许不在,不管他。切词的结果不外是:南/北韩 or 南北/韩。“揉”词的算法可以放在切词之后。最简单的算法就是再查两次词典,如成功,就把切词结果加以改造,爱怎么揉怎么揉。

(1) Input: A/Bx
Is Ax in lexicon? If yes, then
output: Ax conj Bx

(2) Input: AB/x
Are Ax and Bx both in the lexicon? If yes, then
output: Ax conj Bx

(3) Input: 海内/外:
Is 海外 in the lexicon? If yes, then
output: 海内 conj 海外

张:
李白对话将载入计算语言学历史

李:
前些时候,还真有个出版商寻求合作,要出版个啥 NLP 系列。旁门左道,从来没想要出书的,甚至写了也不管有没有读者。总之没拿读者当上帝。自媒体时代,写已经不仅仅为了读,写主要是为了写,日记疑似。与其读者做上帝,不如自己做上帝。反正也不指读者养活自己,完全是共产主义义务劳动,而且是高级劳动。此所谓,说给世界听,可并不在乎世界听不听。后来想起《对话录》,我说,也许你应该去找白老师。如果白老师愿意,倒是可以选辑修订成册。里面不乏精品,譬如最近的这篇:【李白69:“蛋要是能炒饭,要厨师干啥用?”】。

张:
计算语言学界最浪漫的事就是不忙的时候(坐在摇椅上)看李白悠悠地“怼”,慢慢地“坑”

白:
如果前缀两个字,就比较容易接受:大江南北、长城内外

李:
“大江南北、长城内外” 不同,“大江南” 、“大江北” 不在词典,而是句法组合。“大江-南” 是句法,“大江-南北” 也是句法,没有必然的必要性去补足构词材料。

白:
但是相比共享后缀,语义并无结构上的特别之处。所以补足只是针对同类现象的部分解决方案。按构词规则捏出一个有微结构的合成词才是根本。

“欧洲一体化已死,何须中国分裂?”  有个“它”或者“之”,关系会更明确。

李:
那就有点不伦不类了。“欧洲一体化已死 何须中国分裂之”,听上去成诗句了,好比
“花开花落两由之”。

白:
多好。如果像我引用的那样,就比较麻烦,总得有些关于统一和分裂相对关系的铺垫才能正确理解“中国”在其中的使动角色。

李:
想起个故事 在我知道胡适之是胡适之前,我写了句 “胡适之名句”,那还是高中的时候。高中同班一个公认的秀才,老夫子,读书巨多,平时颇孤傲,会背诵古文观止。 他马上对我刮目相看,他没料到我居然知道胡适乃是胡适之。别小看一个之,知道不知道它当年被认为是有学问与孤陋寡闻的重要区别。天地良心 我的确不知道胡适还有个之。后来知道了,不禁哑笑,哈,被学问了。秀才最后成了一辈子最铁的朋友,现在也在米国,做大学教授 系主任多年。

白:
英语“xxx specific”怎么翻译才地道?直译为“yyy特定的”读起来很不爽。比如“language specific”我宁愿麻烦点翻译成“针对特定语言的”。见到“语言特定的”这样的翻译,总感觉不舒服。但是,汉语处理已经必须处理这种因为直译导致的语言现象了。因为我们左右不了人家的翻译质量。

昨天徒步时看到的“旅游厕所”让我对降格又深入了一步。简单地看,这是动词“旅游”降格做定语修饰“厕所”。但是,1、“厕所”无法反填“旅游”的坑,这和“打火机”不同。2、“厕所”并不是与“旅游”的坑完全隔绝,它是给旅游者上的厕所。构词的微结构里面虽然没有直接出现“上”,但是这个“上”却是连接“旅游”和“厕所”的枢轴。跟前些天讨论的“孟姜女哭倒长城”里面那个没出现的“修”,有的一比。述语动词“哭”和结果补语“倒”没有相谐的共享坑,但是深层次通过“修”和“丈夫”的坑,延展开来实现了共享。

王:
我感觉是“旅游(用)厕所“,这样绑定是否可行。“上“有点窄,但“用”面大,覆盖广,只要没有反例就好。类似英语动词+ing。traveling toilet。学英语时,v+ing,分词和动名词,用来旅游的厕所 or 旅行着的厕所(移动厕所)。不知对构造新词是否有帮助。

白:
直觉“旅游”和“厕所”也是通过“上”实现了回填。等下我画个图验证一下。“用”也还是意犹未尽,不是严格用填坑关系串起来的,是一个虚动词,“上”是一个实例。

梁:
我有点忘了,“孟姜女哭倒长城”是孟姜女晕倒了,还是长城倒下了?好像两种理解都可以。

白:
长城倒了。
旅游[的](上、用……)[的]厕所

双线是“旅游”成为“厕所”定语的路径。简化一下:

把phi_1、phi_2缩并到“旅游”,形成虚拟节点“旅游'[S/N]”的话,上图就进一步简化为:

回填结构昭然若揭。phi_1是“旅游者”,phi_2是“上、用……”。

王:
第一个图好理解,简化后自己有点跟不上了,呵呵!当然白老师心中是门清的,只要可操作就是好的。

李:
为了一个定语 弄出两个无中生有的节点 才把这根线搭上,够绕的。某人 v 了厕所
此人 旅游,因此 旅游厕所就是为某些旅游的人所v的厕所。萝卜坑貌似搭上了,不过绕了这么一大圈搭上了又有啥好处呢?

白:
1,如果对不能反填置之不理,这一步大可不必。2,深层语义结构本来如此,顺藤摸瓜找到相谐的反填路径,看起来是句法任务,实际已经是语义任务。所以parser只做到降格就可以收工了。

李:
对于 “v (的)n”,知道 v 是 n 的修饰语 是根本,v 的坑 对于语言理解不重要,或无关系,因为语言中的谓词,填不上坑或不值得填坑的,是常态 是多数。需要填坑的(处于clause里面的)谓语动词是少数,多数是非谓语动词。即便谓语动词 一来也常省略萝卜
二来可填的坑 句法痕迹也比较明显直白,不会那么绕,少数远距离例外。

白:
对句法不重要,对语言理解不能说不重要。无中生有只是假装,其实联想到的实例都是有的。旅游厕所真的就是那个意思啊…… 难不成碰到了那个意思还要过河拆桥,告诉别人不存在这个桥。

王:
我觉得白老师对新词的剖解挺好,词生有根,把根找到是件有意义事情。当然在有些处理新词场合,可能不需要处于隐形的中介出场。一旦需要时,能有套路可找到,那么这价值就体现了。这也是机器搜刮了词典中的多种关联后得到吧。不排除有些情况可能找不到,也有可能找出了多个。这可能更大视野来考虑相协。

白:
刚才用“坑论”试了一票英语例句,巨爽。

李:
Man 填了万能词 is 又填 fat 中间还来个 +N  看上去有点复杂 (N+ 是定语,+N 应该是后补同位语)。/N 在身边没找到萝卜 就进休息室了 +N 守株待兔 等待左边来客,这一套蛮绕。

白:
@wei 别看man填了那么多坑,除了一个花了额度,其他都是免费的,而且都说得清来由。这个免费额度的机制,看来真的是universal 。

“自从有了智能移动电话,我的智能、移动和电话都在减少……” 这段子,又涉及微结构了。

宋:
“制裁没起作用,朝鲜又爆炸了氢弹。”其中,“制裁”的受事是“朝鲜”。机器没有相关的背景知识,能发现这种论元关系吗?

李:
“制裁没起作用 美国只有先发制人一途了。”

白:
“制裁没起作用,中国躺枪。”

李:
对于 hidden 论元 既然说者都不愿显性表达出来,为什么要挖出来?在哪些应用场景 需要挖出 hidden roles 哪些场景不需要?机器翻译基本不需要,信息抽取和大数据挖掘的应用也基本不需要,explicit 论元都成山成海冗余无度呢。自动文摘的场景不需要。阅读理解的场景似乎是需要的,但这也看哪一种level 的阅读理解,四级阅读与六级阅读 要求不同。总之 感觉多数场景不需要。实用主义来看 做了也白做 何况做也难做好。

白:
这根本不是个别词的问题,而是场景的问题。在先行的大场景中各自什么角色,决定了填“制裁”坑的萝卜是谁。向后找萝卜,方向反了。

“耳朵聋了,莫扎特的音乐照样演奏。”
“耳朵聋了,贝多芬的音乐照样演奏。”

吕:
这个需要接入外界知识了

白:
第二句有歧义,第一句没有。原因,就是大家知道莫扎特和贝多芬谁耳朵聋了。可以把“贝多芬耳朵聋了”看成一个先行场景,“联立地”决定后续空白坑的填充。重要的事情说三遍,只要语言不要常识不要常识不要常识。Simultaneous anaphor

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白69:“蛋要是能炒饭,要厨师干啥用?”】

李:
“炒饭” 默认是合成名词,但也可能是动宾结构的 VP,与 “烤红薯”、“学习材料”,甚至“已成事实” 类似,汉语中极为普遍的现象。今天想,从“炒饭”到“蛋炒饭”、“酱油炒饭”,后者的名词性增强,动词性的可能减弱, 但其实也不是不可能翻案:

A: 我很笨,我不会炒饭,我炒饭不好吃。
B: 你蛋炒饭呀,酱油炒饭呀。你如果蛋炒饭,就不会不好吃了。

“蛋炒饭” 里面的微结构是 clause 不是 VP,“蛋” 是【instrument】or【material(ingredient)】做主语。这不影响它可以从词法(morphology)上带有clause微结构的合成词转化成句法(syntax)中的VP,理所当然地再要一个主语:

“蛋能炒饭,肉也能炒饭,菜也能炒饭,没有不能炒饭的。”

白:
S降格为N+,需要统计支持,需要字数等条件。

“蛋要是能炒饭,要厨师干啥用?”

S自带的S+,先跟S搞定,回头S再降格。微结构分原始结构和定型结构。原始结构没有降格处理,定型结构加上了降格处理。即使降格,仍然存在填坑关系,但是呈环状,降格–修饰–填坑关系呈环状。颠覆,不仅仅是打开微结构,而且要“去降格化”,全面复辟到原始结构。

李:
白老师高大上的思路,隐隐约约似乎看到了端倪,但不敢说真 follow 了。主要是白氏术语多,但没有术语工具书或密电码,譬如: S, S+, 降格,原始结构,定型结构,填坑关系,呈环状,去降格化 ……

“蛋要是不能炒饭,啥子能呢?”
“蛋不仅能炒饭,蛋黄还能做月饼,蛋清还能美颜,连蛋壳都能做工艺品。”

蛋能着呢,一身是宝。相比之下,厨师最多就是做个饭,厨师不会美颜,也做不了工艺品。蛋与厨师,谁高谁下,不是一目了然吗?这是大学生辩论乙方的辩路。白老师代表甲方,立论是:“蛋要是能炒饭,要厨师干啥用?”

白:
按构词规则捏出一个有微结构的合成词才是根本。

李:
秀一下 捏出啥样子较好。

白:
上午徒步……方便时画几个图上来。

白天徒步时,多处看到“旅游厕所”的牌子。“旅游厕所”的微结构是啥?与“蛋炒饭”不同,“旅游厕所”并不存在翻盘的可能。

旅游只有一个标配坑,而且subcat是human类型。厕所无法填入。

李:
蛋炒饭的图示,pos 是 N,词法内部微结构就是个【主谓宾】。白老师图示的微结构没看出做主语的痕迹,不知道为什么。是因为主语要查chemistry,蛋不是 human 不够格吗?那个 with 降格 没看懂。

白:
说的对,蛋不是核心成分,是外围成分。用一个虚拟介词拉到动词势力范围来,不够格作主语。

李:
去降格化 回到了这个合成名词的动词 subcat 的潜在能力,it is a candidate 2-arg verb:/2N, 这就为翻盘成为 VP 谓语造就了可能。 翻盘还留有一个 human 主语的坑给句法。

白:
但 蛋还是不够萝卜资格。谁炒?所以那个段子,蛋要是能炒饭,要厨师干啥,之所以好笑,就在于,把蛋和厨师相提并论,

李:
“蛋” 在 “蛋炒饭” 里不够格,在 “蛋能炒饭” 里够吗?

白 :
也不能,是穿透的,能用蛋炒饭 的意思。
不够格的和够格的相提并论,核心成分让步,只能是修辞,不能是其他非核心成分。

李:
这是句法主语与逻辑语义错位造成的幽默。的的确确是句法主语 ,符合主语的一切分布,甚至可以放在(状语)从句的分布模式里:如果 S Pred,S 如果 Pred:

“如果蛋能炒饭”
“蛋如果能炒饭”

【工具】和【材料】 做句法主语在汉语是天经地义,仅次于【施事】做主语,比【受事】做主语还常见。其实英语亦然。

白:
问题是我这没有形式主语标签,句法主语标签毫无意义。我不想沾它,而且不沾也不影响。

李:
句法主语的独立性 总之是有依据的。什么叫 “核心成分让步,只能是修辞,不能是其他非核心成分”?

白:
就是那个角色不是human了,至少也是拟人化的。这才可以当作修辞用法。

李:
哦 那是修辞 ,修辞很常见的。

白:
蛋不是修辞用法,不在此列。

李:
“蛋” 从主语坑让一步,自己降格为PP,作状语?

“蛋炒饭” 里面, 既然在 v 前有 n,鲁棒的系统默认不降格的,因为选无可选 滥竽充数了。人的语言理解过程感觉也是这样的。

白:
鲁棒的系统应该在语义层面无计可施时,把它加回核心角色,不降格,修辞用法。句法层面作状语,并没走远。

李:
不降格, 到不得已时再让位(主语的交椅),而不是先降格 留个坑,等还不见影子的萝卜。

白:
怕甚?无非是句法功劳少点,语义功劳多点而已。

李:
不太合节省原则。句法存在的认知基础,就是给语义省力。

白:
又没到位,没看出省力了

李:
默认涵盖了多数情形 不费力 不用常识。不得已再用。遇到 n v n 就默认svo,当然省力了。

“鸡蛋拌番茄”,“鸡蛋” 也是降格?

白:
当然。翻译成英文,不也得降格么

李:
鸡蛋用番茄,鸭蛋用土豆 …
(as for eggs please use tomato …)
谁用?也是降格。

白:
谁会用谁用。反正鸡蛋鸭蛋不会,除非修辞。但修辞也不是as for的意思。

李:
哈 鸡蛋“能”用 鸡蛋不“会”用。就如乔老爷批判人工智能说 “潜艇不会游泳”。

图中 N+ 怎么回事?S+ 是N因为不够格而降格为状语,哦 N+ 是做了定语,动词委屈降格做了定语。父子翻转。

白:
N+是动词不经由定语从句,直接做了定语。

李:
经不经 【定从】 关系不大,为什么又“去降格化”?
其实微结构所谓降格都是做给人看的,讲究一个事出有因,但既然在词典里面 其实不必讲这个合成词内部的故事。就是绑架 洗脑即可。关键在微结构的V的潜在翻盘性。

白:
去降格是源头,降格是过程,N是结果。要想翻盘,就要回到源头,而不是回到过程

李:
那你那图示次序反了,源头弄在中间了。降格那一节 不提也罢。降不降 都是 N 了, 词典规定的默认。汉语词法句法道理相通,但词典词法不必讲理。 句法不讲理就不行。

白:
我没有次序含义,就是一个个罗列出来。
词法捏出未登录的合成词,还是有法可依的。

李:
对 对于open词法 需要捏,open morphology 必须有法 讲理。

降格者何时升格?修辞何时实现?修辞实现用标记吗?
green ideas 能 sleep 吗?“小红帽发了一顿牢骚” 怎么弄?还有很多很多灰色地带,资格不好认定的地带。要 【human】 的,【org】 不行吗,【animal】 不行吗?

白:
顺杆儿爬,顺杆儿滑。

李:
不过那个降格而捏的图示 真 implement 还有一些沟沟坎坎。 不过是给了个捏的道理罢了。道路依然不明。

白:
句法上承认不相谐的依存关系,语义上就只有修辞一条退路。但句法上到底承认不承认,有很多策略选择。

李:
但的确有灰色地带 介于修辞和正解之间的。坑与萝卜的 chemistry 是一个 spectrum,不是一个死条件,跟找对象一个德行。凑合事儿的也有过了一辈子的 还不少。

白:
这里问题不是给什么句法标签,而是最终是否碰的上。碰的上就不怕。

李:
碰不上就升格凑合?然后做个标注 这是凑合的修辞萝卜?

白:
不管在二楼碰上还是在三楼碰上都没关系。“蛋炒饭”的例子,“蛋”升格不就成了修辞萝卜了么?这是需要外力的,比如与厨师相提并论。没有外力,升格的可能性微乎其微。当然,形式的不算。既然升格,就是冲着逻辑的核心角色来的。“蛋”的工具主语的解释和修辞解释的不同就说明了问题。

李:
工具解释是临时职称,修辞解释是代理主任。临时是没办法 先凑合。乔老爷的名句 都不应该升格。因为没有纯句法以外的外力。“绿色思想今夜无眠”。“绿色思想”只能看成是“今夜无眠”的某种状语?

白:
还有另一种可能性,就是“绿色思想”看成专名。比如酒吧的招牌。酒吧再无眠,就是修辞了。同样拟人,以酒吧拟人就比以抽象事物拟人更靠谱点。

李:
是啊 这是spectrum, 讲的是本体资格距离。 其实还是三角恋力量对比的策略最实用,二元匹配不好对付灰色 三角就容易了。脚踩两只船 不得长久。最后当事人必须选择 是“他” 还是 “他”?凭着感觉就行了 选择通常不难。没有比较的选择就太难了。

王:
蛋炒饭,蛋能炒饭,真是够研究的。看了李白老师关于“蛋炒饭”这菜名讨论,感觉有些菜名无不用其奇,不考虑NLPer的辛苦,NLP很多性能不高,就坏在这“菜”上了,只要能解决就好,本来NLP大山就多,可这零碎的泥坑也不少。

白:
“蛋炒饭”其实是两个问题。一个是通用能产的构词法问题,一个是特定语境下的反悔问题。通用能产的构词法,就算没有,也可以通过“词典硬性定义+原始微结构”给反悔留出线索。通用能产的构词法怎么才能有?各种在句法层面使用的不太多的“降格”手段,在构词法层面可以有。这是关于“蛋炒饭”讨论的核心。

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白之68:NLP扯着扯着还是扯到萝卜填坑】

李:
发现 “引进” 与 “引入” 可能方向不同 虽然应该是同义词。读【李白之29】(“依存关系图引入短语结构的百利一弊” ),突然觉得不对劲 这不是我的原意。原来想说的是,“依存关系图引进短语结构的百利一弊”,或者,“短语结构引入依存关系图的百利一弊”。a 引进 b,语义主体是 a 而 b 是逻辑修饰成分;b 引入 a,a is semantic head while b is modifying element。不知道这个语感对不对 是不是语言共同体的 还是语言学家的走火入魔?

