NLP主流反思的扛鼎之作: 立委译《Church:钟摆摆得太远》

Kenneth Church 谈人工智能和自然语言的历史、发展与未来
选自中国计算机学会通讯

作者:Kenneth Church
翻译:李维(美国网基公司首席科学家)
唐天(美国网基公司首席科学家助理兼助理工程师)

译者按:肯尼斯·丘吉(Kenneth Church) 是自然语言领域的泰斗,语料库语言学和机器学习的开拓者之一。丘吉的这篇长文《钟摆摆得太远》(A Pendulum Swung Too Far) 是一篇主流反思的扛鼎之作。作者在文章中回顾了人工智能发展中,理性主义和经验主义各领风骚此消彼长的历史规律,并预测了今后20 年自然语言领域的发展趋势。文章的主旨是,我们这一代学者赶上了经验主义的黄金时代(1990 年迄今),把唾手可得的低枝果实采用统计学方法采摘下来,留给下一代的都是“难啃的硬骨头”。20 多年来,向统计学一边倒的趋势使得我们的教育失之偏颇。现在应该思考如何矫正,使下一代学者做好创新的准备,结合理性主义,把研究推向深入。丘吉的忧思溢于言表。丘吉预测,深度网络的热潮为主流经验主义添了一把火,将会继续主导自然语言领域十多年,从而延宕理性主义回归的日程表。但是他认为理性主义复兴的历史步伐不会改变。他对主流漠视理性主义的现状颇为忧虑,担心下一代学者会淹没在一波又一波的经验主义热潮中。

实用主义动机

20 世纪90 年代,经验主义的复兴是一个激动人心的时刻。我们从来没有想到,我们的努力会如此成功。当时,我们想要的只不过是一席之地而已。在当时流行的各项研究之外,我们所想的只是为不同于当时其他研究的工作争取一点空间。我们成立了SIGDAT为这类工作提供一个论坛。在1993 年成立之初,SIGDAT只是一个相对较小的关于大语料库的会议论坛,后来演变成规模较大的EMNLP 会议。起初,SIGDAT 会议在很多方面(规模、主题和地理范围)都与主流ACL大会非常不同。然而若干年后,这些区别已经很大程度上消失了。两个会议靠拢,这让人感到高兴。但我们可能是太成功了,我们不仅成功地让我们感兴趣的工作登堂入室,没给其他工作留下多少空间。图1 展示了从理性主义到经验主义的这一戏剧性转变。这种转变还在继续,似乎看不到尽头。

根据霍尔(Hall) 等人的文章,这种转变始于1988 年布朗 (Brown)和丘吉的工作。霍尔等人的依据是对ACL 文集的分析,文献包括自20 世纪70年代至今在计算语言学领域发表的总计16500 篇论文。

但是,如果我们考虑一个更长的时间段,追溯ACL 文集以前的文献,我们看到的是一幅非常不同的画面,如图2 所示。更加显著的趋势是经验主义与理性主义之间的振荡,像钟摆一样,每隔二十多年来回振荡一次:

  • 20世纪50 年代:经验主义(香农(Shannon)、斯金纳(Skinner)、弗斯(Firth)、哈里斯(Harris)) ;
  • 20世纪70 年代:理性主义(乔姆斯基(Chomsky)、明斯基(Minsky));
  • 20世纪90 年代:经验主义(IBM 语音团队(IBM Speech Group)、AT & T 贝尔实验室(AT&T Bell Labs));
  • 2010年代:回归到理性主义了吗?

本文将回顾一些我们这一代人曾经“反叛”的理性主义观点。遗憾的是,我们这一代是如此成功,以至于这些理性主义观点被人们忘却了(如果我们接受图2给出的预测,那么现在正是理性主义应该复苏的时期)。有些重要的理性主义代表人物如皮尔斯(Pierce) 在当今流行的教科书里甚至没有提及。如此下去,下一代人可能没有机会听到理性主义一方辩论的声音。特别是,如果理性主义立场在今后几十年逐渐流行,理性主义者可以提供很多值得重视的见解。

zb1
图1 理性主义到经验主义的转变令人惊讶(而且毫无争议)。该图是基于鲍勃·摩尔(Bob Moore)和弗雷德·贾里尼克(Fred Jelinek)对ACL会议的独立调查(私人通信)

是什么促使20 世纪90 年代经验主义的复兴?我们当时在反抗什么?经验主义复兴实际上是受到了实用主义考量的推动。学术界当时正埋头研究自然语言中面临的巨大挑战,例如完备人工智能(AI-complete) 的难题和远距离的依存关系。而我们所提倡的是从务实的角度来先针对一些较简单的、较有可能求解的任务,例如词性标注。当时数据的获得变得前所未有的方便。我们能用这些语料数据做些什么呢?我们认为,做成一些简单的事情比根本不做强。让我们去摘取一些低枝的果实,让我们利用近距离依存关系做我们能做的事情。虽然那不能解决整个问题,但还是让我们专注于我们能做什么,而不是我们不能做什么。玻璃杯有一半是满的(而不是已经空了一半)。

zb2
图2:对文献不寻常的解读,其中图1所示的趋势(此处以红点表示)是每隔20多年更大振荡的一部分。注意红点所示的是实际数据,而振荡曲线所示意的趋势只是为了说明一个观点

我们当时是这样记述这段历史的:

“20 世纪90 年代重现了具有20 世纪50 年代风格的语言分析的经验主义及其统计方法。50 年代是经验主义的高峰期,主导了从心理学(行为主义)到电子工程(信息论)一系列广泛的领域。当时语言学的通行做法是,不仅仅依据词义,还要基于它与其他词共同出现的情形来划分词类。50 年代英国语言学领域的领袖人物费思(Firth)用一段令人难忘的话总结此方法:‘通过一个词周围的词来了解这个词的意义。’遗憾的是,受一系列重大事件的影响,50年代后期和60年代早期,经验主义式微。这些重大事件包括乔姆斯基(Chomsky) 在《句法结构》(Syntactic Structures ) 中对N 元文法 (n-grams) 的批判,明斯基与帕佩特(Papert) 对神经网络的批判。

经验主义复兴最直接的原因也许是大量数据可用:文本从来没有这么丰富过。10 年前,搜集了100 万词的布朗(Brown) 语料库就被弗朗西斯(Francis) 和库塞拉(Kucera) 认为是大数据,但即使在那时,也有更大的语料库,如伯明翰(Birmingham) 语料库。如今,许多地方的文本样本已经达到上亿甚至几十亿词量……。通常称为文本分析的数据密集型语言研究方法采取的是实用主义手段,非常适合近来被强调的数值评估和具体的任务。文本分析强调对非受限文本(unrestricted text) 的广泛覆盖(尽管可能肤浅),而不是对于(人为)限定领域的深度分析。”

