NLP自选系列:语法结构树之美

弘·扬 | 首席科学家李维科普:语法结构树之美

我们知道,语句呈现的是线性的字符串,而语句 结构却是二维的。我们之所以能够理解语句的意思,是因为我们的大脑语言处理中枢能够把线性语句解构(decode)成二维的结构:语法学家常常用类似下列的上下颠倒的树形图来表达解构的结果(所谓 parsing)。 


上面这个树形图叫作依从关系树形图(dependency tree,常常用来表达词或词组之间的逻辑语义关系,与此对应的还有一种句法树,叫短语结构树 phrase structure tree,更适合表达语句单位之间的边界与层次关系)。直观地说,所谓理解了一句话,其实就是明白了两种意义:(1)节点的意义(词汇意义);(2)节点之间的关系意义(逻辑语义)。

譬如上面这个例子,在我们的自动语句分析中有大小六个节点:【Tonight】 【I】 【am going to enjoy】 【the 【song】 Hero】 【again】,分解为爷爷到孙儿三个层次,其中的逻辑语义是:有一个将来时态的行为【am going to enjoy】,结构上是老爷爷,他有两个亲生儿子,两个远房侄子。长子是其逻辑主语(Actor) 【I】,此子是其逻辑宾语(Undergoer)【the song Hero】,父子三人是语句的主干(主谓宾,叫做 argument structure),构成语句意义的核心。两个远房侄子,一个是表达时间的状语(adverbial)【Tonight】,另一个表达频次的状语(adverbial)【again】。最后,还有一个孙子辈的节点【song】,他是次子的修饰语(modifier,是同位语修饰语),说明【Hero】的类别。

从句法关系角度来看,依从关系遵从一个原则:老子可以有n(n>=0)个儿子(图上用下箭头表示),而儿子只能有一个老子:如果有一个以上的老子,证明有结构歧义,说明语义没有最终确定,语言解构(decoding)没有最终完成。虽然一个老子可以有任意多的下辈传人,其亲生儿子是有数量限制的,一般最多不超过三个,大儿子是主语,次子是宾语,小儿子是补足语。比如在句子 “I gave a book to her” 中,动词 gave 就有三个亲儿子:主语 【I】, 宾语【a book】,补足语 【to her】. 很多动词爷爷只有两个儿子(主语和宾语,譬如 John loves Mary),有的只有一个儿子(主语,譬如 John ran)。至于远房侄子,从结构上是可有可无的,在数量上也是没有限量的。他们的存在随机性很强,表达的是伴随一个行为的边缘意义,譬如时间、地点、原因、结果、条件等等。

自然语言理解(Natural Language Understanding)的关键就是要模拟人的理解机制,研制一套解构系统(parser),输入的是语句,输出的是语法结构树。在这样的结构树的基础上,很多语言应用的奇迹可以出现,譬如信息抽取、自动文摘、智能搜索等。

在结束本文前,再提供几个比较复杂一些的语句实例。我把今天上网看到的一段英文输入给我们研制的parser,其输出的语法结构树如下(未经任何人工编辑,分析难免有小错)。




说明:细心的读者会发现上图的结构树中,有的儿子有两个老子,有的短语之间互为父子,这些都违反了依存关系的原则。其实不然。依存关系的原则针对的是句法关系,而句法后面的逻辑关系有时候与句法关系一致,有时候不一致。不一致的时候就会出现两个老子,一个是与句法关系一致的老子,一个是没有相应的显性句法关系的老子。最典型的情形是所谓的隐性(逻辑)主语或宾语。

譬如第一个图示中的右边那棵结构树(严格地说,这不是树结构了,应该叫做结构图)中,代词「I」就有两个老子:其句法老子是谓语动词「have learned」,它还有一个非谓语动词(ING形式)的隐性的逻辑老子「(From) reading」,也做它的逻辑主语 (who was reading? “I”)。再如第二个图示中的语法结构图中,定语从句的代表动词「were demonstrating」的句法老子是其所修饰的名词短语「students」,但逻辑上该名词短语却是定语从句动词「were demonstrating」的主语(actor)。有些纯粹的句法分析器(parser)只输出句法关系树,而我们研制的parser更进一步,深入到真正的逻辑语义层次。这样的深层分析为自然语言理解提供了更为坚实的基础,因为显性和隐性的关系全部解构,语义更为完整。下面再“秀”两句中文的自动解析的句法树,看着也许更亲切些。

我们每天面对的就是这些树木构成的语言丛林。在我的眼中,它们形态各异,婀娜多姿,变化多端而不离其宗(“语法”)。如果爱因斯坦在时空万物中看到了造物主的美,如果门捷列夫在千姿百态的物质后面看到了元素表的简洁,语言学家则是在千变万化的语言现象中看到了逻辑结构之美。这种美的体验伴随着我们的汗水,鼓励我们为铲平语言壁垒而愚公移山,造福人类。

 

NLP自选系列2020专栏连载

【语义计算:李白对话录系列】

《朝华午拾》总目录

发布者

liweinlp

立委博士,弘玑首席科学家,自然语言处理(NLP)资深架构师。前讯飞AI研究院副院长,研发支持对话的多语言平台,前京东主任科学家, 主攻深度解析和知识图谱及其应用。Netbase前首席科学家,期间指挥研发了18种语言的理解和应用系统。特别是汉语和英语,具有世界一流的解析(parsing)精度,并且做到鲁棒、线速,scale up to 大数据,语义落地到数据挖掘和问答产品。Cymfony前研发副总,曾荣获第一届问答系统第一名(TREC-8 QA Track),并赢得联邦政府17个小企业创新研究的信息抽取项目(PI for 17 SBIRs)。立委NLP工作的应用方向包括大数据舆情挖掘、客户情报、信息抽取、知识图谱、问答系统、智能助理、语义搜索等等。

发表评论

电子邮件地址不会被公开。

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据