另 并列排比的力量很大 汉语为最 英语也有:

“One in the morning and one afternoon”

力量大到了可以生生把 one afternoon 拆散,棒打鸳鸯 可 NLP 界对这种现象研究和应对却远远不够。排比句式的自动处理及其与parsing 的无缝连接 可以做一些博士课题 排比是并列的延伸,而并列现象早就公认为是nlp的拦路虎之一。

白:
何以见得?程序员会首先说,编译通不过

李:
万一编译器鲁棒通过了呢。

两个什么?论最近原则 是两个西红柿。但还有一个更大的力量,就是前面说过的排比的力量:一个x ……两个【 】。

白:
通过的那种编译不叫鲁棒叫自作多情。如果论排比,那“一个啥啥”前面也得加“如果啥啥”。

李:
排比的力量真地很大 感觉强过距离 虽然这几句不 make sense.

白:
“孩子”是称呼对方还是指称对方子女,这是个问题:

白:
“拍的一手好照”……第一次见到这个说法。

李:
洗的一把好澡
吃的一桌好饭
拍的一屁股好马
吃的哪门子醋
吃的一坛好醋 双关 嘲讽

白:
你那些统计频率够高,这个不行

李:
露一手
拍一手好照片
踢一脚好球
踢的一脚好球
想一脑门心思?

“脑门” 与 “心思” 搭配,“一手” 却与 “照片” 并不怎么搭,“一手” 与 “拍” 似乎搭。

白:

如果“所”负载“他所说”,那么“他所说的”就是“所”填“的”坑。交叉了不说,感觉有点怪。
“所”是个纯粹的逻辑宾语提取算子,“的”则广谱一些,既能提取逻辑宾语,也能提取逻辑主语,而且接名词能构成定语,不接名词自己就升格而名词化。

李:
小词负载结构 也负载语义吗?我想请问的是 白老师系统如何区别 “所” 提取宾语的标配,与 “的” 既可提取宾语 也可以提取主语?这个区别如何在语义上实现?体现
在 pattern rules 里面的话,这个区分很容易实现。

白:
词负载语义结构,使用的是subcat类型演算。也就是说,“所”和“的”的提取对象,在cat层面不做区分,在subcat层面做区分。“的”提取“剩下的那个不饱和坑”所携带的subcat,“所”提取“代表逻辑宾语的那个不饱和坑”所携带的subcat。如果两个以上坑不饱和,如“卖的”,则取两个坑的subcat的最小公共上位(上确界):sup(human,human,object)=object。等待一旦其他成分做出更加specific的限定,比如“买的不如卖的精”或者“卖的都是假货”,再图改变。

李:
那是 unification 的本来意义:unspecified until more specific

两个小词提取(代表)的不同,在 subcat 演算上实现。这个 subcat
是谁的 subcat,又是怎么做 subcat 演算的?对于实词,cat 决定句法(萝卜与坑 以及 mods),subcat 决定语义(semantic lebaling 解析逻辑语义),我们可以想见。
对于小词呢?

白:
小词要具体分析

李:
从哪里看出来 “所” 指的是宾语。

我的所爱在高山。
我所爱的在高山
我所爱在高山
我所爱的人在高山。
我所爱的东西在高山。
我爱的在高山。
爱我的在高山
*所爱我在高山

白:
上面讲的“所”和“的”,我们用的词是“提取”,意思就是说它的subcat是copy来的,在copy之前,它是一个指针变量。说清楚了,谁填你的坑,你提取谁的哪个坑所要求的subcat

李:
“爱我” 只剩下一个萝卜 所以 “爱我的” 就是那个萝卜(代表)。为什么 “所爱我” 不成立?“所我爱” 其实也不成立,只有 “我所爱” 才成立,这个体现在哪里?

白:
我不管什么不成立啊,又不做生成只做理解。做生成也不这么做

李:
哈 这总是少了一个 leverage。赶巧了 词序不对的序列 不会出现 因此把词序 leverage 从 parsing 中扔开 貌似多数时候可行。但总是会遇到某种时候,词序的条件恰好就起到了帮助 parsing 的作用。

白:
subcat完全相同才会考虑次序,这时逻辑宾语右侧填坑优先。但是“所”提取逻辑宾语是硬性的,比只是“优先”来得更加强大。所以有了“所”,就轮不上这些右侧优先了。

李:
这种优先度的调整 听上去是宏观算法的考量,而句型subcat里面所规定的词序(如果词典规定的话)则是微观的。后者比前者更加精准。

白:
前者更加robust。我之所以放弃pattern,就是因为它管了不该管的事儿。

李:
动词句型的subcat,管得恰到好处呀,句型里面说在左边,那就一定在左边。

白:
好好说话是生成该管的事儿。而在各种糟糕语序下尽可能猜测对方意思是分析的事儿。

李:
句型里面的词序规定,与对小词的规定,以及对实词的规定(强搭配规定实词本身,弱搭配规定实词的本体)。所有这些规定都是一以贯之的。不管是分析还是生成,一个句型长什么样子 是植根在句型 subcat 的词典里面的。这是词典内语言知识。至于这个知识用于分析,可以适当放宽而鲁棒,或者用于生成,适当收紧而顺溜,那是知识的实用层面的考量,而不是知识本性发生了变化。

譬如 “邮寄” 带三个坑,其句型就是:

1. [human] 邮寄 [human] [object]
2. [human] 把 [object] 邮寄 (给) [human]

白:
理想的词负载结构,是可以100%把句型语序再现出来的。使用刚性方式(override)还是柔性方式(优先级),只不过是实施当中的工程选择,与理论无关。如果我愿意,也可以都采用刚性方式。但是我不愿意。比如及物动词六种组合语序,双宾动词24种组合语序,其中有多少种是合法的,我不需要关心。也不会用罗列的方式去挑出合法的组合。

李:
不同策略的选择 如果信息无损 当然无所谓。说的就是,在采用优先级柔性方式对付词序的时候,至少在词典化的句型信息方面,条件是受损的,词序这个显性形式没有得到充分利用。弥补它的手段包括中间件的查询。但是中间件的查询,其本性是隐性形式的使用,而词序是显性形式。

白:
没看出来受损。

李:
受损在:本来是由谓词本身来决定萝卜的词序,作为条件之一来填坑,现在却交给了谓词以外的东西。交给了算法中的优先级 and/or 中间件的查询。这个损失蛮显然的,对于所有把谓词本身与其句型的词序规定分开的算法。

白:
搞混了吧,这是谓词自带的,不是交给了算法。

李:
谓词自带词序??

白:
第一个坑、第二个坑谓词自己是有指针的,自带优先序。

李:
NP1 eat NP2:NP1 NP2的词序是词典决定还是……?至少 S/2N 貌似没反映词序。这个2N 里面没看出词序信息。

白:
说的就是第一个坑优先左侧结合,第二个以后的坑优先右侧结合。句法不管而已,subcat管。但是句法和subcat是时时刻刻互通的啊。不相谐时看后续选择。

李:
第一个坑优先左侧结合,这个东西,是对于所有 2-arg 的谓词有效,还是可以对于不同谓词有不同?如果是前者,就不能说是词典信息决定词序。

for another example:

1. translation of NP1 by NP2
2. translation by NP2 of NP1

这类词序原则上都是谓词 translation 在词典就决定好的,到了具体句子坐实其中之一而已。

白:
比如“饭我吃了”,1、吃是S/2N。2、“我”最先从左侧遇到“吃”。3、“我”与其中一个坑相谐。4、锁定human,留下food。

“我饭吃了”:1、同上。2、“饭”最先从左侧遇到“吃”。3、查相谐性,发现是第二个坑subcat相谐。4、锁定food,留下human。

至于查相谐是否必须从左到右遍历,这纯粹是一个算法问题。数据库还允许做索引呢,我为什么一定要遍历?“饭”都有了,跟“吃”的第二个坑匹配为什么必须先查第一个坑。

李:
句型规定词序的做法有下列特点:
1 在词序占压倒优势的句型里面,根本不用查语义和谐。就是词序绑架。
2. 在词序不能决定语义的时候,可以明确提出是哪两对发生冲突:然后让语义在这两对中去比较力量来求解(消歧)。白老师的上述做法貌似在情形1的时候,不必要地查询了中间件,多做了功来锁定。

白:
总而言之,在部分分析树上匹配目标句型,是我N年前使用的方法,现在已经放弃了。放弃的道理是在分析环节追求更好的鲁棒性。在生成环节,有另外的做法。

李:
在情形2的时候,不知道是不是也是查询中间件的力量对比(牵涉两个可能的二元关系),还是只查询一个关系?

白:
没有。一步到位。 说的就是没有使用遍历的方法。只有一个匹配结果就是第二个坑,第一个不用出现都。

李:
遍历也不是“遍”历,n个元素并没有理论上的所有词序排列,而是句型决定了哪些词序排列是可能的,哪些排列根本就不可能。而这些决定都是那个词的知识。

白:
白名单制。
有点对不上频道,我说的遍历是查询时对坑的遍历,不是对可能语序的遍历。我的结论就是,不需要遍历。

李:
这二者在句型实现或坐实中是相交的。譬如两个坑加一个谓词,句型的所有排列是:

1. 谓词【1】【2】
2. 谓词【2】【1】
3. 【1】谓词【2】
4. 【1】【2】谓词
5. 【2】谓词【1】
6. 【2】【1】谓词

当然对于一个特定的谓词,其句型就是这里面的一个子集。

白:
3!

李:
对。如果牵涉小词,上述句型还要扩展。

白:
我现在是一个句型都不写。

李:
然后加上省略,也要扩展:

7. 谓词【1】
8. 谓词【2】
9. 【1】谓词
10. 【2】谓词

白:
嗯,你这充分说明了我不写句型的优越性。

李:
看上去很多,但第一很清晰,第二具体到谓词,只是一个子集,有些排列被句型一开始就抹去,第三,每一个这种句型排列都可以确定性地决定,是歧义还是不歧义,从而决定是不是要求助或留给后面的语义模块。所谓文法,主体也就是这些句型。没了句型,文法也就差不多消失了。

白:
专制的文法消失了,民主的文法还在。中心化的文法消失了,去中心化的文法还在。拉郎配的文法消失了,自由恋爱的文法还在。

李:
很多年前我们的英文文法大体稳定在 600 条规则左右,其中大约有 400 条就是这些句型排列。400 条还在可以掌控的尺度之内。为什么 400 条就可以包揽呢?这是因为上帝造语言有个仁慈的设计:args 不过三。以前说过这个。args要是过了三,排列就至少是5!,必然引起句型爆炸。自然语言的谓词绝大多是是 2 args or 1 arg,只有少量的 3 args or 0 arg。决定了机器人通天塔并非不可能建造。如果当年设计语言的上帝忘了人脑的有限,弄出不少 4-args or 5-args,就傻眼了。一个事件往往关涉很多成分。但人在描述这个事件的时候,总是碎片化描述,每个句子遵循 args不过三去描述,然后利用冗余和合一,最后在篇章中才拼凑出完整的语义图谱出来。这就是自然语言简约有效、与人类脑容量相匹配的奥秘之一。

白:
这就是老话说的,一碗豆腐豆腐一碗,本来不需要区分的,语序一成刚需,得,不区分也得区分了。

一碗豆腐和豆腐一碗,语义上没差别,差别在语用上。数量词后置,是“报账”场景专用,可以让人联想到饭馆里跑堂的。如果将来都用移动终端触摸点菜,“二者的语用差别”就会成为历史。跟自称“奴婢、在下”一样,只能在文艺作品里看到听到了。用于分析的句法,不适合画“毛毛虫”的边界,画出毛毛虫的“包络”就很好了。

 

【相关】

【立委科普:及物、不及物与动词subcat 及句型】

【李白董之51:说不完的subcat和逻辑语义】

【Parsing 的命根子是subcat,逻辑的和语言的】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白67:带结构变量的词驱动模式注定是有限的】

白:
(1)小林差点哭了。(2)小林差点没哭。(3)谁说小林哭了?(4)谁说小林没哭?(5)没有人说小林哭。(6)没有人说小林没哭。

小林哭了?没哭?小学一年级暑假作业

李:
从词驱动模式而言 这些都是小菜 谈不上挑战。其实小学生语文出此题 背后也是因为这些模式很简单 小学生下意识记住了模式:

差点 没 v == 差点 v 了
谁 说 S v 了 == 谁 说 S 没 v
谁 说 == 没有人说
没有人说 s v == s (应该)没 v

差点 v 了 == 》 【Did not v but almost did】没有人说 s v(negative)== 大家都说 s v 了

没有人说 s v(negative)== 大家都说 s v 了
==》s (应该是)v 了 【舆论推测】

That’s all. These types of oral Chinese patterns look tricky but they are short and finite. Very easy to memorize and highly tractable.   However, they are a challenge to key word systems.   Not very sure if they are a challenge to an end to end deep learning system ……

类似的现象还有:究竟好还是不好?

谁说iPod好。               【不好】
谁说iPod不好?           【好】
谁不说iPod好。           【好】
谁不说iPod不好?       【不好】
没有谁说iPod好。       【不好】
没有谁说iPod不好。   【好】
没有谁不说iPod好。   【好】
梁:

@wei 我也挺喜欢这种短语pattern, 中间夹着 Vp 或 a 之类。

李:
词驱动patterns是在“成语”的延长线上,加一些小结构的变量而已。这类现象适合词驱动的专家词典。小菜。而经典的关键词系统 一看就傻了,stop words 一去除,就是一包烂词 一锅糊粥,a bag of shitty words for BOW systems,但估计拦不倒神经系统?

Identifying and parsing these patterns are a piece of cake. The corresponding semantic representation is a little tricky, but as we all know, the semantic representation is output and is only a system internal toy for NLPers.  As long as we identify the pattern, however, we choose to represent it depends on the design of semantic compositionality and on the system internal coordination of such representation design and its semantic grounding to NLP applications.  The input matching pattern is key.  The output representation is whatever is good for the purpose.

有谁可以确定性地回答这个问题?对于这类简单的 patterns(虽然涉及到一点语言结构 但没有long distance挑战),现如今的深度神经是不是通过隐藏层、word embedding 等,可以轻易捕捉呢?能够捕捉,对于一个强大的神经 是预期中的。倘若很难捕捉 那就很尴尬了。

白:
用没有variable的词典定义绑架,剩下用什么方法都没有太多悬念。真正成问题的,一是“已定义”相对于“未定义”的高原效应问题,一是从“无变元”到“有变元”带来的泛化问题。

李:
什么叫 “没有 variable 的词典定义绑架”?那不就是成语或合成词或ngram黑箱子吗?
高原效应是什么效应?

白:
plateau:已定义效果特好,未定义效果骤降。词典定义,不必然连续。可以不连续

李:
无变元 到 有变元 是儿童学习语言的过程,道理上也是机器通过线性数据训练平面结构的过程,不管这种结构是symbolically显性表达还是某种方式隐藏地表达。

可以不连续的词典定义 白老师举例说明一下?已定义 我的理解是大脑或系统已经形成模式了,未定义 是尚未形成模式 还没学会。如果是带变量的词驱动模式 注定是有限的。小小的人类大脑都可以学会,就断断不构成数据科学家及其电脑的挑战。做一条 少一条,“而山不加增 何苦而不平”?何况数据驱动的学习或制作,总是从常见模式开始,罕见的长尾最后对付。

总而言之 言而总之,不是挑战,更像是玩儿。谈笑间灰飞烟灭的语言学游戏罢。所有这一切的信心来源于两点:一是人脑容量小得可笑,二是结构让无限变成有限。从结构看语言 NLP想不乐观都找不到理由。

很多所谓的 #自然语言太难了#,都经不起琢磨。多数所谓 NLP 难点,仔细一瞧,或者是 piece of cake, 或者是 人类自己根本就没有标准或答案的。后者是强“机”所难。

白:
静态和动态看到不同问题。捆绑定义,最没技术含量,最有所谓惊艳表现。根本就是给外行说的。问题都在捆绑定义之外。

李:
就这类问题来说,本身就很简单,老妪能解,要什么含量呢?要的就是work :if the work works then it is all fine.  我们以前常举的例子是:

The iPhone has never been good.
The iPhone has never been this good.

白:
动态看,从未定义到已定义的过程,从无变元到有变元的过程如何自动化,如何偷懒,才是真正有意义的。这里谁都能work的事儿,不说也罢。

李:
对于有限的对象 这个自动化过程没有多少实践意义。

白:
实践意义要实践的人最终判定。给实践添砖加瓦的人还是虚心点好。

李:
如果证明了所列举的现象是无限的,才有自动化的说法。至少我们现在谈论的现象 它不是无限的,而是相当有限的模式。不过是说个大白话而已,这里没有虚心的理由。当然肯定还有其他现象 性质不同,到时候碰壁了再虚心不迟。

抽象地说,一切学习,归根结底是泛化的自动化问题,因此研究这个问题才是高大上 才有真正的突破。但具体到现象 就不总是这种高级泛化的问题。也有低级泛化,譬如带变量的模式。技术含量属于不高不低,这个变量牵涉到词典与句法的接口,不是随便一个NLP新手就可以搞定的。因此有技术门槛,但的确也不是火箭技术,所以也可以说没太多的技术含量。

白:
就像某翻译系统,play piano 能翻译成弹钢琴,play mandolin 就不会翻成弹曼陀林。这里弹拨、键盘、吹管、拉弦乐器的标记体系是自动化的关键,一个一个组合去捆绑是傻瓜做法。乐器虽不是无限的,但多到一定程度就值得自动化。柳琴、琵琶、月琴、中阮、大阮、古筝、古琴,冬不拉、热瓦普、琉特、齐特、吉他、竖琴 ……

李:
subcat总是要做的。从 piano 泛化到包括长尾的曼陀林,的确是一个有意义的课题。word embedding 也好, HowNet 加 大数据 也好,都是要捕捉或搞定 nodes 的边界条件。自然语言说穿了不外是图谱中的 arcs 和 node。两路泛化 现在看来,arcs 的泛化更容易搞定,nodes 泥淖一点。当然二者还有一些互补和 overlapping,戏不够 词来凑。

白:
隐形标记体系,针对封闭的词典。不寄希望于个体词汇的低概率统计分布兑现。这就是我说的subcat embedding,

李:
subcat 为基础的泛化,当然是更高级的泛化。它与 word 为基础的泛化 构成一个 hierarchy,就好比词驱动结构与抽象文法结构构成 hierarchy 类似。前者是做工 nodes,后者是做工 arcs。这样来看自然语言可能就比较清晰了。当然 深究下去 这两个泛化还有很多交错和结合的变种。但万变不离其宗 词汇与结构总是语言的基石。subcat 泛化 比较tricky。也许 HowNet 结合大数据也是一途:拿 hownet 做 subcat 的种子。

 

【相关】

科研笔记:究竟好还是不好

【语义计算:李白对话录系列】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【李白邢65:“着”字VP的处置】

【立委按】 世界上很多事物都有不同的角度,对于一个现象的处理也有不同的考量。到了NLP,这就成了不同策略的优劣之争。对于老革命,战略和战术辩论的好处是各自说明白背后的理由,多数时候并不指望谁说服谁,更非争个高下。对于看客,行内人自可各自体会,根据自己的理解择优而行。对于行外人,看热闹之余可能得到的一个启示就是,世界往往就是,公说公有理,婆说婆有理。

白:
开着窗户睡觉,开着窗户是状语吗?
“砍了一刀没死”,砍了一刀是状语吗?

