【语义计算:精灵解语多奇智,不是冤家不上船】

白:
“他分分钟就可以教那些不讲道理的人做人的道理。”

我:

1016a

一路通,直到最后的滑铁卢。
定语从句谓语是“做人”而不是“可以教”,可是定语从句【【可以教。。。的】道理】与 vp定语【【做人的】道理】,这账人是怎么算的?

白:
还记得“那个小集合”吗?sb 教 sb sth,坑已经齐活儿了
“道理”是一般性的,定语是谓词的话一定要隐含全称陈述,不能是所有坑都有萝卜的。当然这也是软性的。只是在比较中不占优而已。单独使用不参与比较就没事:“张三打李四的道理你不懂”就可以,这时意味着“张三打李四背后的逻辑你不懂”。
“他分分钟就可以把一个活人打趴下的道理我实在是琢磨不透。”这似乎可以。

我:
教 至少两个 subcats:
教 sb sth
教 sb todo sth

白:
这个可以有
刚刚看到一个标题起:没有一滴雨会认为自己制造了洪灾。
这个句法关系分析的再清楚,也解释不了标题的语义。

宋:
有意思。

我:
教他
教他做人
教他道理
教他做人的道理
教他的道理
教他做人的往事儿

这个 “道理” 和 “往事”,是属于同一个集合的,我们以前讨论过的那个集合,不参与定语从句成分的 head n。

白:

我:
这个集合里面有子集 是关于 info 的,包括 道理 新闻 公告 往事。。。

白:
但是于“道理”而言,坑不满更显得有抽象度。是没“提取”,但坑不满更顺更优先,因为隐含了全称量词。

我:
就是说 这个集合里面还有 nuances 需要照顾。滑铁卢就在 “教他做人的往事儿” 上,照顾了它 就照顾不了 “做人的道理”。
就事论事 我可以词典化 “做人的道理”,后者有大数据的支持。

白:
这可是能产的语言现象。
试试这个:“你们懂不懂做人要低调的道理?”

我:
我试试 人在外 但电脑带了 只好拍照了

371656522530864097

你们懂不懂道理,这是主干
什么道理?
要低调的道理。
谁要低调?
你们。
懂什么类型的道理?
做人的道理。
谁做人?
你们。
小小的语义计算图谱 ,能回答这么多问题 ,这机器是不是有点牛叉?

白:
图上看,“要低调”是“懂道理”的状语而不是“道理”的定语?

我:
这个是对的,by design。但我们设计vn合成词的时候,我们要求把分离词合成起来。如果 n 带有定语,合成以后就指向 合成词整体。这时候 为了留下一些痕迹,有意在系统内部 保留定语的标签,以区别于其他的动词的状语修饰语。否则,“懂【要低调的】道理” 与 “【要低调的】懂道理”,就无法区分了。这样处理 语义落地有好处 完全是系统内部的对这种现象的约定和协调 system internal。定语 状语 都是修饰语 大类无异。

白:
“做人要低调”是一个整体,被拆解了。逻辑似乎不对。
拆解的问题还没解决:不管x是谁,如果x做人,x就要低调。
两个x是受全称量词管辖的同一个约束变元。
@宋 早上您似乎对“没有一滴雨会认为自己制造了洪灾”这个例子有话要说?

宋:
@白硕 主要是觉得这句话的意思有意思。从语义分析看应该不难,因为这是一种模式:没有NP V。即任何x,若x属于NP,则否定V(x)。

白:
首先这是一个隐喻,雨滴是不会“认为”如何如何的,既然这样用,就要提炼套路,看把雨滴代换成什么:雨滴和洪水的关系,是天上的部分和地上的整体的关系,是无害无责任的个体和有害有责任的整体的关系。

“美国网约车判决给北上广深的启示”

洪:
中土NLP全家福,
烟台开会倾巢出。
语言架桥机辅助,
兵强马壮数据足。

chinanlp
中国nlp全家福啊@wei

白: 哈
李白无暇混贵圈,一擎核弹一拨弦。精灵解语多奇智,不是冤家不上船。

洪:
冤家全都上贼船,李白有事别处赶。天宫迄今无甚关,Alien语言亟需练。

我:
白老师也没去啊 敢情。
黑压压一片 吾道不孤勒。

 

【相关】

【李白对话录:RNN 与语言学算法】

【李白对话录:如何学习和处置“打了一拳”】

【李白对话录:你波你的波,我粒我的粒】

【李白对话录- 从“把手”谈起】

【李白对话录:如何学习和处置“打了一拳”】 

【李白对话录之六:NLP 的Components 及其关系】

乔姆斯基批判

[转载]【白硕 – 穿越乔家大院寻找“毛毛虫”】

泥沙龙笔记:parsing 是引擎的核武器,再论NLP与搜索

泥沙龙笔记:从 sparse data 再论parsing乃是NLP应用的核武器

【立委科普:NLP核武器的奥秘】

【立委科普:语法结构树之美】

【立委科普:语法结构树之美(之二)】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

发布者

liweinlp

立委博士,自然语言处理(NLP)资深架构师,Research Director, Beyond AI.前 Principle Scientist, jd-valley, 主攻深度解析和知识图谱及其应用。Netbase前首席科学家,期间指挥研发了18种语言的理解和应用系统。特别是汉语和英语,具有世界一流的解析(parsing)精度,并且做到鲁棒、线速,scale up to 大数据,语义落地到数据挖掘和问答产品。Cymfony前研发副总,曾荣获第一届问答系统第一名(TREC-8 QA Track),并赢得联邦政府17个小企业创新研究的信息抽取项目(PI for 17 SBIRs)。立委NLP工作的应用方向包括大数据舆情挖掘、客户情报、信息抽取、知识图谱、问答系统、智能助理、语义搜索等等。

发表评论