寒冬

20世纪90年代早期, 研究界发现应该注重务实方法,原因之一是该领域当时正处于严重的资金寒冬, 史称第二季人工智能寒冬(AI winter of1987~1993)。在又一次资金萧条到来之际,研究共同体比较容易接受一种更加现实的、结果更可靠的新方法。根据维基百科资料:

“在人工智能的发展历史中,所谓人工智能寒冬是指社会对人工智能研究的资助和兴趣消减的时期。许多新兴技术都经历了从狂热、失望到资金削减的过程(例如历史上的铁路大开发以及网络泡沫),但是人工智能的问题更加突出。这种模式已经发生过许多次了:

  • 1966 年:机器翻译的失败;
  • 1970 年:放弃人工智能联接主义(connectionism) ;
  • 1971~1975 年:美国国防部高级研究计划局(DARPA) 对卡耐基梅隆大学语音理解研究项目的失望;
  • 1973 年:莱特希尔(Lighthill)人工智能评估报告(Lighthill Report)发表之后,英国对人工智能研究资助的大幅削减;
  • 1973~1974 年:DARPA 削减对人工智能学术研究的资助;
  • 1987 年:Lisp 机市场崩溃;
  • 1988 年:战略计算规划(the Strategic Computing Initiative) 取消了进一步资助人工智能的计划;
  • 1993 年:专家系统慢慢跌入低谷;
  • 1990 年代:第五代计算机项目的原始目标黯然淡出视野,以及被牵累迄今的人工智能的坏名声。

人工智能经历的最糟糕的时间段是1974~1980 年和1987~1993 年。有时人工智能寒冬指的就是两者之一(或两者的某个时间段)。”

寒冬常常紧跟着过度的乐观主义,例如西蒙(Simon)在文献中提到的:

“在不久的未来——不会超过25年——我们将会有技术能力用机器来代替机构中的任何人类功能。而且,我们将充分掌握人类认知过程及其与人类情感、态度和价值观的交互过程的理论,这些理论将会被实验所证实。”

如今,比起第二季人工智能寒冬,我们变得更有信心。15 年低枝果实的采摘已经取得了相对稳定的成果,也获得了相对稳定的资助,至少比人工智能寒冬的形势乐观很多。

皮尔斯、乔姆斯基和明斯基

毋庸讳言,我们所反抗过的伟大的理性主义者如皮尔斯、乔姆斯基和明斯基(Pierce, Chomsky and Minsky, 以下简称PCM),对人工智能领域的现状不会感到满意。当然,另一方面,今天此领域的领军人物大多也不乐意看到PCM 理性主义的复兴。一位领域的带头人听说我在写这篇文章,讥讽道:“皮尔斯对我们现在有什么意义?”PCM 的观点在当年就饱受争议,现在依然如此,因为它们导致一些领域包括语音、机器翻译和机器学习多次进入了严重的资金寒冬。

本文主要感兴趣的是PCM三位大师理性主义的共同主线。不过也必须指出,这三位大师的声音并不完全一致。在信息论方面他们有很大分歧。皮尔斯对香农和乔姆斯基二位均大加赞佩,尽管乔姆斯基对香农在信息论方面的许多工作持反对意见。很显然,这些观点并不能清楚地划分成不同学派(例如理性主义和经验主义),学派之内并非完全一致,学派之间也不是处处相异。

关于智能亦有很多不同意见。明斯基是人工智能的创始人之一,而皮尔斯一直是直言不讳的批评者之一。他说:所谓人工智能真乃愚蠢之极7。皮尔斯反对任何试图接近人类智能的东西,当然包括人工智能,也包括机器翻译和语音识别。皮尔斯主持了著名(或者说是臭名昭著)的语言自动处理咨询委员会(Automatic Language ProcessingAdvisory Committee, ALPAC) 报告。这一报告直接导致了机器翻译的资金寒冬[27]。皮尔斯也曾为《美国声学学会会刊》(JASA ) 撰写富有争议的通讯“语音识别往哪里去”(Whither Speech Recognition?),给语音识别研究的资金造成令人寒心的困境。

本文重在回顾他们的共同主线,而不是他们的分歧。PCM 对当年流行现今复兴的一系列经验主义方法,均提出过挑战。他们的反对意见对于许多当今流行的方法都有影响,包括模式匹配、机器学习(线性分离机)、信息检索(向量空间模型)、语言模型(N 元文法模型)和语音识别(隐式马尔可夫模型(hidden Markov models, HMMs) 以及条件随机场(conditional random fields, CRFs))。

学生们需要学会如何有效地使用流行的近似方法。大多数近似方法基于简化的假设,这些假设在多数情况下有用,但并非万能。例如,N 元文法能捕捉许多依存关系,但当依存范围超过n个词距离的时候,N 元文法则无能为力。同理,线性分离机在很多情况下可以区分正例和反例,但对无法线性区分的样例自然无效。许多这类限制显而易见(由其本性所决定),但即便如此,相关的优劣争论有时仍然很激烈。有时候,争论的某一方不再被写进教科书,逐渐被遗忘,只能期待下一代学者去重新发现或复兴。

乔姆斯基论述了N 元文法的局限,明斯基论证了线性分离机的局限。也有学者对于其他近似方法的种种局限提出看法。例如,图基(Tukey) 教导学生如何有效使用回归算法[34]。他鼓励学生测试各种正态假设的偏离现象。离群点(outliers) 是回归算法常见的麻烦来源,正如偏离直线的弯曲残差(bowed residuals)。很多人提出了种种绕行的补救方案。一个常见的手段是对数据做非线性变换,如对数变换。这些技巧把问题转化为另一个问题,使其偏离假定的麻烦有所减少。

乔姆斯基的反对意见

如前所述, 乔姆斯基指出N 元文法不能捕捉远距离依存关系。虽然现在回想起来似乎是显然易见的,然而在当时,香农-麦克米兰- 布雷曼熵定理(Shan-non-McMillan-Breiman theorem)令人非常兴奋,对这条定理的解释是:在极限条件下,只要稍加制约,N 元文法模型足以捕捉字符串的所有信息(譬如英语的句子)。乔姆斯基认为,在极限条件下这条定理也许是正确的,但是N 元文法模型远远不是能概括许多语言事实最简洁的模型。在实际系统中,我们往往必须将N 元文法严格限制在某个(小的)固定的值k 上(例如三元或许五元)。这种限长的N 元文法模型系统可以捕捉到很多语法关系一致性方面的现象,但并非全部。