邢:
我理解您的分析方法中,是不是没有主语、谓语的概念,而是以动词为核心为其填坑,填坑的萝卜与其在句子中的位置关系不是很大,而与其在语义上的搭配关系更大。

白:
@邢 是的

邢:
还有“掌声欢迎”中的“掌声”是状语修饰欢迎,那“鼓掌欢迎”是否也可以理解为“鼓掌”修饰“欢迎”呢?

白:
“掌声欢迎”是“(用)掌声欢迎”,有一个隐含介词。所以可以把掌声这个N降格为S+,做状语。“鼓掌欢迎”句法上是两个S的合并,至于语义上是什么,留给语义去处理。合并不是修饰,句法上“鼓掌”不是状语。

邢:
如何实现“降格”这个操作呢?是否也需要大语料的统计做支持

白:
不需要

邢:
那如何区分“同学欢迎”和“掌声欢迎”呢?

白:
欢迎的标配坑有human,没有sound。检查subcat相谐性可以区分。

邢:
subcat确实非常重要,谢谢您!

白:
鼓掌欢迎,列队欢迎都是合并。夹道欢迎,其中的“夹道”已经成了专用副词了,不在其列。

邢:
我理解合并是有前提的,首先合并词都是动词,同时合并词共享某个坑

白:

述补、并列、连动、兼语、某些缩合复句,都是合并关系。

邢:
很受教,谢谢您!

白:
名词和名词也可以合并

邢:
是的,至少并列结构的词语都可以合并,无论属于何种词类。

李:
为什么不说省略了“用”呢:
(用)鼓掌欢迎
(用)列队欢迎
动词也好 名词也好 都是用某种方式,核心还是 欢迎。
“鼓掌欢迎” 与 “掌声欢迎” ,看不出实质区别来。 都有大数据相谐的证据。其实已经接近合成词了。

白:
在句法层面定核心,和在语义层面定核心,是两件事情。
开着窗户睡觉,也是有核心的,但是在句法层面就定,太早了

李:
不早,至少对于这句,句法痕迹还是很明显的。

白:
早不早,这是体系问题。

李:
带“着”的动词做伴随情况的状语,修饰紧跟其后的核心动词。这是一个合适的句法和语义一致的路线。

白:
没必要

李:
英语的 ing 作为伴随情况状语也是如此:He came here running,有某种语言共通性

白:
知道他俩有关系,句法上就够了。

李:
“[笑着]走进来”
“[哭著]说”
“[带着哭腔]恳求他”

这个形式痕迹不用白不用,看不出来推后的理由。需要或必须推后给语义的,是句法上缺乏形式痕迹。句法有形式的,自然是早做强过晚做。

白:
不一样,谁带,谁恳求,这里面首先有坑的共享问题。修饰语出现坑的共享,这是给修饰语找麻烦。

李:
修饰语是第一位的,坑是第二位的。修饰语里面的坑不坑 其实无关大局。从理解和语用看,语义重点不再是补全修饰语里面的萝卜(真要补也可以补,但语用和落地需要它的情形不多)。

白:
放下筷子骂娘
拿起筷子吃肉
开着窗户睡觉
穿了衣服出门

这些都是平行的。光处理“着”,只是图一时痛快。

李:
核心突出了,哪怕只是部分现象,总是好的。

白:
不同性质

李:
其他的句子其实核心开始模糊了,但带“着”的句子,核心基本是明确无误的。

白:
共享坑在机制上要更根本,有没有核心,在其次。共同的机制先放在一起处理,到里面再分道扬镳。不存在不处理或者处理错的问题。

李:
直感上,合并这把伞太大了,罩着太多的不同结构。

白:
这才好,说明共享坑足够根本。

李:
在后一个语义模块的解析策略不太明确的时候,很难判断这样处理的 pros and cons。区分或理解这些不同结构对于多数落地,是绕不过去的。而填坑对于落地有时候反而可以绕过去。

白:
语义上具有向心性,和句法上的修饰关系,是两个概念

李:
譬如说 MT,“着”字动词做状语 可以平移到英语,不填坑也可以平移。

白:
MT能绕的不止这些
那都不是事儿

李:
这种语义落地场景就表明 坑里没有萝卜也可以的。可是核心的识别 却是不可或缺的。

白:
不是没有,是两种语言的共享坑机制一致,这不是问题的重点。

李:
一般原则还是,句法管形式,形式不充分的留给语义。为什么介词短语做状语呢?因为有介词这个形式。同理,为什么“着字VP”可以做状语呢?因为有“着”这个形式。
这并不是说,没有介词没有“着”的就不可以做状语。而是说有了这些形式,可以放松对语义相谐的要求,不需要“意合”,也不需要大数据 ,就是根据形态(包括小词)基本就可以确定。

白:
后者可以不叫状语,叫连谓结构

李:
“好”的句法,应该把这些形式用到极限。这就好比有格变的语言,要尽量通过词尾格变确定句法关系。只有在格变有歧义的时候,句法确定歧义的边界,然后才把负担留给语义模块去选择。放着形式不用,先用大数据、常识或其他的模糊条件,是舍近求远。

白:
坑也是形式

李:
对,subcat 属于隐性形式。

白:
了和着在形式上也有诸多平行性。一个地方不平行,完全可以揣在兜里,到属于它的角落,掏出来该干啥干啥。那些有平行性的,大家共用高速公路。另外,进入这个车道的“着”,状语的标签已经是鸡肋,在这个形式下可以直接定位到“背景-前景”语义关系

带上水路上喝,带着水路上喝,带了水路上喝。

真的只有第二个才有形式么?每一个都带有形式,都带有时间标签。一旦确定相应的标签,回头再看“状语”这个大而无当的筐,算个啥?

带上干粮饿了吃,带着干粮饿了吃,带了干粮饿了吃。

“墙上挂着画显得很有雅兴。” “墙上挂着画还是仿制品。” “墙上挂着画居然上下颠倒了。”

这三个例子里,“墙上挂着画”都不能说是状语。“这种场合戴着帽子不够严肃。”当中的“戴着帽子”也不是状语。

李:
这些特地选出来的例句 的确具有强烈的平行性。但这只是语言事实的一部分。当我们说 “着VP”可以做状语 指的是另一批现象。“笑着说” 与 “笑了说” 并不平行,前者是【伴随状语】(adverbial of attendant circumstance),后者是【接续】,在“笑了”与“说”之间其实有个停顿或标点。再看,“带着干粮饿了吃” 与 “带了干粮饿了吃” 的确平行。但 “带着干粮去上访” 与 “带了干粮去上访” 就不必然平行。总之,的确有相当部分的“着VP”是做伴随状语(也可以说是做核心动词的背景 都是一个意思)。而这部分现象是可以在句法阶段搞定的。 处理的重要形式依据是 “着”,但也可能需要再附加一些制约做微调。事实上,我们系统有几条带“着”做状语的规则在句法有时日了,经过长时期的考验,发现很管用, 出状况的时候很少。几乎与 PP 做状语的规则一样好用。

汉语的痛点之一就是 动词成串 难分主次 搞不清核心。这与欧洲语言对比强烈 :欧洲语言有 finite (谓语动词)和非谓动词(不定式、分词之类)的形式区分。谓语中心很容易确定 句子骨架一目了然。既然是汉语的痛点,分而治之就是解决繁难痛点的一个不错的策略:各个击破。 自然语言另一个比较普遍的痛点是并列结构,我们起初总想毕其功于一役,但总搞不定。后来探索出来的有效策略也还是分而治之各个击破。

白:
伴随关系(前景-背景关系)是时间关系的一种。接续关系是另一种。目的关系,可以看成未然的或可触发的接续关系。平行上路,平行落地。人家自己完全井然有序,用不着这个状语标签分了一块去再横插一杠子。充其量只能说,在这一批从时间内在结构角度而言从句法到语义都充满了平行性的关系当中,伴随关系“碰巧”具有了向心性。但是在这么本质的语义关系都揭示出来的情况下,坑哧吭哧跑过来宣布谁谁是状语,不觉得蛇足么。就好像从集体婚礼中拽出一对儿,然后宣布,这俩是山东人,差不多。

笑着说,笑的区间包含说的区间;笑了说,笑的始点位于说的区间左边(笑的终点不确定)。怎么不平行?

语义计算里面,时间结构是重要的一块。有些动作的时间结构不是区间而是点状的,对其不能用“着”,比如“死”“开除”,这也是一种形式上的旁证。点状的时间结构不能包含区间状的时间结构,正如0不能做分母。

 

【相关】

【语义计算:李白对话录系列】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【李白雷63:做NLP也要见好就收,适可而止】

白:
“那个假流氓真流氓”
“这种做法不禁令我们大吃一惊”

李:
前一句有意思 等我回头试试,第二句没看到 catch 啊。

白:
分词和句法的相互作用,“禁令”是名词,“令”是类介词的动词。“不+名词”即使不是严格禁止的,至少也是极其低概率的。

李:
这个知识在多数切词程序里是没有容身之地。当然还有别的办法。人在伯克利 没法测 第一眼居然没看到切分歧义。刚回家第一件事就是测试白老师的句子,悲喜参半啊:

第一句出来了,第二句果然切分错了,当然前面说过,“不+名词”的规则通常在切词的时候没地方容纳。还是用更简单的ngram的头疼医疼的办法吧。于是改正如下:

不过话说回来,如果真要难为系统,总是可以的:譬如,假流氓真流氓我管不着。

果然中招:

分了真假 就做不好并列;做了并列 就难兼顾真假。

白:
按下葫芦起来瓢

李:
如果鱼与熊掌一定要兼得,就太过精巧 君子不为也。不是不可以做 但不能这样做。维持现状吧。

白:
对NLP没感觉的人很难理解是什么让顶尖高手不得不妥协。

雷: 哈哈哈。顶杆

李:
妥协是因为吃过亏 吃过自作聪明的亏 精巧的亏

白:
问题不在于你解决了什么,而在于你解决了“这一个”的同时,不影响你已经解决的“那些个”。

雷:
不可调和?not even by bribery?

李:
哈,那要看量

雷:
工程上可以

李:
没有不可以的事儿

白:
不是技术问题,是商业问题

雷:
理论上顶在那里

李:
但懂得什么时候选择不做 有时比做 更重要。见好就收吧。这是不同维度的纠缠。

白:
里维和外围的纠缠

我:
平行并列是一个维度。“真”“假”的词性和用法的不同是另一个维度。“流氓”的名词形容词歧义又增加了一个维度。事不过三原则(见【系统不能太精巧,正如人不能太聪明】) 说的就是当多维纠缠的时候 你可以随风起舞 跟着去绕 但不要绕进去太深 要有适可而止的智慧。

梅:
@wei 是啊,不必去fit noise。

李:
不仅是 noise,更主要的是要皮实,不能让系统内部相互依赖太多。“精巧”的系统今天把一个拐角处的“艰深”问题解决了,而且通过了 regressions 测试,似乎没有副作用。可是明天呢 后天呢?系统在前进过程中,一定会打破动态平衡,凡是太过精巧的地方最终会在前进中遭遇困扰。于是我们就被拖进了两难的泥潭,把注意力放到了不该放的犄角旮旯。两难是:

那个 case 是 tested case,进入了 regressions baseline,因为精巧而脆弱,因此常常成为 regressions testing 的红灯区。红灯一亮,我是去对付它呢,还是放过它呢,真地两难啊:

对付它就要耗费资源,耗费我的时间,为了维护的是一个小概率的case,不断地耗费资源,不值得。如果放过它呢,这就等价于我们一开始就不该做,不该精巧地“解决”这个问题。后一个选择是明智的,但还是不如一开始就坚持事不过三的原则来指导系统的开发。系统的鲁棒性比解决个别的长尾问题要重要。

首发 2016-06-02 【新智元笔记:做NLP也要见好就收,适可而止】-科学网

【相关】

【系统不能太精巧,正如人不能太聪明】

【立委科普:美梦成真的通俗版解说】

【立委科普:语法结构树之美(之二)】

【语义计算:李白对话录系列】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【李白雷54:句法语义纠缠论】

白: @wei 微博上的讨论很有代表性。

李: 看到了,这个错误放大(error propagation)的问题,我以前也讨论过。很多人是杞人之忧,包括雷司令。@雷 你上次说到,parsing 需要准确才好做知识图谱。还说差之毫厘失之千里,其实完全不是这样子的。估计你是深陷在你的 parser 里面,还没有真正放开手做知识图谱的工作。

说句实话,所有的抽取工作,对于 twitter 和微博这样的短消息的细线条的舆情抽取是最难的,知识图谱这样的工作比起前者简直就是 piece of cake. 我们跟舆情奋斗了这么几年,比较了一下里面的复杂度和tricky的地方,也比较了里面实现的规则,可以说,最难的果子已经吃过了,剩下的大量的知识图谱类的抽取挖掘关系,在 parsing 的基础上,就是一个单纯的工作量的问题,没有门槛,没有难度。

信息抽取中的两大类,一类是客观事实类抽取(关系和事件),针对的是客观语言(objective language),这就是知识图谱的主要内容。另一类是舆情抽取,针对的是主观语言 (subjective language),情绪和评价类。后者的难度高出前者太多。

客观事实类抽取包括:专名 NE, 这是做基础的工作。下面就是在这些NE之间找关系(relationships),找事件(events)。为了抽取出来的东西可以整合(fusion),为挖掘服务,里面还有一些 CO (coreference)的工作。

雷:  知道Watson是怎么抽取相当于100万书籍的知识吗?

李:  上次我就说,如果主语宾语弄错了,那么按照错误放大的说法,抽取是不是就一定做不了呢?答案是否定的。parsing 错了,也可以支持抽取。只要错误是可以预见的,错误不是全方位的。

推向极端就是 @白 老师的“意合”系统。你看,根据词和词的 semantic coherence 的某种模板,甚至没有 parsing 都可以做。何况有了 parsing,不过是 parsing 偶然断链,或错置呢?有很多弥补 parsing 错误的手段可以在接近产品的层面施展,包括 domain knowledge 和 ontology。

雷:  我做过英文文献的药物副作用的抽取。严格的svo,结果不错。但我的感觉是,如果parsing再准确一些,结果会更好,而且事后的处理要少很多。这个仅仅是我的感觉。

李: 再准确也不能完美,主要还是思路要转变。

提高准确性是一个 incremental 的过程,而且一定会遇到 diminishing return 的两难。关键是在做抽取的时候,要知道,利用 node 的信息,可以弥补 arc 信息的不足。node 就是词,arc 就是句法。句法不够,词来补,因为词本身就是语义的最基本的载体,里面可以玩出很多名堂来,包括 ontology。

雷: NLP像地基,如果结实,可以起高楼。后续的修补要少,后面的工作就是建立FACTS,问题是战线要拉多长。

白: 意合法从来不拒绝partial parse tree,句法有什么拿什么,没有也憋不死。

李: Parsing 当然是地基,地基好了一定省力,这都没错。这么多年鼓吹 deep parsing 就是基于同样的理念,因为业界的 parsing 太 shallow, 没有地基。中文NLP 玩了那么多年的业界,谈起 NLP,默认就是切词,或者在切词上做一点啥,譬如 base  NP。

雷: 事后修补也是对的,这个在认知心理学中也有证明。但是,这种事后修补在认知中不是大量的。工程的探索和应用是一个方向,认知上探索也是一个方向。

李: 白老师,严格的说,不是句法与语义配合到怎样的比例才做好系统。我们实际上是说,显性形式和隐性形式怎样搭配(参见【立委科普:漫谈语言形式】),才能出一个高效的NLP系统来。可以简单地用句法手段来代表显性形式,语义手段来代表隐性形式,但是说句法语义容易歧义,不容易讨论清楚问题。所以上次,白老师提到 POS 有时候有害,不如语义分类好用。其实白老师说的不过是粗线条的隐性形式POS(一共就给词做10多个POS分类)和细线条的隐性形式(成百上千的语义分类),后者对于汉语分析的重要性。这个没有任何疑问,因为说的都是一家:隐性形式,都是语言里面看不见的形式,都是人必须在词典了给出的 tags,或者需要专门模块去给的 tags。所以我说,再纯粹的语义系统,只要是为工程用,就绝不可能放着显性形式不用,而去舍近求远地依靠隐性形式的语义。只有理论研究,可以放弃显性形式,因为放弃了显性形式,可以从理论上做出一个 universal parser,它可以 parse 人类任何的语言。显性形式(词序,小词,词尾和其他语缀)是 language dependent 的,只有剔除它,才可以做”纯粹语义” 的系统。

雷: 同意,不能放着有用的信息不要。我觉得模拟人的认知可能最是捷径。

白: 前提是,句法不能挡路,不能说你分析不出来了还不让语义按自己的逻辑往前走。

李: 还有,纯粹语义系统肯定不如显性形式可靠。在显性形式可以决定的时候,没有语义(隐性形式)出场的必要,它只会添乱。乔姆斯基的 Green ideas 的伟大实验就是要证明,显性形式能够做决策的地方,语义和常识都失效了。汉语中,“铅笔吃了我”,“铅笔把我吃了”,就是又一例证。绝对不会因为有了隐性的语义格框:动物-吃-食物,就可以用来解决 “铅笔吃了我” 这样句子的语义,这时候是(显性)形式的句法所决定。这样的句子就是显性形式词序或小词“把”在主导,没有语义(隐性形式)出场的空间。再举一个有力的例子,在有显性形式的格标记的语言,宾格基本对应的就是宾语。没有一个 parser 会不利用显性形式格标记,来做分析的。因为它明明告诉了“我已经标注好了,注定要做宾语”,你有什么道理要按照[动物-吃-食物] 这样的语义框格去找宾语呢?

白: 注定的话也不要说绝了。在幽默或修辞的场合,会来翻旧账的。

李: 意思你明白的。

雷: 语意是一个没有学过语言学的人可以说上一些东西的,但他很难说语法的东西

白: 你说的那不叫语义学,叫学语义。

小词本身也携带语义信息、结构信息,比如“的”。为什么我说从语义角色指派的逻辑上看“这本书的出版”和“这本书的封面”有很多共同之处甚至本质上相同,就是因为它的回环结构。

雷:  “这本书的出版”和“这本书的封面”的相似度又有什么计算方法吗?

白: “出版”有两个坑,“封面”有一个坑。“的”是提取坑,不管一个两个,不管动词名词形容词。

雷: 出版与封面在wordnet上有什么近似度吗?

李: 你那个“的”是提取坑,我搞不明白。出版是逻辑动词,封面是逻辑名词,迥异。

雷: 封面是没有坑的,有属性,封面是一个class,坑是method提供的。

白: 有坑,part-of,是什么的封面

李: 这是一个 single-arg 的坑,partof 和 wholeof 互为坑。语义面上的,不是传统句法subcat上的坑。

白: 对,一价和二价的差别,如果规定从右边的变元提取,就没差别。右边饱和了,就往左挪。及物动词填掉一个宾语,就成了不及物动词。与此类似。

李: 具体谈一下这两例。结论是?

“的”作为显性形式的小词,其提取作用,与英语小词 of 和 ‘s 类似:

translate A into B –> translation OF A into B
A’s translation into B
a book’s translation into B
a book’s title

白: “的”的定义,就是f(x1,x2,……,xn)的xn,你给我一个f,我就给你一个xn

雷: 以面向对象的模型类比,class,method,和attribute,书是class,封面也是class,但封面又是书的一个attribute。

李:  一般的关系分析并不深入到“partof”这个级别。一般遇到 “的” 或者英语的 ‘s/of ,就是粗线条分析到 Possessive 这一个包罗万象的关系为止。这本书的封面,粗线条就是,“封面”属于“这本书”。而“这本书的出版”则不用,所有的分析都指向动词的 subcat。

白: 粗线条对于汉语不行。汉语有显式的句式与part-of有关。

李: “这本书的出版”,只是利用了小词“的”,把动词名词化,与动词直接加宾语,分析同:出版加宾语,通常在右边,这是一条。变式就是:可以名词化,用“的”,宾语前置。

白: 比如 “老李把脚冻肿了”,缺省是老李的脚,不是别人的脚。

李: 那是,不过这个分析真地太细。

雷: 老李的脚是一个NP

白: 老李的脚,老李的讲演,老李的意见

李: 缺省是老李的脚是常识,否则就会显性的把别人的脚表达出来。英语 “撞了我的头” 常常是:hit me on the head,这个 the 缺省的就是 me。翻译成汉语就用显示的 possessive。

雷: 老李的人的概念,提供属性与构成结构

白: the有anaphor的功能。

李: the 不过是显性地标注了 anaphor ,汉语没有 the,默认的还是 the,而不是 a。凡是一个名词表示非限定的含义的时候,其汉语的用法和条件相对来说,比较可以找得出来。而默认的 the 的含义,不太容易找出条件来,所以默认是个好东西,不需要去定义外延,外延靠别的东西去定义。

雷: 昨天不是有一个language universal的帖子吗?相近原理。

白: 看看汉语讲故事怎么讲:从前有座(a)山,(the)山里有个(a)庙,(the)庙里有个和尚讲故事。

李: 对,我们其实有 a,但常常没有 the,于是 the 是默认。量词是 a,”某” 也是 a, 我们甚至直接用“有”来表示 a (“有人”昨天来讲课了; “有部件”坏了–》一个部件坏了), 当然还有”一“,也可以用做 a,所以汉语表示 a 的形式手段还蛮丰富,因此就不需要 the。the 是默认,实在还是不清晰,就用 ”这“、”那“ 等指示小词来强调一下限定的语义。

白: 都是不带形式标记的anaphor

雷: 细致的坑是ontologies的。parsing中动词和形容词有坑就可以了

李: 传统的 subcat 的坑是粗线条的,里面映射的可以是细线条的语义约束的坑。语义模板与 subcat 的关系。

白: anaphor 的 trigger 必须带坑。本身共指,或者 part-of 共指。记得 Winograd 讲过一个例子,一个小孩得到了一个礼物。当他打开(the)盒子,发现……。盒子就是装礼物的盒子,用the勾连起来。

李: 恩

白: 咱汉语里都是隐形的,于是“盒子”作为 “坑的 provider”,必须写到词典里。封面,也一样。

李: 恩,封面的优先主人是谁的信息在词典里,针对的是出版物。

白: 出版的受事坑,恰好也是。所以用的,一提取一个准儿。

县长派来的,比这复杂,因为”派”和”来”各自提供的坑,被一个“的”给提取了。或者说,”派”和”来”,经过了一次内部整合,统一一个坑对外,被“的”给提取了。派是兼语动词(三个坑),来是不及物动词(一个坑)。但是“派”最左的坑被“县长”填充,饱和了。“派”的另一个“事件”类型的坑,只能接受“来”。于是剩下的那个类型为human的坑,与“来”提供的类型为animate的坑,统一对外了。

李: 很有道理。填坑最好的是只有唯一的候选人,没其他可选。最麻烦的是要动用语义优先。语义优先可以作为知识,预先学出来或标出来,或半自动,先学后标(postediting)。可是在使用现场需要层层松绑,想想就头大。遇到结构歧义(不是伪歧义),还不是松绑的问题,而是对比的问题,要看三角恋的三方,哪一对最有 chemistry。松绑只是对条件按照 taxonomy 去有步骤放宽,而对比不是,对比需要动态的看随机配对的力量对比。不是不可做,是 overhead 太大。如果不考虑 overhead 和实用,力量对比的评判比层层松绑更容易,因为前者是二值的,总有一个吸引力更强,后者是趋于离散的。

原载 《铿锵三人行:句法语义纠缠论》

【相关】

【立委科普:漫谈语言形式】

【语义计算:李白对话录系列】

【李白之50:符号战壕的两条道路之辩(续)】

白:
我的思路是:句法维护纯二元关系,模式编码进subcat,直接对接语义。纯二元关系对模式既兼容又有更大的robustness,不用白不用。

李:
pos 支持句法做粗线条分析 subcat支持逻辑语义做细线条分析?

白:
必须的

李:
那倒未必。可以结合做的。显式的句法语义关系可以一起做, 没有句法关系的隐式逻辑语义可以推后。subcat 结合句法语义。

白:
模式方法中,小词的缺省和成分的倒置,只能认为是不同的模式,不穷尽则不work。二元关系方法中,缺了小词也好,倒置也好,在subcat那里都可以重构出来。输出是现成的,既可以跟着cat一起输出,也可以等语义落地了再输出。这是个简单的配置问题。

李:
缺省不怕:就是 optionality,不是模式必需的。倒置的确需要增加模式,没办法,模式也是线性。

白:
“我紧张,一见到那个人。”
省略了“就”,而且倒置。但是在二元关系方法下,这都不是问题。

李:
但n元模式,在多层系统中,并非全排列模式。模式负担完全可控。也可以类似于二元的样子,一层层做:起码动宾与主谓通常被认为是不同层次的组合,无需SVO全排列。推得极端一点,n=2,多层n元就成了2元,也是可行的策略之一。

白:
对“一”的subcat标注,已经隐含了对“就”的“脑补”。
语义frame任何语言中都不必然是二元关系,这层落地映射,本来就是缺不了的,并不是因为模式而特设的。

李:
exactly

白:
句法专注二元关系,好处多多。

李:
1 【一VP(S)就VP】
2 【一VP】
也就是两条模式捕捉的事儿。都很直观 intuitive。捕捉了,还不是要怎么玩语义怎么玩。

白:
这实际是语义直观,跟那些多元关系是同等对待的。

李:
第1个模式涉及5元,第2个模式是bigram,我说过,模式也就是以三元为峰值的正态分布。并不是想象的那样组合爆炸,完全在可掌握之中。最大特点还是其接地气,直观,容易 debug 和维护。不就是给语言结构拍照吗?所谓句型练习(pattern drills),人学语言也就是这么个事儿,我们当过外语老师的,都知道 drills 的重要。

白:
那个完全是UI的问题

李:
如果你做二元配对,我心里想的是五元模式,【一VP(S)就VP】 这样的模式,你如何把二元的过程UI到我感觉舒服的五元模式呢?

白:
双宾语结构也是一样啊
二元的过程是在机器里发生的,五元模式是结果,不在一个频道上。边加够了,五元模式就出来了,就这么简单。

李:
机器发生的过程 不是基于词典的标注吗?这个标注不需要人去做 去维护 去 debug?

白:
但过程总是一个一个边加的

李:
那是因为你的 parsing 是 PSG的 parsing 过程,虽然表达的是DG。这个 PSG 的过程,是遇到任何物件都不能跳过去,要一个一个的叠加组合。

白:
能跳,否则就无法处理交叉了

李:
从你画的图看,还是一个不跳地在叠加,只不过叠加的顺序可以不同,然后导致一些远距离二元关系的最终建立。(当然你的X见人见鬼,先加上再说,也算是一种模糊应对或“跳过”。) 换句话说,parsing 的总过程与经典的 chart parsing 没有看出大的区别。

白:
这理解是错的

李:
可能。也许我看得不够仔细。

白:
从数学上看,模式引发的步骤不是分析树的“构造”而是分析树的“映射(变换)”。这个映射环节引入PSG还是引入DG的差别是细节的差别,核心的精神都是一致的。如果你说的“跳跃”意味着“映射”的引入,我目前确实没有,但 1、这并不影响在较上层的节点上,映射的结果和非映射的结果会得到相同的语义落地。2、如果一定要引入映射,与我现在的体系也毫无违和感,可以兼容处理好的。

另外,不包含映射的技术方案并非都是一丘之貉,彼此之间可以有天壤之别。这实质上是模式驱动的“一揽子”填坑动作,可以加速分析进程(就是你说的“跳跃”),又不破坏填坑的基础架构。但是我要说的是,既然看到了这个实质,映射的触发就不必拘泥于从左到右的模式匹配,一定程度上的词袋模型一样可以触发!实际上我在subcat里面做的事情就是这种不完全信息的模式触发,只不过做在了语义层。语义层都能做,回头做句法层纯粹就是锦上添花,照顾语言学家的UI感受而已。我不看好从左到右依次匹配,但我认同通过映射实现跳跃。语言学家不应该成为排列组合匠, 更不应该为某项排列组合的缺失而背黑锅。除非该项排列组合有明显不同的语言学意义。此其一

另外一个因素就是模式在激活之前的状态一定要有一个载体,而且这个载体必须跟着分析进程动态维护。伟哥有分层的fsa做这个事情,我是用词负载的subcat(实际上就是词袋)做这个事情。词袋的好处就是对排列无感,只认组合而且允许组合缺斤短两。在某些场合,词袋的部分填充会造成激活歧义。所以要用“状态”记录这些有歧义的部分填充(套用时髦的量子话术,这就是几个候选词袋的“叠加态”)。随着分析进程的展开,叠加态会“坍缩”到确定的词袋上,完成激活。

李:
大赞。…… 先赞后辩。
没全看懂 但似乎又懂了 貌似透过做法看实质 有不少共同的观念。消化消化。

白:
“人肉”本意是名词。在“人肉搜索”这个短语中是副词(N降格为S+),意思是用活人去深挖特定对象的隐秘信息。再简化一点去掉“搜索”二字,“人肉”就成了动词了(S+升格为S)。升格降格操作的活标本啊

李:
人肉搜索 不是宾语提前?把衣服扒光 不是人肉?

白:
“这个公司的所有人都是好样的。”居然有歧义。

李:
“所有-人” 歧义(hidden ambiguity): 单数 vs 复数, 复合词 vs NP,黑箱 vs 白箱,[possessor/N] vs [All people]

白:
“发言的是我们公司的。”

李:
1[human-action 的] –> NP[human]
2. [human|organization 的] –> AP[possessive]

1 + be + 2 –> 1 belong-to 2

“发言的是我们公司的。” –> [发言的 human] belong-to [我们公司 的 possessive】

所谓句子解析及其语义落地,不过就是模式的拼接。

白:
“作业你是不是不打算做了?”

李:
1 [plan V] –> plan-V (verb compounding like)
2. [ NP VP] –> S Pred
3. [NP S Pred] –> Topic S Pred
4. Topic S Pred(/O) –> O S Pred (所谓先耍流氓后结合:有“做-作业”的可分离动词的搭配关系更是坐实了远距离勾搭)
5. Vt NP –> VP
6. Vt –> VP(/O)
7. “是不是不” can be treated as one compound 小词 whether (or whether-or-not)

白:
是你打算,还是作业打算?是你打算做作业,还是作业打算做你?由什么决定?就本例而言,语序已经完全乱套了,只有subcat能决定。好在我们知道,计划类动词具有穿透性。打算的两个坑,是human、event;做的两个坑,是human、thing。这两个human就是穿透确定的共享萝卜的坑。往前面看,能填的只有“你”。“做-作业”离合词的远距离锁定,从另一个侧面做了神助攻。所以,不管前面“作业”和“你”的顺序怎么折腾,它们的subcat如同狐狸尾巴,总会泄露真正的结合方向。我们不需要S/O/Topic这些名目,直接根据萝卜和坑的subcat相谐性,就可以选择行的,排除不行的。也不需要针对不同语序设置不同模式。跟着词条走的cat/subcat就足够确定目标了。

“你懂的。”其中的“的”就是句末助词,标记为+S。“我是不懂。”其中的“是”是表强调义的副词,标记为S+。“你是不懂的。”其中的“是”和“的”借助这两个修饰语标记完成了绿叶的使命,把红花凸显出来。但是这种做法的好处更在于,“是”或者“的”之一缺位时,句法上照样work。红花之间的关系照样不变。不需要针对几片绿叶的有或无的排列组合一个个遍历。

李:
这话说的,好像世界上就有人有直道不走,偏要走弯道似的 哈。白老师雄辩。
排列组合遍历很多时候是免不了的,除非可以证明这些绿叶红花的排列没有意义, 所有绿叶都是可有可无的。语言的最大形式特点之一就是排列,或曰线性次序。概念通过语词,关系通过小词以及词序,线性地流进我们的耳朵。小词和词序,作为显性语言形式(参见【立委科普:漫谈语言形式】),其功能本质是一样的。由于信息和形式的冗余,厚此薄彼可以作为一个可行的策略,作为一个精算师的算法之一,但拔到理论高度说,让小词负载结构,赋予重任,同时忽视词序来取得鲁棒,总是很难让人信服的。

汉语的省略小词,是如此普遍,就跟汉语的词序灵活一样,都给鲁棒提出挑战也留下空间。你可以厚此薄彼作为一个 parsing 策略,别人也可以厚彼薄此作为一个策略。更有人二者都不厚不薄,利用模式,用?(optionality) 传达鲁棒,用显性排列形式的 obligatory 出现(何时、何地)来表达精准及其语义落地。有何不可?有何不好呢?能想到的不好都是实践层面,而不是理论层面,譬如:(1)可行吗?组合爆炸,排列得过来吗?(2)即便不组合爆炸,有本事伺候排列吗?(可维护性)

可行性的问题已经有答案也有实践,就是多层。Note that 这个多层也不是单单为了可行而采纳的。多层反映的是自然语言的 configuration(参见乔老爷杆杆理论,X-bar,科学网—乔氏X 杠杠理论以及各式树形图表达法),也是语言本质之一,譬如动宾(VP)与主谓对于多数语言就天然不在一层。

多层排列的可行性,其理论基础在于人脑记忆的有限,自然语言的可学习性。如果语言本质就是排列的组合爆炸,人也无法学习语言了。我们所做的不过是瞄着人 parse 语言的样子,去模拟实现它。符号逻辑的模型透明性和可维护性在多层模式里面得到了彰显。

第(2)个问题是本事问题。的确多层排列算法不是每一个人都玩得转的,就如小词负载结构兼以隐藏知识的大数据中间件除了白老师迄今无人能玩一样(甚至无人想到了这条路,参见【李白之15:白老师的秘密武器探秘】)。两条路线都严重偏离主流,主流人才的多数或者无视或者没有历练/本事来玩转这任何一条路线。

正如尺有所长,寸亦有所长。如今是各自玩各自的。区别在于,这个战壕自认为可以对nlu挖掘更深(这一点在下确信无疑:毕竟坐井观天一辈子了,天可能还是没看清,但井的深浅是清楚的,如数家珍;而且不需要做天外比较,就可以得出结论,因为自然语言在这口井里面基本是已经见底了),主流的战壕在我们不过是摘除低枝果实(这一点无法确认,保不定哪一天主流就突然从导弹演化为核弹,也未可知,彼此祝好运吧)。

白:
小词“可”负载结构,不是“仅”小词负载结构。语言的层次性在技术上“可”通过分层fsa消化,不是“仅”通过分层fsa消化。模式也不是“仅”通过负载结构的小词消化。同样负载结构的实词、算符优先序,都在推波助澜。一个句法体系和技术体系,一些特色或许突出,但贡献是多个特色联合作出的。

我不希望受众被误导。

李:
哈 我也不希望误导,或被误导。
其实,因素比重的差别,还是构成了技术路线的不同。也许用“小词负载结构”(的因素)来概括或代表白老师的路线,就好比以“多层专家词典排列模式”来代表的立委路线(听上去好耳熟,对了,历史上有过被毛委员往死里批判的立三路线)一样,都是不准确的。但仔细看过讨论系列的会了解其中的路线之别。

二元句法在前,逻辑语义在后的策略之所以可以成功,我觉得是因为有了“大数据中间件”的助力,否则很难想象那么简单的句法操作可以应对那么复杂的语言现象。所以,让我 wonder 的主要是大数据中间件,如何训练如何使用的。而对于二元本身,特别是小词负载结构,相对于多层专家词典的模式匹配,我没看出多少优势。如果硬要评价 pros and cons,从我的角度,前者长于简洁(也许也增强了效率)和鲁棒,后者更符合语言学家的语言认知和描述习惯,可以更加从容地对语言做精细而不失鲁棒的描述。

重要的是,二者同属符号主义,同一战壕,也似乎都可以包容对方。

 

【相关】

【李白梁49:同一个战壕的两条道路之辨】

【李白之16:小词负载结构与小词只参与模式条件之辩】

【李白之15:白老师的秘密武器探秘】

【立委科普:漫谈语言形式】

科学网—乔氏X 杠杠理论以及各式树形图表达法

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白之48:依存关系不交叉原则再探】

李:
画了前面的图回头仔细一看才发现,这个例句是擦边的“交叉”:

如果DG(Dependency Grammar)揉进了浅层的短语结构及其边界,先做了合成词“学习 成绩”,那么把“他”与合成词内部的“学习”连接成主谓关系,是交叉。但是如果不引入短语结构,一切节点都是终极节点,实行彻底的原汁原味的依存关系(DG)表达,那么“他”作为主语连接给“学习”以及“学习”作为修饰语连接给“成绩”,并没有真正交叉,只是层次(configuration)显得乱了。但是DG的最大特点(或缺点)就是打破层次,只论二元。多年来我们在DG中部分引入 PHG (Phrase Structure Grammar) 短语结构表达,也是为了弥补这个缺陷。

我要说的是,这不是DG最典型的交叉关系图。不知道有没有更好的交叉而且语言逻辑仍然合理的案例。以前一直以为从逻辑上看,真正的交叉是站不住的,会引起语义的混乱。

白:
这又和“学习成绩”是在词法层面的论断矛盾了。二元关系这竿子杵到底,似乎就不管你什么层面了。“这牛吹得有点儿大”算不算交叉?

李:
盘点一下关涉到的二元关系:

吹-牛
吹-得
得-大
有点儿-大
这-牛

白:
牛-大
牛有俩爹。

李:
从 “牛” 到 “大”,从 “牛” 到 “吹”,起点同,终点不同,所以不算交叉。
n年前,刘倬老师画过图,说只有交叉站不住,不允许。其余的情形(见下图)全部是可能的,说的就是依存。

现在清楚的是,逻辑语义依存可以一个儿子多个老子,甚至互为父子。可以跨越层次,因此是图不是树。但是真正的交叉好像还是不被允许的。逻辑上,依存交叉是思维混乱。

白:
“辫子是谁给你梳歪了?” 试试看。

李:
梳-辫子
梳-歪
谁-梳
给你-梳
给-你
?是-谁(这个强调词可能进不了逻辑语义图,如果硬要进入,就挂在被强调的“谁”上)

还有哪些二元关系?

白:
辫子-歪
你-辫子
交叉了吗?