我们应该将这场论辩教给下一代学者,因为他们可能将不得不比我们更加认真地对待乔姆斯基的反对意见。我们这代人很幸运,可以摘取到大量的低枝果实(也就是那些可以用较短N 元文法捕捉到的语言现象)。但是,下一代学者将没有这么幸运,因为在他们退休之前,那些捕捉得到的语言事实大多将被捕捉已尽,因此,他们很可能将不得不面对那些简单N 元近似方法无法处理的语言现象。

中心嵌套论(Center-Embedding)

乔姆斯基不仅反对N 元文法模型,也反对有限状态(finite state) 方法,其中包括很多目前流行的方法,如隐式马尔可夫模型和条件随机场。

有限状态方法超越了N 元文法,它不仅可以捕捉一切N元文法可以捕捉到的语言现象,而且可以捕捉超越N 词距离的语法依存关系。例如,下列文法表现了主谓在数上一致的关系,名词和动词应该一致,二者同为单数(sg) 或者同为复数(pl)。这样的文法可以捕捉超过N 词距离的依存关系。

S → Ssg

S →Spl

Ssg → NPsg VPsg

Spl → NPpl VPpl

NPsg → … Nsg …

NPpl → … Npl …

VPsg → … Vsg …

VPpl → … Vpl …

最大的问题是,此文法是否需要无限的内存。为了使这场辩论严谨,乔姆斯基引入中心嵌套的概念,并创建了现今被称作乔姆斯基层级体系(Chomsky hierarchy)的理论。

乔姆斯基层级体系不仅在语言学,在其他许多领域,例如计算机科学9,也具有非凡的影响力。克努特(Knuth) 坦承他在1961 年的蜜月期间读到乔姆斯基的文章,发现它是如此“奇妙的事情:在这个语言的数学理论中,我可以感受到一个计算机程序员的直觉”。

乔姆斯基指出,乔姆斯基层级体系与相应的生成能力之间具有一种简单的对应关系:

类型0 > 类型1 > 类型2 >类型3

递归可枚举文法 > 上下文有关文法 > 上下文无关文法 > 正则文法

特别是上下文无关文法可以涵盖并超越正则文法;有一些需要无限内存(栈)所做的事情,有限内存就做不到。乔姆斯基的论证是,中心嵌套是上下文无关与有限状态之间的关键区别。也就是说,当(且仅当)一个文法具备中心嵌套能力,它才需要无限内存(栈)。否则就可以用有限内存(有限状态机)处理。

zb3

更正式地讲,如果一个文法中具有一个可以生成形如xAy的非终结节点A,其中x 和 y 均为非空,那么这个文法就是中心嵌套。如果x 或 y 为空,则可以得到较简单的左杈或右杈的嵌套。左杈嵌套和右杈嵌套均可在有限内存(有限状态机)中处理,而不像中心嵌套那样需要无限内存(栈)。

中心嵌套的一个简单例子是一个括号嵌套的文法:

< expr > → (< expr >)

括号嵌套文法是中心嵌套的一个特殊案例,其中 x 是左括号,y 是右括号。一个栈结构可以很容易地记录左括号与右括号之间的远距离依存关系,但这需要无限的内存。最大的问题是有限内存是否可以处理括号嵌套文法。乔姆斯基证明这是不可能的。更一般的表述是,有限状态方法无法捕捉中心嵌套。

乔姆斯基用下列样例论证英语为中心嵌套语言,因此超越了有限状态方法(如隐式马尔可夫模型)的捕捉能力。乔姆斯基假定英语具有一个非终结节点 S(代表句子或从句),其自生成的时候在它的左右两侧可以添加非空内容,如下所示:

  1. S → If S, then S.
  2. S → Either S, or S.
  3. S → The man who said that S, is arriving today.

关于中心嵌套的语言事实一直存在争论。本文审阅者之一反驳中心嵌套所用的几点论证,我当年在我的硕士论文中也提过类似的质疑。语料库中很难找到超过两层或三层的中心嵌套11。不过,乔姆斯基的说法并非没有道理。想要描述上述语言事实,采用允许任意中心嵌套的文法较之采用仅有一两层中心嵌套的文法可能更容易和简洁。

到目前为止,N 元文法和有限状态方法等近似模型足够我们使用。虽然这些近似模型都有其明显局限性,但迄今难以找到更有效的替代方法。尝试捕捉不常见的远距离关系也许可以处理一些不常见的边缘案例,但它们带来的问题往往比解决的问题要多。工程师们发现,处理好常见的短距离依存关系比处理不太常见的远距离依存关系更为重要。至少,这是我们这一代人的体验。

尽管如此,我们还是应该为下一代学者做好准备,使他们有可能比我们做得更好。我们应该教给下一代认识目前比较流行的各种方法的长处和短处。他们需要了解我们所知道的最成功的近似方法,但他们也需要了解其局限性。下一代学者很可能会找到改进N 元文法的办法,甚至可能发现超越有限状态的方法。

明斯基的反对意见

明斯基和帕佩特表明,感知机(更广泛地说是线性分离机)无法学会那些不可线性分离的功能,如异或(XOR) 和连通性(connectedness)。在二维空间里,如果一条直线可以将标记为正和负的点分离开,则该散点图即线性可分。推广到n 维空间,当有n -1 维超平面能将标记为正和负的点分离开时,这些点便是线性可分的。

判别类任务

对感知机的反对涉及许多流行的机器学习方法,包括线性回归(linear regression)、logistic 回归(logistic regression)、支持向量机(SVMs) 和朴素贝叶斯(Naive Bayes)。这种反对意见对信息检索的流行技术,例如向量空间模型 (vector space model) 和概率检索(probabilistic retrieval) 以及用于模式匹配任务的其他类似方法也都适用,这些任务包括:

  1. 词义消歧(WSD):区分作为“河流”的bank 与作为“银行”的bank。
  2. 作者鉴定:区分《联邦党人文集》哪些是汉密尔顿(Hamilton)写的,哪些是麦迪逊(Madison)写的。
  3. 信息检索(IR) :区分与查询词相关和不相关的文档。
  4. 情感分析:区分评论是正面的还是负面的。