我觉得首先思维不混乱,再看看交叉了没有。

李:
没有交叉,貌似并不违反刘老师当年定下的天条。

白:
我提到的两个不算?如果讲的是“逻辑语义”,我认为要算。除非承认过继和挪移。

辫子-歪,你-辫子

李:
【辫子-歪】 与 【梳-了】 是交叉了。【辫子-歪】与【你-辫子】并不交叉。不算。因为其中一个端点重合。端点重合的,与内嵌套类似,不是严格意义的交叉。这么多的二元关系,勉强找到一对貌似违背了不交叉原则,而且这一对涉及小词“了”。涉及小词的,原则上在逻辑语义图里面没有地位,不应该进入关系。这样看来,实词概念逻辑语义不允许交叉,是可以自圆其说的。

白:
在我这里小词都有地位。

李:
小词只在句法层面有意义,进入(逻辑)语义,小词不过是给自己的主子添加了“色彩” features,并没有语义关系可言。

白:
你-辫子 与 谁-梳 交叉了,都不是小词

李:
你-辫子 和 谁-梳,的确交叉得太彰显了,掩盖不了 <:]

可能辫子根本就不该找主儿, =)

白:
“腿是谁给你打断的”,腿 也不该找主儿?

李:
这个交叉不交叉原则,可以反过来看。也许可以找到一些案例,的确产生交叉了。但是我们不能允许语句中的概念漫无边际地乱谈恋爱,导致群交的杂乱场面,显然不好。所以,必然会有某个原则在那里起规约作用。也许有某个“不允许交叉”的弱版本需要挖掘和表述。

白:
残坑挪移,可复用萝卜归栈。
技术上当然有办法。

李:
两个人要私奔,天王老子也挡不住。

白:
比如刚才说的“你-辫子”。“你”就属于可复用的萝卜。

李:
二元关系不理别人就是了,不就是一个链接吗。技术上不是问题。管它叫树还是叫图。探讨的是,有没有一个有效的原则在,它合理有效地压缩了乱交。

白:
“辫子-歪”,歪就留下了残坑,被挪移到“梳”的位置。
我认为,残坑的处理和萝卜的复用是天经地义的,是NLP的应有之义。

李:
人心不古啊。现代化摧毁了周礼。是否要克己复礼?现如今,同性都可以结婚,禁区早被突破。

白:
乱交不可能,有辖域的约束,还有subcat的约束。辖域的约束,是指必须挪移到主子的位置。subcat的约束是指必须相谐。在主子的位置看如果没有交叉,就是OK的。

李:
对。
【谁1 给谁2 梳辫子】
【你-辫子】 和 【谁2-梳】 的交叉,是因为“谁2”与“梳”勾搭上以后,把给自己找主人的要求带给了“梳(辫子)”。

白:
所以,我们昨天讲的挪移,是在很严肃、很有效地处理交叉问题,很审慎地剥离表面上貌似交叉、学理上情有可原、技术上完全可控的现象,把它们纳入正轨。绝不是鼓励任意交叉绝不是鼓励任意交叉。

李:
服。

白:
而小词纳入实质性二元关系,一点都不影响上述对交叉的控制手段,但“词负载结构”原则则被推至极致。

李:
不管小词纳入还是不纳入,小词的确没有真正的语义地位。首先,小词各个语言都不同,而语义原则上是人类共同的。在深度分析的结果图上,不同语言的色彩应该已经褪掉。一切图谱理应是实体概念之间的关系。小词负载结构最多只能算是句法层面通向语义的桥梁。过河拆桥不拆桥,桥都不登大雅之堂。大堂里面都是args或mods,围着众神(谓词)跳舞。

白:
这个难以苟同。首先,格、时态、命题连接词、逻辑量词、摹状词都是语义里面必须有的组成部分,各个语言只不过用不同的手段来达到这些组成部分而已,如果碰巧某个语言里小词做了这件事,在这个语言里小词就负载了相应的结构,不描述是不对的。过河拆桥,是一种逻辑等价的技术处理,桥是客观存在的。

李:
总结一下不交叉原则:不交叉原则适用范围要从动态交往中看,而不是去除时间维度,把不同时期的交往压缩到一个平面去看。在没有时间维度的静态平面上看上去的违反不交叉原则的二元组关系,放在时间动态的交往上看,就没有违反原则。

白:
挪移就是位置随时间变化,随分析进程变化。而有些时候,桥是拆不了的。比如“卖盐的”。这个human就负载在“的”上,升格为实词。

李:
[human-action] –> [human],不太好操作。当然,除了[human]以外,貌似其他实体很少出现在这里。

白:
N+–>N,方便得紧,而且和形容词名词化一脉相承:“行个方便”。的字结构,饱和了以后,具有形容词性,形容词能升格为名词,的字结构就能。二者是同一机制。

李:
好像,的字结构可以是主语实体,也可以是宾语实体,后者就超出了[human]:

卖电脑的最新生产的是智能手机。
==卖电脑的[human]最新生产的[product]是智能手机。

白:
那是因为“生产”的两个坑,一个human,被“买电脑的”先占据了,剩下一个“product”坑,被第二个的字结构提取出来,再升格为萝卜。

李:
然后萝卜带上了标配本体?

白:
这整套操作,都在我们提供的机制内完成。

李:
这个标配的设置,不太好处理,虽然硬做总是可以做的。

白:
的字结构是我整个理论体系最早的切入点,不说烂熟于胸,也是胸有成竹的,至少是最不怕挑战的一块。

李:
呵 的字是中文的万恶之首。不说恨不得千刀万剐它,至少也是恨得咬牙切齿。

白:
既然做NLP,就得拿万恶之首开刀

李:
它还有变种:的|地|得|滴|哒|d|de|ㄉ|之
对了,粤语里面还有,那字怎么拼都忘了,但见到认识,口旁加既。

白:

李:
对,上世纪30年代流行

白硕:

日语借来的

李:
相比之下,茴香豆的茴五种写法算个球,李白比孔乙己可学问多了。宝林大师说过,满肚子下水全是学问,不能碰,一碰就往外冒。

白:
妈妈威胁孩子“等你爸爸回来的”那个“的”,在有些方言里似有与普通助词“的”分化的情况,语音形式都不同。

李:
听不懂这个。

白:
潍坊话发音类似“着”。
大家可以内省一下自己的方言是分是合。
@wei 就是,其他语境下的“的”是一种语音形式,这个语境下的“的”是另一种语音形式,简直可以认为是两个词,在普通话里合并了。

 

【相关】

【李白之47:深度分析是图不是树,逻辑语义不怕句法交叉】

《泥沙龙笔记:漫谈自动句法分析和树形图表达》

乔氏 X 杠杠理论 以及各式树形图表达法

【语义计算群:句法语义的萝卜与坑】

语义计算沙龙:基本短语是浅层和深层parsing的重要接口》

【李白之20:得字结构的处置及其结构表达】

【李白之29:依存关系图引入短语结构的百利一弊】 

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白之47:深度分析是图不是树,逻辑语义不怕句法交叉】

白:
还是没说交叉的事情:
“他的学习成绩优秀”,要不要管“他”和“学习”之间的关联?
管了就不是树。不管,差了点什么。

李:
好,现在说交叉。

交叉在语言学课上是一个常讨论的话题。基本上语言系统的部件有一个大体的层次:词典、词法、句法、语义等。这些部件是有一个宏观层次和优先次序的,这个没问题。交叉出现在一个层次的东西,有时候想跳到另一个层次去。说白了就是,交叉就是违反了部门独立性原则。部件的层次架构是原则性的东西,通常不该违反。但自然语言的复杂性就在,有了原则,偏偏有人要违反,那么系统作为一个制度,就必须有一个应对。

“他的学习成绩优秀”:学习成绩 是词法,合成词。“他-学习”是逻辑主谓。“他”作为句法单位,硬要钻进词法(“学习成绩”)内部,这样才能构成完整的逻辑语义全图(graph, 不是严格意义的树!),才能说达成了语言理解。这就是交叉的现象。作为原则,句法词法是隔离的,语言学理论里面给这些原则起了不同的名字和术语,且不管它。总之是,句法单位没有道理进入词法。词法出来的词是句法的最小单位(atomic),所以对于句法,合成词就是一个黑箱子。论句法功能,合成词与非合成词,完全一样。但是逻辑语义不管这一套。逻辑语义是超越语言学句法词法的术语语层次的东西。交叉出现在,我们在句法关系与逻辑语义关系的表达(representation)中,为图方便或其他原因,硬要把它们归拢到一起。

白:
事情可以完全不这么处理。如果秉持句法管谁跟谁有二元关系、语义管是什么二元关系,那么一切不合语义这双脚的句法鞋子都可以动。交叉是自然语言语义表达的客观需要,因此一定会在句法中得到反映。在技术处理上,二元关系的发生位置相对于构成二元关系的词的本源位置可以有所差异或者说变化。二元关系并没有探入词法内部,而是词法本身完成了对外接口的乾坤大挪移。比如,“学习”和“成绩”结合的时候,承认“成绩”是head,同时就把自己的残坑过继给了head,也就是说,“他”找这个“学习”留下的残坑,不是找“学习”要,而是找“成绩”要,这样就消解了交叉问题。

李:
乾坤大挪移应对的是POS约束, 如何应对语义约束:
“他”与“学习”是语义和谐的,“他”与“成绩”没有同样的相谐性(当然,“成绩”也要求 【human】,但那是另一种二元关系的相谐,属于赶巧了,不是原来的主谓关系的相谐要求)。

白:
过继的时候把subcat也一并带过去,不存在这个问题。

李:
操作上不宜、不易。不宜是因为,两个subcats混杂了,“成绩”原本的本体概念与过继来的本体概念,混在一起了。

白:
我们检查相谐性看的是单子singleton。学习的一个坑有human这个subcat,这个坑过继给成绩,只是位置上过继,但是subcat并没减少或改变。

李:
不易是,一个词的本体概念及其背后的常识,是这个词的灵魂,词形不过是躯壳,没有道理轻易出卖灵魂,哪怕出卖对象是你的老板。

白:
不是这样。中心词既然负载结构就必须包容结构。不是向老板出卖灵魂,而是老板包容了你的灵魂。

李:
那就具体说说,这个灵魂怎么转移的(出卖还是包容)。“他”是【human】, “学习”是【huam-action】, 因此“他”与“学习”是(逻辑)主谓相谐的。注意,这里已经把问题简化了:[human] 只是一个相谐的代表或标志,其实主谓相谐包含各种强搭配弱搭配。也许有一个逻辑主语要求的是一个非常细线条的语义类别,不是简单的一个【human】这种层次的类别就可以包揽。

白:
成绩是【action-information】,学习成绩是【human-information】,
perfect。这又要说到unification。

李:
说具体点。action-information,怎么就表达成了 human-information,是一个本体概念节点 还是两个本体概念节点(的混合)?

白:
相谐不是两组符号字面相等。类型演算啊。 输出是information没变,输入变了,级联的整体效果。是输入human,输出information。没有类型演算的ontology,干不了这个。

李:
当“成绩”遇到“学习”,在合成词形成的时候
input is: V(human-action) + N(information) / human-action
output is ??

human-action 的坑满足了,填进去以后,这个头词“成绩”怎么过继,类型演算的结果形态是什么?从道理上,修饰语不能改变头词的本性。因此“成绩”仍然是information, 而不是human-action,尽管它吃掉了 human-action。

白:
不改变输出,改变了输入。

李:
改变了对subcat 的输入要求?

白:
学习是event(human), 成绩是information(event), 学习成绩是information(human)。

李:
我拿放大镜看看这个乾坤大转移。先下线。貌似形式化演算中规中矩。但如果subcat不是那么单纯,如果是强搭配 直接量呢?也可以大转移?

白:
游泳?当然可以。这类,泳就是action,游就是commit,所以,不需要出卖灵魂,老板会包容你的。这是subcat之间的类型演算,完全是结构制导的,残坑挪移后,位置已经没有交叉。语义那边不存在与挪移有任何违和感的东西。没有“不宜”。至于“不易”,说实话还真是有一点点小门槛的。commit太虚,简直就是可以穿透的: commit(action)=action

李:
明白了:过继的是句型信息(对坑的要求,SUBCAT),不是本体全部。

问题过继不是目的,目的还是要建立“他-学习”的主谓关系。而不是“他-学习成绩”的主谓关系,后者不make sense。换句话说,过继了input的要求,逻辑语义output却不能转移,不能张冠李戴。

白:
来源还在,并不因为挪移而抹杀。过继是现状不是历史。

李:
还是有个机制要“进入”词法,才能联系逻辑。

白:
纯二元关系看,交叉是真实发生了的。

李:
好,有理由认为总有办法最终搞定“他-学习”的逻辑语义的二元直接联系,从句法进入词法。

白:
从词负载结构的观点看,交叉这一页可以顺利翻过去,仅此而已

李:
交叉不是关键。

白:

李:
这只是一个帽子,扣帽子可以用,实际不必理他。作为语言学(内)原则,有其合理之处,因为语言学总体或主体是形式层面的理论。但逻辑层面,这个不算啥。

白:
句法不拉语义后腿,句法也不违背所谓的原则,两全其美了。关键是,挪移有了语言学上合理的解释,不仅仅是头疼医头,见招拆招。

李:
第二个相关问题是:刚才所说的演算(SUBCAT坑的挪移或过继)是典型的符号逻辑,
而不是大数据中间件的相谐性的查询。我们可以在符号逻辑操作中,把对坑的【human】要求挪过来,但是我们如何在语义中间件查询中去check非符号的条件。譬如:“他 - 学习” 如果是句法的直接二元关系,我们很容易查询中间件它们是否相谐,而不管这种相谐的符号表示是【human】还是直接量(强搭配)。但是,当“学习”淹没在“学习成绩”的组合里面,如何一致地调用大数据的相谐呢?

白:
subcat有两个作用,一个反作用于句法,辅助做出逆向选择;另一个衔接语义落地。大数据也辅助做出逆向选择,甚至大数据就是用带subcat标记的词典训练出来的。但是语义落地不可以没有subcat,只有好subcat或坏subcat之分。我们不对语料做标注,但不等于不使用带标注的词典。相谐性是原本二元关系的相谐性,不是跟stepmother的相谐性。

李:
可以想见的是: in “NP + de + V + N”, the unsaturated subject of V will still try to be paired with NP in checking the middleware based on big data even if V is eaten up by NP.

subcat 句型的原始的完整内容其实很丰富,不是简单的 vi, vt, 等可以涵盖的
从input这面,它规定了:(1)几个坑;(2)坑在哪里(位置和词序);(3)坑的句法形式(包括直接量);(4)坑的语义约束(【human】等)
从output这边,它把每一个按照上述规定的坑,都map到确定的逻语义角色去,是为语义落地。这样一套丰富的内容,在“他的学习成绩”这样的坑过继的机制中,直感上难以面面俱到。

白:
我得睡了,明天一天的会。

李:
晚安。
SUBCAT是半部语言学,而且外接语义,谈不尽的焦点话题。已经谈了n次了,还可以谈多次。

白:
坑,一经产生,就是一个独立的存在,subcat的归属是终身的,不依母体的萝卜去哪儿了为转移,也不依自身的结合位置被挪移到何处为转移。还是拿“王冕死了父亲”为例。从语义角度看,“父亲”挖了一个subcat类型为human的坑,同时对外提供一个subcat类型为human的萝卜。“死了”挖了一个subcat类型为human的坑,对外提供一个subcat类型为event的萝卜。当“父亲”和“死了”结合,“死了”的坑饱和了,“父亲”的坑还亏欠着,那么“死了父亲”这个短语作为一个整体,就还有一个subcat为human的坑对外亏欠着。“死了”既然全权代表这个短语,当然也就继承了这个短语内部对外的一切债务,于是这个亏欠的human坑,就过继到了“死了”的头上。外面的萝卜(王冕)必须找这个“死了”填坑,“死了”自身亲生的坑虽然饱和了,但是对“父亲”过继来的坑却必须负责到底。我们在句法层面,用N S/N +S N/N这个序列,很清晰地实现了结构制导。

李:
“父亲”挖了一个subcat类型为human的坑,同时对外提供一个subcat类型为human的萝卜,后者(萝卜)是本体概念,前者(坑)是句型预期。

白:
句法和语义是同步的。“了”这类萝卜皮的语义作用机制暂略,后续再说。

李:
所以 / 后面是坑,也就是 arg, +是 mod,随机的被吃掉的对象。+S就是被事件谓词S吃掉的东西。这个coding里面不包括词序?
还是没看清“死了”的逻辑主语 怎么从“王冕”转成了“父亲”。从左向右parse ,先跳进坑的是“王冕”。parse 到“父亲”的时候,S 没坑了。按照常规,这个萝卜应该降格,譬如 降格成“化外的”称呼语:王冕死了,父亲。

白:
这涉及到算符优先机制。总的说就是,单坑的动词,右侧填坑比左侧填坑优先。
“台上坐着主席团”,也类似。

李:
有理。
走了很多能人。

白:
甚至也包括形容词:春风又绿江南岸,宁可“春风”先shift,保证“江南岸”优先填“绿”的坑。

李:
这个结构制导清楚了。请教一下:根据规定的优先次序(parsing算法),在萝卜跳进坑的时候,查还是不查语义中间件?如果没有其他的竞争者,就不查了吧?就是说 human 这种东西在与N/N 或S/N结合的时候,有没有用到?也就是在决定第一个NP“王冕”是 shift 还是跳坑的时候,要不要查左边的NP“王冕”与右边的NP“父亲”,看二者的力量对比?还是不管三七二十一,就是右填坑优先。当然在这句,即便查也是力量相当。但是应该会有力量悬殊的情形,这时候右优先的决定是不是就会受到调整改变。

(1a)中文切词作为领域早已终结。
(1b)G教授终结了中文切词。

(2a)门开了
(2b)开了门
(2c)张三开了门
(2d)门张三开了。
(2e)张三门开了就驱车离去。
(2f)张三门开了就闯进来。

最后一句(2f)谁开的门?不知道。开门者不大可能是张三自己。但在“张三门开了就驱车离去”中,开门的一般认为就是张三本人。

白:
“作为”是带坑的后置定语+N/N.  “终结”如果是单坑,“中文分词”填坑恰如其分。如果是双坑,两边都有位置。“开”是双坑无疑。“就”这里涉及到合并(merge)操作的指向问题。如果按default,标配的指向是右边合并到左边。但是在有特殊标记的情况下(比如被副词“就”修饰)就反其道而行之,左边合并到右边。算符优先机制会让右边所带的坑优先选择萝卜。也就是说,先保证“闯进来”的是张三,谁开的门,可以不care。

 

【相关】

《泥沙龙笔记:漫谈自动句法分析和树形图表达》

乔氏 X 杠杠理论 以及各式树形图表达法

【语义计算群:句法语义的萝卜与坑】

语义计算沙龙:基本短语是浅层和深层parsing的重要接口》

【李白之29:依存关系图引入短语结构的百利一弊】 

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白宋53:聪明的一休与睿智的立委】

宋:
“禁止违规游泳”(1)凡游泳皆违规,禁止游泳。(估计这是标语牌的本意)(2)游泳还是可以的,但不得违反相关规定。(相关规定是什么,并不知道)

蕫:
宋老师,是的,应该是’在此处游泳均属违规”。我还见过“禁止野浴”。

李:
“禁止违规游泳”这个问题蛮典型 就是修饰语的限定性还是非限定性的问题。所有游泳违规 均在禁止之列,这个解读是非限定性的。限定性的有:

“欢迎持照游泳 禁止违规游泳。”

“以下游泳行为一律视为违规 本游泳池有权禁止入内或强制驱逐:
1 不穿泳裤者:便裤 普通内裤不得入内。裸泳绝对禁止。
2 传染病患者
3 无会员证者”

汉语句法 前修饰语默认为限定性。就是说 有修饰语 集合就变小了 成了原概念的真子集。而非限定的修饰语解读属于例外,是值得具体研究的现象。

白:
“聪明的一休”,还有不聪明的一休木有?

李:
聪明的一休很典型。再如 吾党的伟光正:伟大光荣正确的某某党。语言学认为默认为限定,吾党认为是非限定。这是自封的本性 不改变集合的外延。如果抠字眼,可以说:
“伟光正的党万岁 不伟光正的党必亡。” 搁在文革,这就是恶毒的反标,现行反革命,要坐牢的。

如果非限定性有句法形式的区分手段 那就好说。譬如英语非限定定语从句,前面加逗号 不允许用 that 作为连接小词。这些都是句法形式的规定 与语义相呼应:

限定: “I like the guy that just won the Math Olympic modal ”
非限定: “I like the guy, who just won the Math Olympic modal ”
==  “I like the guy, and he just won the Math Olympic modal ”

但是如果没有形式区分 就是一个特别值得探究的现象 究竟是如何出现的 什么因素决定了非限定。我觉得非限定修饰语的产生就是语言表达的偷懒,或discourse意义上的降格。偷懒表现在 本来应该是独立子句表达的语义 被凝缩或降格为前一句内部的修饰语了,做了小三,但表达的却是原配。除了偷懒 造成可能的困惑外 还有轻视或侮慢原来语义 顺带一提的语用或风格的因素。

白:
这个和反事实条件句有得一拼。汉语不太看重程序正义,如果你知我知没有不聪明的一休,那聪明的一休就是非限定的。

李:
“朦胧的月光”,是非限定。“火热的太阳”,却是限定性的,因为“惨淡的太阳”、“昏黄的太阳”也是存在的。”Stupid me”, 这个是非限定的。 它等价于 “I m stupid”, 虽然严格说 我应该也有 intelligent 的时候。逻辑与语言的不一致就在这儿。

白:
哲学上较真儿起来,没有绝对的同一性。上一分钟stupid,这一分钟不stupid完全可能。所以非限定就是一主观的“锁定”。让你不游动,定格在某个特定的属性上。

李:
对。
可是怎么在说者与听者之间达成这个锁定,使得理解无误呢。“伟光正”的锁定是洗脑的结果。“聪明的一休”在狭窄的domain,是新造的脸谱化人物,也是绑架的。“美丽的西施”是历史的共识,还有 “睿智的诸葛亮”。如果说 “睿智的立委”,那就是恭维 拍马 或 嘲讽了,虽然也是锁定,因为说这句话的时候 是没有假设存在一个愚笨的立委 作为对照的。但是,可以说:“睿智的立法委员肯定不会投票赞成这个法案的,少数愚蠢的立法委员除外。” 这就是限定性了 。当然,立委与立委不同,专有名词从集合论上说只是一个元素,排除时间维度可能的变化以后,这个元素是不可割裂的。普通名词常表示类别,所指是一个集合,于是给子集的限定性留下了余地。

白:
先有脸谱,锁定才成为可能。与脸谱不符,那是高级黑。

李:
这里 脸谱 就是英语的 stereotype,带有默认属性的实体,当默认属性成为修饰语 那就是非限定。默认以外的属性作为修饰语, 就是限定性 因为这增加了信息量。伟光正的信息量为零。作为修饰语 不是为了传达信息,而是为了宣传或气势压人。把默认属性提出来作为修饰语虽然没有增加信息量,但可能有强调或比照的语用效果。如果我们知道隔壁老张是个矮个子,然后说:“小个子的老张摔跤大赛中得了冠军”,这个已知内容的非限定性修饰语加强了意外成就的效果:see,大家都知道老张是个小个子,可是他虽然个子小,本应处于不利,他却赢了。

宋:
一般情况下,对于个体的修饰,通常是描述性的。对于多个体的集合的修饰,就有两种解读了。刚才说的是定语。如果是状语,则往往是描述性而非限定性的,因为通常是叙述一个特定的时刻特定对象发生的行为。如“他违规使用电器”。但是,在“禁止”、“提倡”、“要求”这类语境中,状语往往是限定性的。

白:
刚转了一篇关于陆奇的采访,用的称呼是“微软最有权势的华人”。且不说他是不是适合这顶帽子,这里涉及到定语的限定性用法和非限定性用法。如果中心语是集合,那么定语可以筛出一个子集。如果定语是一个个体,it depends。

“原来的我”,实际上把一个个体在时间维度上分片了,筛出一个时间段。而“聪明的一休”则根本没有任何限定。“假马克思主义者”则针对原来的集合在其外面构造了个集合。

李:
这个限定还是非限定的问题 在做 sentiment 时候挑战可大了。选定的定语有褒贬的话 对于被限定的实体 是直接影响。非限定则不然 根本就不存在褒贬评价 只是把对象用褒贬的维度 做了客观的分类说明而已。可惜二者的形式区分很微妙 不好区分。“道德败坏的四人帮” 是贬四人帮,”道德败坏的人 是环境使然 还是也有遗传因素呢 仍然有争议” 谈的不过是人类的一种,是在“人”这个集合里面限定一个子类,语义议论,并非针对“人”做否定性的价值判断。

白:
“道德败坏的人”两个意思。限定用法,指人类中道德败坏的那部分。非限定用法,指人这个物种就具有道德败坏的属性。

梁:
白老师是说,限定性把概念的外延限定变小了。“聪明的一休”没有”限定“一休,只是说一休有”聪明“的属性。

白:
是啊,正是。所以“丑陋的中国人”其实也有歧义的,只不过作者毫不隐讳他说的就是非限定性的意思。

宋:
英语的关系从句也有这两种(全体元素具有该属性,或抽取出具有该属性的那一部分元素),它们的区分有无形式标记?

白:
感觉:1、后置定语往往是限定性的;2。分词做定语往往是限定性的;3、有定形式(比如受定冠词管辖)往往是非限定性的。

我:
限定 非限定可讨厌了,有没有形式痕迹?有,英语中,我们尝试发现蛛丝马迹,也的确发现一些,类似白老师说的。但是非常微妙,稍不留神就 overkill,这个问题对 sentiment 非常重要,除非牺牲 recall,对定语一律不抓。如果想要那个 recall,precision 就会影响,如果这个问题不细心的话。烦死啦。

利用句法和pattern 都这么难缠,没有结构帮助,这个 sentiment 怎么弄,是不是就是瞎蒙。By the way, 英语中的术语 限定性(restrictive)与非限定性 似乎正好与白老师说的意思相反。教科书上,英语中最典型的区别和说法是,限定性定语从句前面不能有逗号,用 that 或 who、which,非限定性定语从句有逗号,不能用 that。因此,非限定性定语从句与另起一句差不多,是对NP的整体做进一步讲解,而不是对 NP 做限定性分类。但实际的情形复杂多了,这与 NP 是不是专名,NP 前面是定冠词还是不定,是不是复数,等等微妙条件的组合效应有关。

Case by case,人大致可以判断是哪一类,或是是不是歧义(或两类都有),但从这些语感中总结出一组可靠的条件,颇费功夫,要不断到数据去求证,才逐渐感觉有个眉目,这里面结构是必需但不是充分的因素(没有结构,是不是定语都不见得摸得门,就更甭提区分两种定语了)。应该算 NLP 难点之一。看哪家系统,用什么招,可以成熟一些。迄今所见所闻的学习出来的 sentiment 系统,对这个挑战似乎束手无策。

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白之43:谈谈绑定和回指】

白:

him为啥指he而不是the police officer?按照“最近提及原则”,the police officer在栈顶,“he”在次栈顶。但,语境(图片)表明,“he”在牢狱中,事理指向出狱(go)。事理决定了police officer可以决定he是否go,bribe可以左右police officer的决定。这些事理指向,一旦达到边界强度,可以压制最近提及原则的标配结果。

李:
“He bribed the police officer to let him go” is like “He requested the officer to find him”. “him” cannot refer to “the officer”, it has to be somebody else, either “He” or someone else.

cf: “He requested the officer to find himself”

“himself” refers to “the officer”.

白老师的道理是说语境(事理)可以突破 heuristic。凡是 heuristic 都只是一种趋向,一种原则,也都有例外,都有被其他因素override 的可能。这个道理是对的。但这个案例,却不需要语境出场,这是句法绑定(binding)本身就决定了的。

“bribe” 的subcat 是:bribe sb to do sth, so “sb” is the (logical) subject of “to do”,
the object of “to do” cannot refer back to the subject unless “self” is used following the Binding Theory.  So in the coreference list, “the police officer” is not even registered as a possible candidate.

句法就排除了这种可能,因此也就没有什么就近原则与语境发生冲突的故事了。这是乔姆斯基的绑定理论的一个典型表现。不确定绑定的是谁,而是确定不能绑定的是谁。

白:
穿透了

李:
显示了句法的有限但是有效的作用。

“She bribed the police officer to let him go”, now the subject is “She”, still “him” cannot refer to “the police officer”. It has to be somebody else.

白:
him就是第三者,非反身性。

“John asked Bob to wash himself.”
“John promised Bob to wash himself.”

当年德国老师讲过这两个例子

李:
right.
this diff lies in the diff in subcat patterns. “promise” is not associated with the standard subcat “promise sb to do sth” when “sb” is the logical subjecct of “to do”, it is instead associated with another subcat “promise to sb to do sth” when the logical subject of “to do” is the same as the subject of “promise”.

所以句型不仅仅是形式序列: Input 形式背后作为output的逻辑语义也是句型的一个必要成分。上述两个形式相同的序列,在句型上被认为是两个。分别用不同的subcats 在词典里面标识。可见,subcat 虽然是一个句法范畴,里面却藏着通向语义的钥匙。

语言学里的subcat 差不多是大半部句法了,是极为重要的概念。词典主义被公认为最有效的自然语言策略就是基于subcat。这是语言学隐性形式手段的最漂亮的体现,是上帝的杰作。

白:
“我答应你离开他”,“我要求你离开他”。前者是“我”离开,后者是“你”离开。在“答应”和“离开”进行“合并”操作的时候,“离开”没有饱和的坑向“答应”的逻辑主语开放复用。在“要求”和“离开”进行“合并”操作的时候,“离开”没有饱和的坑向“要求”的逻辑宾语开放复用。这种在合并时可以对复用指向提出要求的禀赋,潜藏在词典里。平时看不见,合并时露峥嵘。

李:
正是。这是语言(学)的奇妙。由于subcat是一种词典分类或标注,是隐性形式,这似乎是创造语言的上帝给人类理解语言出了一个小小的难题。在人类(语言学家)没有发现subcat或自主利用subcat机制之前,语言处理注定是混沌的、粗线条的。但无论发现还是没发现,人类千百年来一直在潜意识里利用它,无障碍地交流。

白:
“面包我答应你吃掉了,牛奶你就别逼我喝了。” 即使填后面动词坑的萝卜移位到前面,这个关系依然成立。即使“你吃掉了”这么天衣无缝也不许结合。

李:
这个句子很妙。

白:
binding在汉语里会有更广阔的发挥空间,而且和“词负载结构”的理念是如此之契合。残坑就是一种变相的指代。

李:
但是,coreference主体是discourse范畴,binding不过是想利用句法提供一点帮助,它还是局限于句法本身的范围,句内。句内能搞定的只有self, 句内不能搞定但是可以排除句内candidate的,句法也有一些助益。再多,binding 就无能为力了。Coreference在 binding 之外,仍然有很多 discourse 的挑战。是一个公认的 NLP 难题了。

白:
“你我不允许走,他么可以商量。”—如果后面的动词是不及物的,即使逻辑宾语提前了仍然受到与在原位同样的约束。

李:
什么约束?

白:
走的不是我,虽然离得近。

“一个嫌犯我们也不允许放过”,“我们”似乎要通吃呀…… 难道“允许”是个双性恋?

李:
句型纠缠? 一个也不 Vt == 一个也不【被】Vt
“一个也不(被)买”,“一个嫌犯也不(被)放过。”

“一个嫌犯我们也不允许放过”
==“我们不允许放过一个嫌犯”
== “我们不允许【human】放过一个嫌犯”
== “我们不允许一个嫌犯(被)放过”

这个【human】是谁,不知道,也不必知道。这是一种命令,常识上这个【human】可以是任何人(在domain里可能指某些“手下”)。任何人也就可以包括“我们”自己,但这不是严格的回指,而是包含。

“我们也不允许自己或任何其他人放过一个嫌犯。”
“我们也不允许任何人包括我们自己放过一个嫌犯。”

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白之42:谈谈工具格的语言形式】

白:

“张三踢李四的两脚李四一直惦记着啥时候提回来呢。”

如果“两脚”填的不是标配的坑,这定语从句的反填就成了问题。目前我是把“两脚”这种动量词先处理成N,再升格成为+S,可以理解为一个自带宾语的虚拟后置修饰语。当对“两脚”使用定语从句修饰的时候,可以认为自带的宾语“两脚”与作为其母体的虚拟后置修饰语进行了某种分离:虚拟后置修饰语“+S/N”留在了定语从句内部,而它自带的宾语“N”则被甩到定语从句的外边,被修饰且可以反填残坑“/N”。同理,在“武松打死老虎的那三拳力道大得惊人”中,“三拳”也填不了“打”的标配的坑,只能理解为自带宾语的前置虚拟修饰成分(“打死”已经是述补结构不再能后置只修饰“打”的动量修饰成分,从而必须往“打”前面放)S+/N和动量结构N分离了。就是说,被定语从句修饰的动量词N,无法简单地升格为+S或S+,而必须要还原出一个带宾语坑虚拟修饰语+S/N或S+/N,把它推入定语从句。这恰恰才是N升格为+S或S+的本质。如果不是反填定语从句的要求苦苦相逼,这个本质差点儿被掩盖了。可以理解为先有“武松(凭借)三拳打死老虎”,而后有“武松(凭借)打死老虎的那三拳”,最后变成了“武松打死老虎的那三拳”。

说到“凭借”,想到了“借以”。后者是中间抽空了介词宾语的合成词。“武松借以打死老虎的那三拳”是“武松借(那三拳)以打死老虎”的定语从句形式。反填的坑,就在“借”和“以”之间。

李:
工具格,或 所凭借。

白:
有的时候,这个坑会显性化,“借之以”。
砍、剁、刺、砸等动作,工具格是标配。打、抢,工具格不是标配。非标配又不显性带介词的工具格,必须借升格处理之。

李:
工具格有搭配性与非搭配性两种:搭配性工具 因为其搭配 常常省略显性小词 如“凭借”、“用” 等。“打 两拳” 是搭配,“两拳”是工具。“用板凳 打”,则是非搭配性工具。

白:
“他抢银行的那把玩具枪”
意思是“他(用以)抢银行的那把玩具枪”

李:
“他抢银行的那个案底”

白:
“案底”是N/X,不需要反填,是动词填X。

李:
“他抢银行的那个同伙”

白:
“同伙”是N/N

李:

“他抢银行的那幢大楼”
“他抢银行的那个时间”
“他抢银行的那个缘由”
“他抢银行的那个后果”

白:
缘由、后果也是N/X。大楼、时间不是,但内置虚拟修饰语。必要时就分离出来,塞回定语从句。同伙、缘由、后果、案底,都带坑。时间、大楼、动量,则是内置一个随时可以分离的坑。或者叫虚拟小词。

李:
“他抢银行的那个x”
对于非搭配性(标配)的工具,也分为两种,一种是这个实体本身具有比较典型和普适的工具性。算是一个名词子类吧。另一个是不在这个子类的名词。对于后者 如果想表达工具这个逻辑语义,就必须用小词。否则它就没有证据或痕迹显示自己的工具角色。“他用希特勒主义去抢银行”。这个 “用” 不能省。因为 “希特勒主义” 第一不与 “抢银行” 有搭配,第二它自己也不属于工具子类。语言必须要用显性形式,譬如次动词“用”,或者俄语的工具格的词尾形式,来标记其逻辑语义,否则心里的语义无以传达。

白:
“抢银行”换成“治理国家”,“用”就可以省了。

李:
那是因为 “主义” 与 “治理” 有某种搭配的呼应。

白:
且不说逻辑语义,统计就支持这样的搭配

李:
没有统计的搭配不存在 除非说的不是大数据。

白:
不说“主义”,就说“那一套”,也可以省掉“用”,因为“希特勒”已经是足够强的搭配因素了。

李:
“他用那一套糊弄谁呀”
“是啊 那一套糊弄谁呀”

白:
“那一套”隐含“方法/无形工具”
所以,对于从名词反推虚拟修饰语的“升格-分离-反填”机制,形式规则只提供可能性,统计搭配才提供现实性。

上面说错了,“升格”都应改为“降格”。降格虽是普适的机制,但只能紧邻被修饰语使用。分离是受统计显著性搭配条件才激活的,只有成功分离,才能在后续纳入正常的反填渠道处理。

被定语从句修饰的中心语,N/N与N/X的区别。前者从N栈依次寻找搭配的词语填坑。后者从N和S混合栈里的依次寻找搭配的词语。二者都服从“最近提及原则(last mentioned principle)”,但针对的栈不同。因为都在定语从句辖域内,这些填坑的萝卜都是使用的免费额度,无论S还是N。

李:
在我的体系里,arg 降格为 mod,【工具主语】 降格为 【工具状语】。如果 topic 是人,subject 是工具,topic 可升格为逻辑主语 arg,工具 subject 则降格为状语 mod. “他一巴掌打了她”,“他”是逻辑主语,“一巴掌”是工具状语。

总之,逻辑语义虽然放之四海而皆准,自然语言却老在升格降格、显性隐性形式中变化多端。语言世界因此诡异而多彩。

白:
话头是宋老师“达成的一致”引发的。“一致”在宋老师的例子里确实是“升格”,但后续关于动量词的例子里,讨论的都是“降格”。N+到N、S+到S是升格;N、S到N+、S+或+N、+S是降格。一个是萝卜皮变成萝卜,一个是萝卜变成萝卜皮。

李:
“达成的一致” 就是 “洗的澡”

白:
?学的习
?高的考

李:
不好
有如 * “浏的览”

白:
洗的澡是自指,达成的一致是转指。

?收获的丰硕
?贪污的巨额

最后一个接近于能说。

取得的圆满

这个就完全没问题了。“圆满”基本可以类比宋老师例子里的“一致”。

赶过的时髦

“时髦”比“圆满、一致”还顺溜。几乎不是临时借用N而是固化的N了。

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

《李白毛55: 漫谈中文NLP和数据流》

立委按:谈笑有鸿儒,泥沙龙写照也。毛白李三剑客,隔洋神交,日颠夜倒,天马行空,人生快事也。语言理解,人工智慧,软体硬件,万言不离其宗也。铿锵三人行,行迹可存,笔记于此,以飨同仁也。

白: 转:《夏洛特烦恼》我以为主角叫夏洛特 。原来男一号叫夏洛 ;接下来会不会有《郭敬明天见》《周立波很大》《吴奇隆胸记》《王宝强奸案》《郭富城会玩》《井柏然并卵》《黄秋生无可恋》《贾乃亮了》《奥巴马上来》《周润发财了》《权志龙虾壳》《金正恩仇录》。