机器学习方法,比如朴素贝叶斯,经常被用来解决这些问题。例如,莫斯特勒(Mosteller) 和华莱士(Wallace) 的鉴定工作始于《联邦党人文集》,共计85篇文章,其作者是麦迪逊、汉密尔顿和杰伊(Jay)。其中多数文章的作者是明确的,但有十几篇仍具争议。于是可以把多数文章作为训练集建立一个模型,用来对有争议的文件做判别。在训练时,莫斯特勒和华莱士估算词汇表中的每个词的似然比:Pr(word|Madison)/Pr(word|Hamilton)。对有争议的文章通过文中每个词的似然比的乘积打分。其他任务也使用几乎相同的数学公式,如表2 所示。近来,诸如logistic 回归等判别式学习方法正逐步取代如朴素贝叶斯等生成式学习方法。但对感知机的反对意见同样适用于这两类学习方法的多种变体。

zb4

停用词表、词权重和学习排名

虽然表2 中4 个任务的数学公式类似,但在停用词表(stoplist)上仍有重要的区别。信息检索最感兴趣的是实词,因此,常见的做法是使用一个停用词表去忽略功能词,如“the”。与此相对照,作者鉴定则把实词置于停用词表中,因为此任务更感兴趣是风格而不是内容。

文献中有很多关于词权重的讨论。词权重可以看作是停用词表的延伸。现今的网络搜索引擎普遍使用现代的机器学习方法去学习最优权重。学习网页排名的算法可以利用许多特征。除了利用文档特征对作者写什么进行建模外,还可以利用基于用户浏览记录的特征,来对用户在读什么建模。用户浏览记录(尤其是点击记录)往往比分析文档本身信息量更大,因为网络中读者比作者多得多。搜索引擎可以通过帮助用户发现群体智能来提升价值。用户想知道哪些网页很热门(其他和你类似的用户在点击什么)。学习排名是一种实用的方法,采用了相对简单的机器学习和模式匹配技术来巧妙地应对可能需要完备人工智能理解(AIcomplete understanding) 的问题。

最近有博客这样讨论网页排名的机器学习:

“与其试图让计算机理解内容并判别文档是否有用,我们不如观察阅读文档的人,来看他们是否觉得文章有用。

人类在阅读网页,并找出哪些文章对自己有用这方面是很擅长的。计算机在这方面则不行。但是,人们没有时间去汇总他们觉得有用的所有网页,并与亿万人分享。而这对计算机来说轻而易举。我们应该让计算机和人各自发挥特长。人们在网络上搜寻智慧,而计算机把这些智慧突显出来。”

为什么当前技术忽略谓词

信息检索和情感分析的权重系统趋向于专注刚性指示词(rigid designators)14(例如名词),而忽略谓词(动词、形容词和副词)、强调词(例如“非常”)和贬义词15(例如“米老鼠(Mickey mouse)”16 和“ 破烂儿(rinky dink)”)。其原因可能与明斯基和帕佩特对感知机的反对有关。多年前,我们有机会接触MIMS 数据集,这是由AT & T 话务员收集的评论(建议与意见)文本。其中一些评论被标注者标记为正面、负面或中性。刚性指示词(通常是名词)往往与上述某一类标记(正面、负面或中性)紧密关联,但也有一些贬义词标记不是正面就是负面,很少中性。

贬义词怎么会标记为正面的呢?原来,当贬义词与竞争对手相关联的时候,标注者就把文档标为对我方“正面”;当贬义词与我方关联的时候,就标注为对我方“负面”。换句话说,这是一种异或依存关系(贬义词XOR 我方),超出了线性分离机的能力。

情感分析和信息检索目前的做法不考虑修饰成分(谓词与论元的关系,强调词和贬义词),因为除非你知道它们在修饰什么,否则很难理解修饰成分的意义。忽视贬义词和强调词似乎是个遗憾,尤其对情感分析,因为贬义词显然表达了强烈的意见。但对于一个特征,如果你不知道其正负,即使强度再大也没什么用。

当最终对谓词- 论元关系建模时,由于上述异或问题,我们需要重新审视对线性可分的假设。

皮尔斯的反对意见

比起明斯基和乔姆斯基,皮尔斯在时下的教科书上更少提到,尽管皮尔斯作为ALPAC 委员会主席以及著名的“语音识别向何处去”一文的作者对本领域有深远影响。无论从终结资助还是从文章的引用率看,皮尔斯对该领域的冲击力是如此之大,真不明白现代教科书为何如此冷待皮尔斯。原因也许在于,比起明斯基和乔姆斯基,皮尔斯的批评“麻烦”更大。很多学者试图回应他的批评,但几乎没有任何回应能像他原来的批评那样有力和值得一读。

皮尔斯一生硕果累累,他开发了脉冲编码调制(pulse code modulation, PCM),一种与当今WAVE 文档格式紧密相关的语音编码方法,而WAVE 是一种在个人计算机上储存音频文件的流行格式。此外,皮尔斯在真空管领域的研究亦成就卓著,但他又带领团队发明了晶体管,使真空管很快消亡。皮尔斯的研究工作也涵盖卫星领域,后来他作为贝尔实验室的研究副总裁,在把卫星研究转化成商业应用上发挥了关键作用,成功开发了Telstar 1,这是卫星首次在电信领域的商业应用。

总之,皮尔斯是一位具有非凡成就的顶级技术执行官。与他争辩的另一方根本无法与他相提并论,其中包括一些可能会被拒授终身教职的初级教职人员。这是一场不公平的论战。但即便如此,也没有理由忽视他对领域的贡献,哪怕这些贡献给我们带来诸多“麻烦”。

ALPAC 报告与“语音识别向何处去”都非常值得一读。网上很容易找到 ALPAC 报告的原文,但其篇幅较长。如果读者时间有限,建议先从阅读“语音识别向何处去”开始,因为这篇通讯言简意赅,观点明晰。短短两页的通讯基本上论及两条批评意见:

  1. 系统评测:皮尔斯反对用演示来评测系统,也反对现今仍流行的各种系统评测方法。“即使给出了统计数据,语音识别的成功与否还是很难测量。总体而言……当……时对于……系统可以达到 95% 的准确率。在……情况下,性能会急遽下降。很难鉴定这种性能的语音识别系统能否成为实用的、经济合理的应用产品。”
  2. 模式匹配:皮尔斯反对现今仍流行的模式匹配技术(如机器学习和语音识别),斥之为巧妙的欺骗:“与科学相比由于更容易取巧而更快成功”。

模式识别批判

皮尔斯以魏岑鲍姆(Weizenbaum)开发的伊莉莎(ELIZA) 程序作为案例来解释“巧妙的欺骗”。虽然伊莉莎很明显并不“智能”,但它或许可以通过图灵测试。伊莉莎批判从此成为对那些看上去比实际能力要强的程序的标准批判。维基百科对“伊莉莎效应”的定义如下:

“在计算机科学中,所谓的伊莉莎效应,指的是下意识地假设计算机与人类的行为相似的一种趋势。从特定形式上看,伊莉莎效应只是指‘人们阅读被计算机串起的符号序列(特别是单词),往往读出了这些符号并不具备的意义’。更一般地,伊莉莎效应描述的是这样一种情形,仅仅依据系统输出,用户就把计算机系统理解为具有‘其软件控制(输出)不可能实现的内在素质和能力’,或者,‘假设(输出)反映了比实际更大的因果关系’。无论是在特定还是一般形式上,甚至当系统的用户已经知道系统产生的输出是预定不变的,伊莉莎效应都会显著出现。从心理学观点来看,伊莉莎效应源于一种微妙的认知失调,一方面,用户意识到程序编制的局限性,另一方面,他们对程序的输出结果依然盲信。伊莉莎效应的发现是人工智能的一个重要进展,说明利用社交工程原理,而不是显式编程,也可以通过图灵测试。”

魏岑鲍姆在意识到他的伊莉莎程序让公众如此信服后,他自己反而成为人工智能的强烈反对者。以下是从他的著作《难以理解的程序》(Incomprehensible Programs ) 中的一个章节摘录的:

“这两个程序(MACSYMA和DENDRAL) 与其他大多数人工智能程序完全不同,它们牢牢建立在深厚的理论之上……计算机当然还有其他许多重要的、成功的应用。例如,计算机可以操控整个石油精炼厂的流程,可以导航飞船以及监测并在很大程度上操控飞船内的环境,以便宇航员执行任务。这些程序依赖于数学控制理论和牢固确立的物理理论。这种以理论为基础的程序具有极其重要的优势,一旦程序走偏,监测人员就能发现它们的性能不符合理论的要求,从而可以用理论帮助诊断失败的原因。

但是, 大多数现有的程序……不是以理论为基础的……它们多是探索式的……采用的是在多数预见情况下显得‘可行’的策略……我自己的程序伊莉莎正是这种类型。伍诺格拉德(Winograd)的语言理解系统也是……纽厄尔(Newell) 和西蒙的GPS20 也是如此。”

魏岑鲍姆继续争辩道,程序理应易于理解,并建立在坚实的理论基础之上,这种观点皮尔斯想必也会同意。

皮尔斯关于“巧妙的欺骗”的提法批评了包括人工智能、语音识别以及模式识别(也包括大部分现代机器学习)的很多领域用演示来验证系统的做法。

“前述讨论适用于模式识别的各个领域,其应用作为练习留给读者”。

模式识别有其优缺点。优点是,模式识别可以巧妙应对许多科学难题,在实际应用中取得进步。但是这一优势同时也是其缺点。短期的取巧分散了领域的精力,无法顾及真正有意义的长远目标。

很多工程任务与语音合成一样有两类研究:一类是实用的工程方法(例如衔接合成和磁带拼接),另一类是雄心勃勃的科学计划(如模拟人类发音的合成)。一般而言,实用的方法更有可能在短期内产生较好的结果,但学术界也激励更有前途的科学路线。对于尚未解决的重大科学问题,如果我们直接研究它们,而不是投机取巧,我们会有更好的机会取得进展。话虽这么说,如果你在工业界领导一个语音合成产品,为了在预算内按时按质交付产品,采用任何工程手段和技巧都是题中应有之义。

回应

针对“语音识别向何处去”曾有很多回应,但是多数回应都没能有效应对上面提到的两条主要批评意见:

  1. 目前在论文发表时所要求的系统评测方法究竟有何意义?
  2. 与科学相比,模式匹配的意义何在?

罗(Roe)和威尔彭(Wilpon)争辩说,在“语音识别向何处去”提出后的25 年中,领域的发展已经把所谓“无用”的努力演变为商用现实。他们的文章开头介绍了隐式马尔可夫模型等流行方法,这些方法基于皮尔斯所反对的模式匹配技术。接着提到目前常用的评测方法。评测旨在展示模式匹配技术的有效性,然而评测带来的结论正如皮尔斯归纳描述的那样:“难以度量”。

“在实验室条件下,语言识别器对于声音的模式匹配相当准确。然而,在‘真实世界’的条件下,错误率会高出很多”。

ALPAC报告

相当长的ALPAC 报告提出了很多反对意见,其中许多批评意见令人尴尬,也很难回应。报告的结论部分提到一些好消息:

“如今仍有理论语言学家对实证研究或计算都不感兴趣,也有应用语言学家对十年来的理论进展无动于衷,对计算机也很木讷。但是,与以往任何时候相比,都有更多的语言学家尝试把微妙的语言理论与更丰富的数据相结合,他们中几乎所有人,无论在哪个国家,都渴望计算机的支持。前一代人需要一辈子做的工作(譬如建立对照语库、词汇表、浅层文法),如今借助计算机几个星期即可完成(下一年大概只需要几天)。在对于作为人类交流工具的自然语言的理解方面,人类迈出了万里长征的第一步。”

但好消息随后紧接着就是不那么好的消息 :

“ 但是,我们还没有简单易用并广为人知的计算机处理语言数据的好方法。”

作为回应,斯蒂德曼(Steedman)将我们的研究领域与物理学领域做了对比。他指出物理界并没有被类似于ALPAC 的报告所困扰:“没人去告诉周围的物理学家该做什么。”斯蒂德曼建议,如果我们更自律,并避免在公共场合过度渲染,我们的领域也许会处于更好的状态。

我们其实没必要羡慕物理学领域的状态,以此排斥ALPAC报告。斯蒂德曼的回应不仅没有解决问题,而且事实上,物理学在学术界根本就不处于一个令人羡慕的位置。曾经有一段时间,物理学确实处于相对良好的状态,但那是很久以前的事情了。物理学的冬天已经持续太久,以至于许多人离开了物理学领域。曾经的物理学家们对许多领域做出了贡献,包括我们领域的几个方向,例如机器翻译和机器学习等。至于过度渲染,物理学不比我们少。

甚至连ALPAC 报告也指出,计算语言学比物理学有许多优势:

“我们看到计算机为语言学家带来了一系列的挑战、视角和机会。我们相信,这些可与粒子物理面临的挑战、问题和视界相当。毫无疑问,语言的重要性不亚于任何其他现象。而且计算语言学所需要的工具成本,比起需要数十亿伏加速器的粒子物理学少得多了。”

哈钦斯(Hutchins)在ALPAC报告30 周年纪念时在《机器翻译国际新闻》(MT News International) 中题目为《ALPAC :著名(抑或臭名昭著)的报告》的文章中,总结道:

“ALPAC 对机器翻译持怀疑态度是有一定道理的:当时机器翻译的质量无疑非常糟糕,似乎确实没有正当理由获得那么多的资助。报告中也正确地指出需要研制计算机辅助翻译,并强调计算语言学需要更多的基础研究。然而,需要指责的是……”

哈钦斯继而批评ALPAC 报告的观点太过以美国为中心,机器翻译问题本应在更广阔的全球语境中来考虑。既然基调如此严肃,他对以美国为中心的批评就显得相对单薄。如果从美国角度看机器翻译技术质量不好,费用昂贵,难道换一个角度就会对他国合适?

事实上,ALPAC 报告之所以被认为臭名昭著,是因为它的怀疑论直接导致了机器翻译的资金寒冬,尤其是在美国方面。然而,报告(第34 页)实际上建议在两个不同方向上增加经费开支:

  1. 对于语言学和计算语言学的长期的基础学术研究,以及
  2. 对于实用的、可以短期奏效的提高翻译质量的工作。

第一类基础研究应该以其科学价值为基础,经过同行评议,而评估第二类应用程序应该着重于实用的指标:速度、成本和质量。

皮尔斯的这两个建议凸显出他的两个不同侧面,正由于这种两面性使得皮尔斯能够同时认同乔姆斯基和香农那样两种不同的立场。一方面,皮尔斯是基础科学的坚定支持者。皮尔斯反对任何将科学扭曲成其他东西(例如应用程序)的企图,以及试图以误导性演示和盲目的指标(如今天所例行的各种评估办法)歪曲科学的发展。另一方面,皮尔斯也有实用的一面,他在语音编码、真空管、晶体管和通信卫星等领域所取得的非凡成就就是证明。他是应用型工作强有力的支持者,但所用的规则与基础研究完全不同,比如强调从商业案例出发。应用型工作要按应用型工作来评估(基于商业标准),而科学必须按科学的标准来评估(基于同行评审)。

如果皮尔斯今天还活着,他会被学术界的现状深深困扰。太多的资金投入到了模式匹配技术和数值评估上,干扰了他认定的作为核心科学问题的学术发展。

从更积极的方面看,皮尔斯的应用一面应该会对谷歌的商业成功留下深刻印象,尤其是在搜索方面。尽管如此,谷歌的边缘业务如语音识别和机器翻译是否可以称作成功,从他的角度应该还有疑问。虽然我们有理由对这些领域抱有希望,像皮尔斯这样的怀疑论者会觉得,比起过去的几十年研发的巨额投资,机器翻译和语音识别的应用成就并不相称。作为一个合理的投资回报,现在的语音识别和机器翻译应该产生一个杀手锏级的应用,使得几乎每个人每天都离不开它,就像当年AT & T 发明的电话,或者像微软Windows 系统或谷歌搜索一样。谷歌在搜索方面的核心业务已经实现了这个理想,也许有一天他们的语音和翻译等边缘业务也能最终达到这一目标。

皮尔斯能给今天的我们提供什么?迄今为止,该领域已经做得很好,采摘了不少低枝果实。在有很多果实容易采摘的好时光里,我们自然应该充分利用这些机会。但是,如果这些机会逐渐枯竭,我们最好还是遵循皮尔斯的教诲,认真面对核心科学的挑战,而不是继续寻找不复存在的容易采摘的果实。

无视历史注定要重蹈覆辙

在大多数情况下,机器学习、信息检索和语音识别方面的实证复兴派简单地无视PCM 的论辩,虽然在神经网络领域,感知机附加的隐藏层可以看作是对明斯基和帕佩特批评的让步。尽管如此,明斯基和帕佩特对他们所著的《感知机》出版20 年以来领域进展之缓慢深表失望。

“在准备这一版时,我们本来准备‘把这些理论更新’。但是,当我们发现自本书1969 年第一次出版以来,没有什么有意义的进展,我们认为保留原文更有意义……只需加一个后记即可……这个领域进展如此缓慢的原因之一是,不熟悉领域历史的研究人员继续犯别人以前已经犯过的错误。有些读者听说该领域没有什么进步,可能会感到震惊。难道感知机类的神经网络(新名称叫联接主义)没有成为热烈讨论的主题吗?……当然不是,该领域存在很多令人感兴趣的问题和讨论。可能确实也有些现在的发现也会随着时间逐渐显出重要性。但可以肯定的是,领域的基础概念并没有明显改变。今天令人兴奋的问题似乎与前几轮大同小异……我们的立场依然是当年我们写这本书时的立场:我们相信这个领域的工作是极为重要和丰富的,但我们预计其发展需要一定程度的批判性分析,可那些更富浪漫精神的倡导者却一直不愿意去做这种分析,也许因为连通主义的精神似乎变得与严谨分析南辕北辙。

多层网络并不比感知机更有能力识别连通性。”

计算语言学课程的缺陷

正如上面明斯基和帕佩特指出的,我们不断犯同样错误的部分原因与我们的教学有关。辩论的一方在当代计算语言学教科书中已被遗忘,不再提及,只能靠下一代人重新认识和复原。当代的计算语言学教科书很少介绍PCM 三位前辈。在汝拉夫斯基(Jurafsky) 和马丁(Martin) 编著的教科书以及曼宁(Manning) 等编著的两套教科书中根本没有提及皮尔斯。三本教科书中只有一本简要提起明斯基对感知机的批评。刚刚进入此领域的学生也许意识不到所谓“相关学习算法”包含了很多当今非常流行的方法,如线性回归和logistic回归。

“一些其他的梯度下降算法(gradient descent algorithms) 有类似的收敛定理,但是在大多数情况下,收敛只能达到局部最优。……感知机收敛能达到全局最优是因为它们从线性分离机这样一类比较简单的模型中选择分类器。很多重要的问题是线性不可分的,其中最著名的是异或问题。……决策树算法可以学习解决这类问题,而感知机则不能。研究人员在对感知机最初的热情[29]消褪以后,开始意识到这些局限性。其结果是,对感知机及相关学习算法的兴趣很快消褪,此后几十年一直一蹶不振。明斯基和帕佩特的论文《感知机》通常被看作是这类学习算法开始消褪的起点。”

曼宁等人的2008 版教科书中有简短的文献指向明斯基和帕佩特1988 年的论文,称其对感知机有不错的描述,但并未提及他们的尖锐批评:

“对文中提到但本章未进行细述的算法,感兴趣的读者可以参阅以下文献:神经网络方面的毕夏普(Bishop) 、线性和logistic回归方面的黑斯蒂(Hastie) 等人以及感知机算法方面的明斯基和帕佩特等的论文。”

基于这样的描述,学生可能会得出错误印象,以为明斯基和帕佩特是感知机算法(以及当今流行的线性和logistic 回归相关方法)的支持者。

毕夏普明确指出,明斯基和帕佩特绝不是感知机和神经网络的赞许者,而且把它们认作“不正确的构想”予以排斥。毕夏普把神经网络在实际应用中的普及看作是对明斯基和帕佩特上述批评意见的反击证明,认为并非如他们所说的那样“没有多少改变”、“多层网络并不比感知机更有能力识别连通性”。