李: 边界之争。夏洛特是词典一方 特+烦恼 是句法一方 作为一般原则 句法认输。所有的边界之争 你总可以找到一种语境 来支持任何一方,但是实际系统中 还是按原则办事(除非某特定语境出现频率大 而且可以形式化被捕捉作为原则的例外)。“郭敬明” 是词典,“明天”或“明天见”也是词典,词典与词典相争。 谁赢呢?要分不同情形。情形对应的是 heuristics。对于此情形,“明天见” 赢。因为有这么一条 heuristic:最少词数胜出。郭敬/明天见, 算两词。郭敬明/天/见 是三词。更深的理由是 音节数量的匀称的 heuristic:3 1 1 不如 2 3 匀称。

白: 无后坐力炮,经常被读成2 3节奏,按构词法,应该是1 3 1。可否不那么早定输赢,都打到上一层。

李:可,keep ambiguity untouched 的办法 也是一招,不过加大了后去 parsing 的搜索空间 也可能不妙。

白: 上层用Ngram也无所谓。看一个滑动窗口激活一个还是两个词袋。

李: 这就是拼积木,难的积木留在最后拼。拼积木ngram比cfg容易,没有爆炸的问题。

白: 正是。

李: 汉语的节奏对称还是很厉害的,举反例总会有,但是实际中发现,音节数的条件,比起其他的条件(词类、子类、语义分类)往往也很好用、可靠。另外一个相关的体会是排比句式,汉语(包括古汉语)排比句式的使用往往可以把本来占有统计劣势的 parse 变得有效起来。不过,至今没想到利用排比句式帮助消歧的好的实现办法。感觉排比的发现和使用是处于另一层,而且排比的 scope 不好事先确定。

毛: 对于汉语NLP, 二位觉得有什么好书可以推荐?不用很深,科普就行。

李: 我很多年不看书了,还是白老师推荐吧。最好的是白老师正在写的,这个无疑问,但你需要等。汉语 NLP 论文献,80% 谈的是切词,全领域走火入魔了,陷入细枝末节和烦琐哲学,很大程度上非常可惜的一种智力浪费。

毛: 等倒没关系,反正暂时也没时间看。其实我不太会有机会用到这方面的知识了,我这是“朝闻道夕死可也”。尼克,Unix的那些Utility,每个都是基于一个while主循环,这就是lambda的语义。Java8让你有一种简洁的方法来表达这种语义,然后它替你生成这样的循环。

白: 自然语言的语义,也有lambda的份儿。

毛: 是,所以我觉得数据流在 NLP 方面可以发挥一些作用。

白: 表函数、表关系、表部件的词(中点、姐夫、抽屉)都是。需要一个带坑的语义结构去定义。坑,就是约束变元。

李: semantic subcat?  Syntactic subcat specifies the form of roles in a frame,correspondingly, semantic subcat specifies the preferred semantic classes for the expected roles of a frame. 语义 subcat 都是必填的,虽然句法上还是可省略。

白: 坑有必填的和可选的两种。

李:如果加上可选的,那就超出了subcat,而进入 cat 了。因为可选的角色一般针对大类,而必填的才针对子类。

白: 这点商榷一下,时间地点等,往往不是必填的。

李: exactly,时间地点等边缘角色针对的是大类。所有的动作、行为都适用。它们都在时间与空间中存在。而一元谓词,还是二元谓词、三元谓词,甚至零元谓词,这些都是子类的区别。天气动词语义上是零元的,虽然句法上可以加一个:“It” is raining 、“老天”下雨了。世界语最接近逻辑,语义的零元,句法也是零元,就不用加这种无意义的主语:Pluvas。

毛: 我觉得最有前景的可能是并行多路的parsing。就如你们刚才说的“无后座力炮”,如果系统能立马分出两个数据流分支,按不同规则加以解析,然后由高一层的规则判断何者为优,那效率就高了。这在NLP方面不是什么新概念,问题在于能否搭出这么灵活而高效的系统。但是NLP所处理的原料不太可能是世界语的文本呀。

李: 只是说明语义和句法之间既对应,又不完全对应的情形。比较不同语言,这些不对应的部分反映了不同语言的应对策略,这是很有意思的对比。

白: 标签化的表达比函数式的表达,应对非必选的东东就灵活多了。

李: 英语用 it,谁知道这 it 是什么东西?汉语比较具体,用的是“老天”。

白: 相反吧,汉语不说。

李: 汉语也可以不说,“下雨了”。如果不说,那就与世界语一样逻辑了,躶体出境。

白: 不说不是省略,是比省略高明的模糊。

李:  这里不是省略,因为逻辑语义上没有这一元的地位。

白: 语义上就有0元谓词,但是句法上没有地位,于是搞了个貌似省略的充数。

李:”老天“ 直译过去就很可笑:The sky is raining, Mother Nature is raining, or, God is raining?

白: 比it还富有想象力.

高: 像黑格尔说的,Was ist Das.

毛: 可以用函数式的方式来处理标签,把二者结合起来。我相信在NLP这一边已经有了许多很好的概念和方法,问题在于怎样搭出好的系统来高效加以实现。所以数据流应该有用武之地。

李: 语言很有意思,可以从三层来看这种“坑”。Filmore 把这个叫做【格语法】,他写过 “Case for case”,许国璋教授翻的,叫《格辩》,得其神韵,很妙。《格辩》是与乔姆斯基唱对台戏,是反乔派中最有分量的历史文献了,高举的是语义大旗。对NLP有深远的影响。所以,“坑”(case)可以分三层来看。第一级是 morphology case,这是“格”的本来用法,主格、宾格、工具格等等的词尾形式所表达的。第二级是 syntactic case,刻画的是 subcat 对语言形式的条件要求,包括具体语言中每个 Role 的词序、介词等的要求。第三级是 semantic case,刻画的是输出框,这是各语言共同的,又叫深层格,是 Filmore 提出的概念,与乔姆斯基的逻辑形式(logical form)对应。要几个元(格)是由谓词的概念子类决定的,它反映的是自然的关系(可以包括本体常识)。可是每个语言在实现这些深层格的时候,会利用不同的句法或词法的形式,于是穿上了句法或词法的外衣。

毛: 好吧,你们先掐。

白: 毛老,函数式和标签式表达,只有一墙之隔。标签其实就是最高抽象类的里面的“准”全局变量,谁都可以继承来塞点私货。不塞也无妨。

毛: 所以,我认为应该重启五代机的研究。有人说现在神经元网络是六代机了,我认为不对,因为说到底总还是“人工智能机”。

李: AI机只是六代机的一个引擎?

毛: 至少是现在,通过图灵测试是计算机的上限,所以不应该有高于AI机的计算机了。

白: 把RNN、多层FSA、多层词袋这些东东做成硬件就是了。

毛: 神经元系统只是一种计算模型,它也要通过编程在计算机上实现。神经元网络的运转说到底还是程序的执行。

白: FPGA实现就很好,能做成NLP协处理器就更棒了,NPU。

毛: 对是对的,但是如果变化太多,硬件实现就太不经济了。另一方面,如果有很多这样的部件,那么如何灵活高效地加以调度,根据具体情况动态搭出合适的系统,这本身就是个问题,这就又要涉及数据流了。我们平时在碰到困难时说要 “换一个思路”, 实际上就是要换一种数据流。

白: 希望NLP能早日成熟到毛老可以对接上的水平。

毛: 我觉得很可能是反过来的, 搞系统的人何时能搭出适合于NLP的系统,NLP Oriented Systems。 问题是搞系统的人一般都不懂NLP。

白: 是NLP这边说不清楚。回头说格。 “把”在汉语里号称是宾格介词,但是遇到“把我累死了”这种例子,又找不到哪个谓词提供宾格的坑。实际上,“累”是“使累”,是一个使动用法。所以顺序很重要,先使动 ,后宾格,一切OK。先宾格,后使动,北都找不着。

毛: “我累” 怎么解析?

白: 主谓啊。但“我累死你”不是。

毛: 哦。那就是“我使你累死”

白:

虚线框内形成一个虚拟谓词(复合然后缩合而成),对于这个虚线框,“你”貌似它的宾语,所以也获得了使用“把”表示宾格的能力。在句法层面,“使”不见了,“把”却在横行。

毛: 那么这种“使动”的属性就作为标签加在“累”这个词上?

李: “累”和“死” 先合成,然后针对宾格的坑就出来了。“累死”这样的算是合成词,不过这种合成词是 productive 的。

白: 气糊涂,饿疯, 都一样, “忙晕”, “乐坏”.

毛: 累死 应该是 累到死 累到要死的程度 的意思,这个死是补语吧?

白: 是补语,语义上对应一个程度标签,非必选的,所以不算框的正式坑。加标签是随手做,填坑是大动静。所以正规军和游击队,待遇就是不一样。

李: 累死我了 –》 把我累死了。符合正常的位移转换(movement/transformation)方式。【累(V的某种子类)+死】就是一个造词小规则,是产生式合成词的规则。符合这个规则的合成词就带有如下特征:及物,具体说,是使动的及物,并有表示程度的结果(“死”,不是真死)在内。带“把”提前是及物的共性,不用管。只要这个规则成功的时候,subcat 标签加对了,后去就顺理成章,无需特别操作。

毛: 所以呀,面向NLP的系统应该很方便很灵活地让你动态挖个坑,而且是同时挖上好几个坑,可以并行去试试不同的坑。这样才好。

白: “这些馒头把我吃胖了”。这个复杂些,有主有宾,只是虚线框里面拧着,了的时态含义省略了。胖,有一个坑。使和吃,各有两个坑。复合后缩合的虚线框部分,只有两个坑,一主一宾。与“吃”相比,正好颠倒了。所以,这类补语不仅是表程度,而是具体表致使后果的程度。

毛: 期待白老师的科普书早日出来。你的书里会画这些图吗?

白: 会。一个框,本质上就是一个函数定义式,也就是lambda表达式。入矢代表输入(自变量),出矢代表输出(因变量)。复合的时候,正是玩lambda表达式的时候,而且都是带类型的。

毛: 对呀,我在想这些图应该能转化成DAG式的数据流。

白: 每个坑都有类型,譬如,吃,输入类型两个坑分别是有生命、食物,输出类型是事件。

李:对,坑有两个信息:一个是坑本身的类型(what role),一个是坑里面的东西的“格”条件。role 是坑的主人决定的(词典里面的 谓词 subcat 或者规则产出的 谓词 subcat),“格”其实也是  subcat 题中应有之意,规定好的。格是输入匹配条件,roles 是输出事件语义。

毛: 数据流,结合立委的多层 FSA 模型,如果能做成通用的系统,我觉得是个很好的进展。有没有统计过像这样的图大概有多少?(以复盖常用句型为度)

李: 常用句型几十个吧,10-100 的区间。

毛: 哦

李: 看定义的粗细,谓词 subcat 最多只有三元 (所谓 S【V】OC),元里面还可以细分,大体 < 100 可以搞定

毛: 这个就可以用上分层嵌套的方法。

李: 这段对话,毛老、白老师,要我整理出来么?你们定,如果要,我就整理成博文。这次是你们俩主唱,我只是敲边鼓的,纯粹语言学的边鼓。

毛: 那当然好啰,要从尼克提到lambda开始。

白: 没问题啊。

李: 我其实不懂数据流,函数式略懂皮毛。lambda 在学语义学的时候学过一点,但是一直没完全整明白过。

毛: 那是工具性的,NLP本身才是关键。

李: 不过 subcat 在产生式合成词中会有变换,是我在 Morphology 课上学过的,而且学过的案例相当多。复杂案例的变换也不少。白老师的后一个例子是复杂案例之一。语言学家很善于总结这些格框变换的模式。

毛: 尼克最喜欢搞锵锵三人行, 咱就来一下三人行。

李:毛老、白老师,想起一件可能与数据流相关的事来,先写在这里,省得忘了。信息抽取(IE)这个领域刚开创的时候(20年前,由 DARPA 主持推动的 MUC 启动了这个领域,是NLP的实用化努力,非常了不起的一个推动,把NLP从象牙塔拉了出来),主流统计派还没回过味来,因此IE领域中的规则系统并不少,因为规则简单直接好用。其中,规则系统中,比较有影响的是斯坦福研究中心(SRI)推出的所谓 Cascaded FSTs,现在想来就是毛老说的数据流了。虽然后来我领导的小组也一直做多层FSAs,有时也贴上 Cascade 的标签,二者区别是显著的,虽然本质相同。斯坦福做的 Cascaded FSTs(finite state transducers)是把每一层编译的 network 直接用“数据流”串起来的一体化流程,cascade 是编译(或运行?)内部的机制。而我们做的所谓 cascade 就是从外部叠加调用,这是传统软件项目中管式系统(pipeline)的模块化开发,然后在运行的时候,从外部来接口,是大路货的路线。

洪: 看看有没有modern Hadoop实现

李:  总之,昨天我还发懵,搞不清为什么谈多层NLP的时候,毛老非要强调数据流,今天醒过来,原来如此。不过,我个人的感觉是,那种内部数据流的 Cascaded FSTs 后来逐渐淡出视野,一定有它内在的局限或问题。而我走的外部pipeline系统的方法,却得心应手,开花结果了。尽管理论上,数据流的路线应该更容易高效,更容易固化,但是肯定是遇到了什么坎儿过不去。

白:关于数据流,一直感觉NLP涉及的比较细粒度,就算自动机的堆叠或者分层的词袋,仍然粒度过细,一个句子里就可能多次流动,更不要说RNN这种自己转着圈玩的了……把这么细粒度的流动用大数据处理的利器来玩,是不是有点高射炮打蚊子?请毛老指教。但是,自动机堆叠一个实现上重要的架构就是pipelining。底层边吃进输入,边产生阶段性的输出,又变成上一层的输入。这个pipelining的框架如何在系统层面优化实现,很有油水。还有,当数千个自动机协同工作时,它们当中一定有共享的数据结构和计算,如何进行优化,乃至硬件层面的优化,这里面大有文章可做。

毛: 白老师说的对,数据流运用于NLP有许多细节的问题,特别是粒度的问题,还要好好推敲,现在还只是个朦胧的方向。粒度的问题一方面取决于具体的业务逻辑,一方面也跟硬件有密切关系,例如有没有GPU这一点,就对数据流的粒度和形状都会有很大影响。

李: 毛老,这是 SRI 的 work,叫 FASTUS。我在找他们描述 implementation of casaced FSTs 的部分,好像言之不详。以前不求甚解,反正自己已经找到了一条顺风顺水的路子,管人家怎么实现的,用的啥数据流。

毛: 好,谢谢立委。Cascade肯定就是pipelining,这就是一维数据流。

李:这个数据流的概念上没有问题。我是想知道,他们是不是把一个模块的 network 与pipeline 线上的其他 networks 整合成一个 integrated 的 network?我想知道,是不是整个编译全系统,还是像我们一样,每个模块是单单编译,单单调用的?

白: 如果有同步的语义操作,我相信会的。

李: 我的印象是,他们是编译全系统的,所以我们一直承认自己是 external 的 cascade,我们只是外部连接。重点的重点是,里面有一个共同的数据结构,无论 Pipieline 怎么流,不外是对这个数据结构的更新而已。

毛: 所以立委和白老师得要多掐,我就在旁听着,边听边想数据流的事。

李: 唉,还是没看到实现细节,保不定他们所谓的 cascade 与我们的做法一致,不过是利用共同的数据结构作为粘合剂,一个模块一个模块的调用。早年的文献中,最原始最愚蠢的数据结构是 string 进 string 出,然后他们描述怎么在这个一维的string上加各种括号和标签。下一个模块必须在模式匹配的时候要跳过这些人为的括号与标签,才能更新信息,那个愚蠢透顶,不可思议。我还真照文献说的实现过一个prototype,一边做一边骂这帮傻老帽。那个玩意儿根本做不下去,超过两层的处理就焦头烂额了。后来有人(譬如英国著名的NLP平台 GATE)用 XML 作为模块间连接的标准接口,本质上也还是 string,不过是多了一些现成的工具,可以用来 parse 这样的数据成内部结构。当然,在不同系统对接的时候,开发者和使用者是不同的组织,XML 作为标准接口往往是最少扯皮的一种方案,因为内部的数据结构不具有这种传递性。然而对于一个系统内部的各模块,用 XML 做数据传输近乎胡闹。做个 prototype 也许可行,做应用肯定不好。

毛: 立委讲的外部连接和全编译的问题,我理解就是节点间动态局部连接的问题。全编译就是一次性把整个数据流搭好,以后就不变了。所谓外部连接,就是按需要把若干计算节点局部地临时连在一起,灵活可变。当然是后者更好,不过应该是全局框架中的局部变化。我说的要研究怎样根据NLP的特点灵活构筑合适的数据流,就是这个意思。

李: 全局框架的保证就是一个共同的丰富的可扩展的数据结构。只要保证这个数据结构的设计是合理的,一切就好办了。

毛: 昨天群主一声吆喝,立委说话的风格还真的就变了,马雅可夫斯基的调调不见了。

李: 从善如流嘛。
设计一个NLP专项平台,就包括数据结构的设计,NLP语言的设计,该语言的编译和执行,以及数据流流程的配置和优化。这几个环节都是相互联系的,没有丰富的经验根本玩不转。

毛: 在数据流、即函数式程序设计中,不会由多个节点对同一份数据结构进行修改,这就是输入是否immutable和有没有共享变量的问题。不过对于NLP来说这属于实现细节。

李: 为什么不会由多个节点对同一份数据结构进行修改?每个节点都是单向递进的,数据结构因此变得越来越丰富,分析越来越深入,是为 deep parsing。简单的设计允许数据结构信息的增量更新,不允许或者制约了对数据结构的破坏性操作。譬如,推翻一个内部结构,进行重构(因为 patching 的需要)。但是聪明的工程师在实现的时候,不认为破坏一个局部的内部结构有太严重的问题,不过就是实现费劲一点罢了,屁股总是可以擦干净的。所以我说,只有想不到的,没有做不到的,我才不管他内部怎么实现的,只要用起来顺手就好。只有在实现影响了速度的时候,我可以做让步,允许工程师对我的操作做一些限制。

毛: 如果允许,那就有同步等等的问题,不同节点之间就会互相牵制,而且这样的系统是最容易有bug的。而函数式程序设计,其基本的要求就是:每一个计算节点都是数学意义上的函数,都没有副作用,这就要求:1)没有共享变量,2)所有输入都是immutable。把数据流系统设想成一个供水系统,如果水管在一个点上分支,那么在其中的一个分支上投毒,是不会影响另一个分支的。

李: 照这么说,只允许增量式更新是管式系统开发的安全原则?一开始是增量式的,后来是我坚持要多给我一个做 patching 的手段,打破了这个限制。如果不做 patching,我就只剩下一个手段,那就是先扫除例外,后做一般规则。如果允许 patching,我就多了一条路子,先做大路货,然后遇到问题或例外,再做修补。表面上,这两个办法不过就是数据流中个性与共性操作的位置不同而已,但是实践中总是多一条路子,用起来顺手。其实,做破坏性操作,我开始是有担心的,总怕屁股擦不干净。但是,好像还是在可控范围内。

毛: 对,你所说的对工程师们的能力要求,问题就在于那种结构模式本来就是很不可靠的,得要非常高明的人才能对付,所以一般都尽量把同步、互斥这些事情移到操作系统和语言编译器中解决,因为那些都是真正的高手才玩得。但是即使如此,对于复杂的系统,如果不采用函数式即数据流的结构和方法,难度还是很大。

李: 原因可能是,破坏的结构不过是中间的局部结构,还没到要用它的时候,只要最后系统出来的结构是合理的,就似乎没有问题了。

毛: 你挺幸运,手下有几个高明的工程师,要不然恐怕还做不出那么些成果。

李: 因为我是他们的唯一顾客,顾客是上帝。我一直是这么说的。

毛: 端着人的饭碗,就得听人管。

李: 好在我不懂系统,否则可能不敢这么大手大脚。

毛: 但是,这是有限度的,问题再复杂一点,他们可能就会对付不了。这时候就得考虑模式的改变。不走邪路,也不走回头路,咱走正路。

李: 同意这里面有个度。另一方面,系统太漂亮了不顶用。上得厅堂,下得厨房,这个标准对做系统也一样。正路就是厅堂,厨房就是我这样的实用主义,以邓小平思想为指针。

【相关】

【语义计算:李白对话录系列】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【李白之41:Gui冒VP的风险】

白:
“这些国家的统治者必须变革,不然就是在冒被一脚踢开的风险。”
1、“冒……风险”,离合词;
2、“风险”属于“N/S”型的名词,不反填定语从句;
3、“被”由N+升格为N,占“一脚踢开”提供的两个坑中的一个;
4、先行成分“这些国家的统治者”填“一脚踢开”提供的另一个坑。

李:

【冒VP的风险】

汉语离合词 是框式结构之一种,离合词里面的 XP 是啥 离合词本身决定。可以认为是由该词的subcat模板所规定。 这个case里面规定是要 VP。离合词“冒-险”(“冒-之|的 险|风险”)本身也是(动宾式)VP,于是我们赶上了内外两个 VPs:“Gui 冒杀头之险”。Subcat 如是说:

1 Gui 冒险。

2 Gui 杀头: 实际上是被杀头。“杀-头”本身也是离合词 里面应该是要的NP。NP外化就成了句法主语和逻辑宾语,也就是所谓隐式被动:Gui杀头 == Gui被杀头 == 把Gui杀头 == 杀Gui的头 == 对Gui杀头。这才叫语言学,微观语言学, subcat 执导。subcat 是语言个性与共性的接口

3 两个 VPs 之间的关系: 当然也由外面这个离合词“冒-险”来决定。具体说就是,内VP是外VP的同位语,是给外VP填充“冒险”的内容:冒什么险?杀头之险。这个同位语来源于内VP是外VP里宾语的定语这种形式,是随着离合词动态合成为动宾合成词,由宾语的同位语定语,捎带过来的(定语转状语,主子单位是变大了,但mod本性不变)。这个现象是动宾离合词的共性,再如:洗个痛快的澡 == 痛快洗澡.