当代教科书应该教给学生认识神经网络这类有用的近似方法的优点和缺点。辩论双方都大有可言。排除任何一方的论证都是对我们的下一代不负责任,尤其是当其中一方的批评是如此的尖锐,用到“不正确的构想”和“没有多少改变”这样的说法。

乔姆斯基比皮尔斯和明斯基在当代教科书中被提及得多一些。曼宁和舒兹(Schütze) 的教科书引用乔姆斯基的论文10次,汝拉夫斯基和马丁的教科书的索引中共有27 处引用乔姆斯基的论文。第一本书中较少引用是因为它专注于一个相对狭窄的话题——统计型自然语言处理。而第二本教科书涉及面广泛得多,包括音韵学和语音。因此,第二本书还引用了乔姆斯基在音韵学方面的工作。

两本教科书都提到乔姆斯基对有限状态方法的批评,以及这些批评在当时对经验主义方法论的抨击效果。但是话题迅速转移到描述这些方法的复兴,而对这一复兴的论辩、动因及其对目前实践和未来的影响的讨论则相对较少。

“由乔姆斯基1956 年的论文开始的一系列极具影响力的论文中,包括乔姆斯基1957 年的论文以及米勒(Miller) 和乔姆斯基1963 年的论文,乔姆斯基认为,‘有限状态的马尔可夫过程’虽然是可能有用的工程探索,却不可能成为人类语法知识的完整认知模型。当时的这些论辩促使许多语言学家和计算语言学家完全脱离了统计模型。

N 元模型的回归开始于耶利内克(Jelinek)、默瑟(Mercer)、巴尔(Bahl) 等人的工作……”

两本教科书对N 元文法的讨论都是从引用其优缺点开始:

“但是必须认识到,无论怎样解读,‘一个句子的概率’都是一个完全无用的概念……。”

“任何时候,只要一个语言学家离开本研究组,识别率就会上升。”(弗雷德·耶利内克(Fred Jelinek),当时他在IBM 语音组,1988)

曼宁和舒兹是以这样的引用开始讨论的:

“统计的考量对于理解语言的操作与发展至关重要。”

“一个人对合法语句的产生和识别能力不是基于统计近似之类的概念。”

这种正反面观点的引用确实向学生介绍了争议的存在,但却不能真正帮助学生领会这些争议意味着什么。我们应提醒学生,乔姆斯基反对的是如今极其流行的一些有限状态方法,包括N 元文法和隐式马尔可夫模型,因为他相信这些方法无法捕捉远距离的依存关系(例如一致关系的限制条件和wh- 位移现象)。

乔姆斯基的立场直到今天仍然是有争议的,本文审阅者之一的反对意见也佐证了这种争议。我不希望站在这场辩论中的某一方。我只是要求应该教给下一代双方的辩论。对于任一方,都不至于由于我们疏于教授而使他们需要重新“发现”。

计算语言学学生应该接受普通语言学和语音学的培训

为了让进入这行的学生对低枝果实采摘完后的情形做好准备,今天的教育最好向广度发展。学生应该全面学习语言学的主要分支,如句法、词法、音韵学、语音学、历史语言学以及语言共性。我们目前毕业的计算语言学的学生在一个特定的较窄的子领域具有丰富的知识(如机器学习和统计型机器翻译),但可能没听说过格林伯格共性(Greenberg’s universals)、提升(raising)、等同(equi)、 量词辖域(quantifier scope)、 空缺(gapping)、孤岛条件(island constraints) 等语言学现象。我们应该确保从事共指关系(co-reference) 研究的学生都知道成分统制(c-command) 和指称相异(disjoint reference)。当学生在计算语言学会议上宣讲论文的时候,他们应该已经了解形式语言学(formal linguistics) 对此问题的标准处理。

从事语音识别工作的学生需要了解词汇重音(如文献)。音韵学重音对于下游的语音和声学过程具有各种各样的影响。

zb5-3
图3 “politics”and“political”的谱图显示有三个/l/同位音。在重音前后出现不同的音位变体。

语音识别目前没有充分利用词汇重音特征是一个不小的遗憾,因为重音是语音信号中较为突出的特性之一。图3 显示了最小对立体 (minimal pair)“ politics”和“political”的波形和谱图。这两个词千差万别,目前的技术着重于语音单位层面的区别:

  1. “politics”以 –s 结尾,而“political”以-al 结尾。
  2. 与“politics” 不同,“political”的第一个元音是弱化的非重读音节的元音(schwa)。

重音的区别更为突出。在诸多与重音有关的区别中,图3 突出显示了重音前与重音后/l/ 的音位变体之间的区别。另外还有对/t/ 音的影响。“politics”中 /t/是送气音,但在“political”中却是闪音。

目前,在语音单位层面,仍有大量低枝果实可以采摘,但这些工作终有完结之时。我们应该教给语音识别领域的学生有关音韵学和声学语音学的词汇重音知识,以便他们在目前的技术水平超越语音单位层面的瓶颈时依然游刃有余。由于重音存在超过三元音素的远距离依存关系,重音方面的进展需要对目前流行的近似方法的长处与缺陷均有深入的理解。语音识别方面的基础性进展,例如能有效使用重音,很可能要依赖于技术的根本性进步。

结论

学界前辈皮尔斯、乔姆斯基和明斯基曾经严重质疑过当年流行后来复活了的一些经验主义方法。他们的反对意见涉及许多当代流行的方法,包括机器学习(线性分离机)、信息检索(向量空间模型)、语言模型(N 元文法)、语音识别(隐式马尔可夫模型)和条件随机场。

学生们需要学习如何有效地使用流行的近似模型。乔姆斯基指出了N 元文法的缺陷,明斯基分析了线性分离机的局限性。许多局限性很明显(由自身算法设计带来的),但即便如此,对其支持与反对之间的争辩有时仍然非常激烈。有时,其中一方的论点不会被写进教科书,只有等到下一代人去重新发现和复兴这些被遗忘的思想。我们应该鼓励下一代学者充分了解辩论双方的论据,即使他们选择站在一方或另一方。

20 世纪90 年代,当我们复兴经验主义时,我们选择了实用主义的理由来反对我们导师的观点。数据从未如此丰富,我们能拿它做什么呢?我们认为,做简单的事情比什么都不做要好。让我们去采摘一些低枝果实。虽然三元模型不能捕捉到一切语言现象,但它往往比其他方法更有效。捕捉我们可以轻易捕获的一致性事实,要比好高骛远试图捕捉更多语言事实而最终得到更少要好。

这些说辞在20 世纪90 年代有很大的意义,特别是学术界在前一波繁荣期提出了很多不切实际的期望。但是今天的学生在不久的将来可能会面临一系列非常不同的挑战。当大多数低枝果实采摘完毕,他们应该做些什么呢?