4 剩下一些句法语义的鸡零狗碎 也仍然是外VP的subcat决定的:包括内VP是非谓语VP,因此不能用句法(或词法)的时体形式,语义上表达的是不定式。至于外VP,它当然是谓语VP, 譬如可以有进行体:“Gui正在冒杀头之险”。

总结一下:subcat 可以有很丰富的内容,很复杂的规定,它连接句法形式(模式s)与其对应的语义。好在 subcat 都是词典词条决定的,所以再复杂琐碎,在词典主义(lexicalist)看来也不难把控。

理论上 subcat 的这种复杂性最好由subcat的复杂特征结构(SUBCATT typed feature structure)来描述。上面举的例子及其相关句法语义的约束及其与逻辑语义的接口,可以非常从容、非常精细地在诸如 HPSG 的复杂特征结构里面透明地表达出来。如果是象牙塔玩符号逻辑,可说是进入了符号逻辑的天国:个性共性 词典grammar, 句法语义 燕舞莺歌,太平世界 同此凉热,在在美景 处处和谐。这就是我以前说的 玩 HPSG 可以入迷的原因。下面给几个HPSG 的复杂特征结构的图示,展现一下其叠床架屋背后的合一(unification)风采:

但我们终究还是抛弃了复杂特征结构,为了线速,为了简略,为了多层,为了模块化和易维护。总之是为了现世的便利,挥别了理想的符号天国。

 

【相关】

【语义计算:李白对话录系列】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

大数据淹没下的冰美人: 喜欢范冰冰的理由

最近两年“忽悠”大数据,常有网友问我:OK,我看到了,热点话题你是可以从大数据中挖掘出一些东东来,做成奇奇怪怪的词云来,蛮唬人的。可这些信息有什么价值?差不多都是我耳闻过的 rumors 。

Good question,说破大天去,挖掘出来的情报如果没有信息量(e.g.人所共知),或者只是进一步传谣,所谓大数据及其挖掘不过是浮云。大数据专家?饶了我吧。不如回家种红薯,或可产生些许价值。But wait,这个问题细究起来,绝对不是简单否定,就可解决的。至少可以从下面几个方面来看:

1. 对象和目的:回顾一下,我们的对象是海量增长的社会媒体大数据,我们的目的是透过这些 人一辈子也无法尽览的大数据,挖掘民意和舆情。这些舆情都是有统计意义的现实存在,而不是存在于个别人头脑里的天才思想,只要挖掘出来的情报具有代表性,这些情报是不是新颖,不影响我们为挖掘所设立的舆情目标。

2. 信息量问题:乍看,挖掘出来的情报都似有所闻,但其实挖掘还是增加了信息的价值。似有所闻并不奇怪,本来就是流传广泛的公共信息(open sources)。所增加的信息在于,作为个体,每个人的所闻都是零碎的,不可能具有大数据挖掘的全面。更重要的是,即便你是一个 人生即网网即人生 的无可救药的网虫,多数挖掘对你都不是新闻,你对这些信息也不可能具有量化的排序能力。就说你是冰美人死心塌地的粉丝,你也不可能给我们列出大众心目中的冰冰小姐随时间曲线的形象消长,也无法量化大家喜欢她或者不喜欢她的种种理由的分布。你也许可以蒙对几项,你绝不可能给出本文给出的结果。这些排序和分布就是附加的新信息。从另一个角度看这个问题,如果 90% 的挖掘结果不具有新闻价值,而只具有印证的意义(但也间接说明大数据挖掘是靠谱的),那也不坏。作为信息消费者,我们会自然把注意力集中到意想不到的情报上去,wow,原来还有这个啊。这些 surprise info 是你不借助大数据深度挖掘工具永远无法看到的信息,它被淹没在数据的海洋中。

3.  挖掘的情报价值:这个话题太大,不同的消费者,政府、企业或个人,可以看到和用到不同的价值,你觉得没有价值的结果,在有心者眼里可能具有决定的意义。一个企业愿意花百万美元去挖掘社煤大数据中的客户情报,他们必然是看到了一般人感觉不到的挖掘价值。手工民意调查的时代即将过去,因为大数据的挖掘会更加多快好省。如果你是范冰冰团队的策划人,下述挖掘对整个团队的市场化努力以及公关策略的调整,应该具有相当的参考价值。

回到冰美人的大数据挖掘来。前面的博文已经展示了舆情概貌,总之是冰小姐现在是如日中天,压倒性地被大众喜爱,甚至迷恋。那么喜欢她的理由呢?先看褒贬云图:

理由千千万,代表性的理由归纳列表如下:

Why like her Mentions
漂亮美艳 …… 6420
霸气 2493
火, 红 1208
范冰冰的胸 686
公益项目 684
时尚女王 446
武媚娘传奇 326
底妆白皙 298
年轻 232
时尚 229
敬业 133
范爷的皮肤 164
 

成功

130
愈挫愈勇 121
低调 121
大方 118
聪明 110
精湛 92
精致 87
合拍 84
成熟 75

我个人的理由也在其列呢:看来不少人与我一样,因为《武媚娘传奇》而喜欢她。我们择其几点,drill down  看看真实数据怎样表达的:

(1) 前两项压倒性的美丽和霸气,是喜欢的最大理由。

自动化所吴同…

范爷霸气

barbiewong

范冰冰靚到

sunnynoe

范冰冰最好看

奢享时光。

范爷好看

@janiceho96  范冰冰好美好美
lingwu01

还是范爷霸气威武

THE_MIST

范冰冰幾靚

奢享时光。F

范冰冰好漂亮

caotiantian9

还是喜欢范爷, 霸气

莫欺少年穷丶楠

范冰冰, 妖艳

(2) 公益项目:原来这条公益项目的新闻大体是同一个来源,被各大网站反复转载,至少说明冰小姐团队做得很成功。

这名字真的无语

12月11日, 吴亦凡参加《我们小区艺体能》“圣诞慈善篮球赛”,慈善赛的收入将在比赛结束后以冠军队的名义捐赠给福利机构, 用于帮助困难居民。 2014年6月, 吴亦凡加入范冰冰公益项目“爱里的心”捐赠队伍, 成为继李嘉诚后第二个捐助的人。

(3) 范冰冰的胸:女星被人评头论足,不足为怪。但范小姐的胸之所以跃升为好评前五,其实有两个原因。

一是冰美人的自身条件的优越(魔鬼身材)以及形象塑造的重点所致,性感女神,是很多人的由衷赞佩。

二是在传统社会与现代化过程的急剧变革时期,她的美胸展示不仅仅是粉丝喜爱的理由,也成为争议的焦点(事实上,后面还会提到,冰美人的胸不仅是喜爱的理由,也是不喜爱的理由,尺度太大,被某些人认为是伤风败俗)。有争议就会有卫护、有赞美:

节奏大师大手子

范冰冰的胸真的好美

野猪

谈谈法制晚报中青网新华社死磕毕福剑与不道德视频的播放 范冰冰的胸没有危害, 有危害的是你龌蹉的思想意识; 毕福剑的嘴没有危害, 有危害的是僵化教条、极端政治的思维方式。

其实,以范冰冰饰演的武媚娘为代表的唐代仕女式的袒胸露背,曾经被广电局严审,视为洪水猛兽,以致片子被勒令重新剪接,曾经引起社会媒体的轩然大波, 编剧李亚玲的痛心评论传遍全网:

烟入眼而落泪

此事件造成了颇为强烈的网络热议。 著名编剧李亚玲做出评论:“《武媚娘传奇》中的胸确实剪掉了! 真没想到21世纪的人会这么保守, 甚至不如千年前的唐人开放。

自由飞翔的鸟人

在停播的四天中, 片方解决了重大技术问题, 紧锣密鼓的将原有画面全部裁成了大头贴, 斥资千万的服装造型只剩下脸上的粉底…… 著名编剧李亚玲就此事做出评论:“《武媚娘传奇》中的胸确实剪掉了! 真没想到21世纪的人会这么保守, 甚至不如千年前的唐人开放。

Unknown

由于播出方湖南卫视在一官方微博中, 对于此次停播给出的“因技术原因”这一理由过于简单, 使网友在一头雾水的同时, 也对相关部门的管理水平提出质疑。 对此, 著名编剧李亚玲做出评论:“《武媚娘传奇》中的胸确实剪掉了! 真没想到21世纪的人会这么保守, 甚至不如千年前的唐人开放。

MJ浮生若梦

昨晚复播的三集中,“武媚娘”和其他众妃子宫女们的胸部镜头全部被剪, 画面仅呈现远景和肩膀以上的近景, 网友纷纷吐槽:“现在一个屏幕全是脸”、“满屏都是大头照”。 著名编剧李亚玲也表达了自己的看法:“《武媚娘传奇》中的胸确实剪掉了! 真没想到21世纪的人会这么保守, 甚至不如千年前的唐人开放。”

光明社区

我一个女性都看不下去了, 还我们原版。” 对此, 著名编剧李亚玲做出评论:“《武媚娘传奇》中的胸确实剪掉了! 真没想到21世纪的人会这么保守, 甚至不如千年前的唐人开放。

(3) 底妆白皙:地球人都明白,冰小姐代表了化妆艺术的巅峰。她的底妆衬托了她形象的明艳绝色。有老友说,我只爱化妆的冰冰。

Unknown

蕾哈娜 (Rihanna) 的阳光感卷发, 与健康的蜜糖棕色皮肤融为一体, 浓密卷翘的假睫毛塑造出迷人电眼。 鱼草网化妆猜你喜欢的文章: 范爷搪瓷底妆白皙胜雪 女星美妆花尽心思 泫雅红唇领衔4minute 秀冷傲别样风情 赵丽颖周冬雨戏内争宠 戏外淡妆拼清纯

503247463

【范冰冰搪瓷底妆白皙胜雪彩妆花尽心思】近日, 电影《一夜惊喜》在北京召开发布会。 主演范冰冰、蒋劲夫、李治廷、导演金依萌出席, 范冰冰当天搪瓷底妆展现如雪的肌肤, 纤长浓密的假睫毛是范爷明亮双眸的利器, 加上丰盈感十足的大波浪卷发, 俨然真实版芭比娃娃

(4)皮肤:光靠化妆是做不了影后的,赞美冰美人除了酥胸外,就是她凝脂般的雪肤了(她的脸相对比之下,则争议较多,有机会可以挖掘展示一下,总之是粉丝视若桃花,爱得要死,但也有横挑鼻子竖挑眼的嫌她面相不正):

博士一年级

范爷的皮肤真好

zahara蕾儿

这时皮肤吸收最好! 范爷的皮肤为什么这么好! 就是每日坚持一片面膜!

Unknown

难怪范爷的皮肤这么棒呢

幻雨不幻风

范爷的皮肤貌似一直都挺好的

ambrosia52

不过范爷的皮肤真心好啊·羡慕! 我都是懒, 嫌麻烦不敷面膜。

糖口香糖

范爷的皮肤真是没话说, 和林志玲有的一拼

关闭

范爷的皮肤真的好好哟, 哇,坚持15年每天用面膜呀, 向她看齐。

十世轮回阴阳间

范爷的皮肤一直都很好, 人家是纯天然的

Unknown

谢霆锋与范冰冰亲密合影 范爷的皮肤白皙细腻 在《锋味》中, 范冰冰真人出镜, 与谢霆锋暧昧互动。

康婕

我想想啊… 高圆圆, 范爷的皮肤不错, 范范也可以, 春哥, AG 虽然是整的· …. 不过他们的黑眼圈

总之,喜欢女星的理由,看来还是以貌取人为主,人之常情。其他品质(敬业、低调、聪明、成熟云云)也有提及,当无法与美胸美肤相比。那么不喜欢的理由呢?大约多与娱乐界的绯闻和流言蜚语有关,这方面挖掘下去近乎传谣了,不太好写,假语村言,点到为止,留待下篇博文拿捏分寸吧。

 

【相关】

【社煤挖掘:大数据女星排行榜】

【社煤挖掘:大数据男神排行榜】

【大数据淹没下的冰美人】的系列博文链接:

大数据淹没下的冰美人(之一)

大数据淹没下的冰美人(之二) 

大数据淹没下的冰美人(之四): 流言蜚语篇(慎入)

中文处理

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

【社煤挖掘:大数据女星排行榜】

Mirror mirror on the wall, who now is the fairest one of all?

自从毛委员开启新中国,半个多世纪以来影视娱乐界历经磨难起伏,如今迎来了百花齐放星光灿烂的黄金时代。被无数粉丝奉为当今中国影视女皇的范冰冰,在众多女星中究竟排名如何?我们让大数据说话,让社会媒体告诉你。

先比较一下据说当今PK范冰冰呼声最高的张馨予。

PK

张馨予天生丽质,比范冰冰更接地气,可惜她饰演的几位角色都是刁毒的坏女人,据说连带她也受牵累。下表是过去27个月社煤大数据挖掘的概览比较:

单看这概览便知,在大家心目中,张馨予还嫩了点,无法挑战范冰冰的影后地位。从人气上看,张小姐还不及范小姐的四分之一;褒贬指标 45% 虽然算是不错的媒体形象了,但也远远不及范冰冰的 62%。粉丝的狂热度也略逊一筹(70 pk 76)。下图是时间曲线。首先是热议度比较,可见出除了 2013 年十月前后,张馨予的热议度陡升外(为什么陡升,等空来细细挖掘看),过去两年多的其余时间均不及冰小姐。

反映媒体形象的褒贬指标(net-sentiment)的曲线表明,范冰冰差不多步步领先张馨予,而且评价度一直比较平稳。张馨予则起伏较大,只在四个时间点短暂超越范冰冰。

下面的情绪指标(passion intensity)也类似,不过两位更加接近(有三个时间点馨予短暂超越冰冰),说明各自都有一批狂热死忠的粉丝,争吵起来不惧激烈。

上述挖掘比较的结果,用我们创造的同时含有人气指标(品牌大小或泡泡的大小来表示),褒贬指标(net sentiment 横轴)和激情指标(passion intensity 纵轴)的多维品牌比较一览图 (Brand Passion Index,BPI) 独特图示如下:

张馨予不在话下,那么其他红星呢?请看:

哈,论人气,范冰冰稳居第一,比第二位的章子怡还要高出一倍。可论受欢迎的程度(褒贬度)这项硬指标,美丽大方接地气的高圆圆才是普罗百姓(也是笔者)心目中真正的无冕之后,高达 74 %,比范小姐高出 12 个点。

网民心目中的真正星后 高圆圆

(可惜的是,我所喜欢的徐静蕾风光不再,逐渐淡出女星圈,步入中年的她已经更多转型为导演了。)

高圆圆 pk 范冰冰是完胜。过去两年多除了几个短暂的时间点,圆圆是一路领先:

范冰冰只能说是话题女王或眼球女王,高圆圆才是网民心目中的真正皇后:

高圆圆为什么具有如此高的口碑成为网民的偶像呢?下面是圆圆的两张云图,可以提供一点insights:

最后把调查的六位当红女星的过去两年多的比较曲线一并提供如下,供大数据爱好者们研究参照:

 

【后记】

《圆冰之战花絮:泥沙龙笔记,核武器封喉篇》

我:
这个需要较真,为大数据正名。自摸、莫衷一是、粉丝之战都是有的,根子都是缺乏大数据的nlp,有了nlp,我们就坐在大数据之上,而不是被数据淹死,看不到真像,无论真像多么残酷。你冰的脑残粉多不多,当然不少,不独你一个,有图为证

大数据淹没下的冰美人(之三): 喜欢的理由

但是,世界上怕就怕大数据nlp和但是二词,与脑残粉一样巨多的是流言蜚语:大数据淹没下的冰美人(之四): 流言蜚语篇(慎入)。而事实上,流言蜚语对你冰的buzz的贡献巨大,你懂的,国人奏好这口。这些都是舆情,但只是舆情的一个片面,大象的耳朵或大腿而已。真正决定舆情的是大数据的褒贬比例(所谓 net sentiment),为此立委洋洋洒洒写了五大篇大数据调查的总结系列,对你冰算是仁至义尽了吧。

请看结论篇: 大数据淹没下的冰美人(之五): 星光灿烂谁为最?

比没文化更可怕的是没核武器。圆冰之战,该结束了吧

 

【大数据淹没下的冰美人】的系列博文链接:

大数据淹没下的冰美人(之一)
大数据淹没下的冰美人(之二)

大数据淹没下的冰美人(之三): 喜欢的理由

大数据淹没下的冰美人(之四): 流言蜚语篇

【置顶:立委博客NLP博文一览】