具体就机器翻译而言,统计方法的复兴(例如文献)由于实用主义的原因,始于采用有限状态方法。但随着时间的推移,研究人员已经越来越接受使用句法捕捉远距离的依存关系,尤其是当源语与目标语缺乏平行语料库,或者当两种语言具有非常不同的词序的时候(例如,从主谓宾词序的语言(如英语)翻译到以动词收尾的语言(如日语))。展望未来,我们可以预料到机器翻译的研究会越来越多地使用越来越丰富的语言学表达。同样,很快也将有一天,重音将成为语音识别的重要依据。

既然计算语言学教科书不可能涵盖所有这些内容,我们就应该与其他相关科系的同事合作,确保学生能接受到广泛的教育,足以让他们为所有可能的未来做好准备。

选自《中国计算机学会通讯》第9卷第12期。
本文译自Linguistics issues in Language Technology, 2011; 6(5) K. Church 的“A Pendulum Swung Too Far”一文。
译者:李维(美国网基公司首席科学家。主要研究方向为信息抽取、舆情挖掘等)唐天(美国网基公司首席科学家助理兼助理工程师。主要研究方向为自然语言处理和机器学习)。

【泥沙龙笔记:吃科学的饭,还是技术的饭?】

我:

我虽然被封了个小公司 Chief Scientist 的职称,实在不敢称科学家了,因为早已脱离 academia,也没真正靠科学吃饭:这个金饭碗太沉,端不起。这倒不是谦虚,也不是自我矮化,因为科学家和技术人在我心中难分高低。作为一线技术人,并没觉得自己比一流科学家逊色。

不说生物,说说NLP。可重复性是科学的根本,否则算命先生和跳大神的也都是科学家了。针对一个单纯的任务,或一个纯粹的算法,在 community 有一个标注测试集的时候,这个可重复性似乎是理应有所要求的,虽然具体怎么验证这个要求,验证到哪一步才被公认有效,似乎远非黑白分明。

我的问题是,如果是一个复杂一些的系统,譬如 deep parser,譬如 MT,特别是在工业界,有可能做到可重复吗?不可重复就不能认可吗?且不说不可重复是保持竞争优势的必要条件,就算一家公司不在乎 IP,指望对手能重复自己的结果,也是难以想象的事儿 -- 除非把全盘源代码、原资源,包括所有的词典,原封不动交给对方,而且不许configure,亦不允许改动任何参数,否则怎么可能做到结果可以被重复呢?

毛:

凡是“构成性要素”,必须在一定的误差范围内可重复。要不然就属于商业秘密而不属于科学发现了。

我:

所以 key 就是看你吃哪一碗饭。吃学术的饭,你就必须过这一关。怎么拿捏是 community peer reviewers 的事儿。

毛:

还是那句话,你不能把什么好处都占了。

我:

吃工业的饭,你只要你的黑箱子 performs 就ok了。

这就使得学术界只能就“构成性要素”而发表,做一个 integrated 系统是不讨好的。这个从科学上是有道理的,但是很多做学术的人也不甘心总猫在象牙塔里,为他人做嫁衣裳,他们也想做实用系统。integrated 的实用系统几乎肯定无法由他人重复出结果来,因为变数太多,过程太复杂。

毛:

那倒也不一定,当年的 unix 就是系统。但是在同样的配置条件下得到的结果应该在一定的误差范围之内。

我:

换句话说吧,别说他人,就是自己也不见得能重复出自己的结果来。如果重起炉灶,再做一个 parser 出来,结果的误差是多少才能算容许的范围呢?就算基本设计和算法不变,相信是越做越好,但结果的误差在做成之前是很难预测的。这与在新的开发现场所能调用的资源等因素有关。

毛:

对呀,所以别人也不至于吹毛求疵,大家会有个共识的。像Parser一类,如果是对自然语言,那应该是很宽的。但如果是形式语言、编程语言,那就要求很严了。

我:

说的是自然语言。十几年前,我还在学术殿堂边徘徊,试图讨好主流,分一杯羹,虽然明知学界的统计一边倒造成偏见流行(【科普随笔:NLP主流的傲慢与偏见】)积久成疾,我辈压抑,同行如隔山,相互听不见。直到有一天大彻大悟,我到底吃的是谁的饭,我凭的什么在吃饭?原来我的衣食父母不是科学,更不是主流。我与隔壁的木匠阿二无异,主要靠的是手艺吃饭,靠的是技术创新的绝技,而不是纯科学的突破。认清这一点,也就避免了以卵击石,长他人威风,灭自己志气。说到底,在业界,老板不在意你在哪一条路线上,客户更不在乎你有没有追赶潮流,白猫黑猫,一切由系统说话。你有你的科学突破,我有我的技术绝技,到了应用现场,还要看谁接地气,有没有硬通货呢。系统结果可能难以重复,客观测量却并非难事儿。

【相关】

关于NLP方法论以及两条路线之争

【关于我与NLP】

《朝华午拾》总目录

 

导亦有道,我是这样做NLP导师的

我:
我是这样教导学生 NLP和 AI 的:
人工智能里面没有智能
知识系统里面没有知识
一切都是自己跟自己玩
一切都是为了自己玩自己的时候 努力玩得似乎符合逻辑 自然 方便 而且容易记忆和维护

学:
前面的听懂了,AI 这块有点懵懂

我:没关系 前面听懂了是关键。后面是哲学,哲学的事儿不必那么懂。你都懂了 我这个做导师的怎么吃饭呢?

学:
给功能词加 features 怎样才妥?

我:
功能词可以枚举,原则上可以没有 features,无所谓妥不妥。看你怎么用 用起来觉得妥就妥 觉得别扭或捣乱 就不妥。如果你永远不用 则没有妥不妥的问题 给了与不给一个样 因为永远没用到。没用到是可能的,譬如你总是为这个词写 WORD 的规则, 不让它有机会被 feature 的规则匹配上 那么 features 就是摆设 也就谈不上妥不妥。

学:
有道理。本来就这么几个词,写WORD就好了,不需要为Feature伤脑筋。

我:
有点开窍的意思

学:
跟老师多交流,才能开窍,不然我就钻进自己的死胡同了。

我:
人都是这样的 钻进n个胡同以后才能在 n+ 的时候开窍。没进过胡同就开窍的 那不是天才 那是死人。

学:
NLP 里面的知识表达,包括词典的 features,应该怎么设计呢?

我:
从词典表达 lexical features 到句法语义逻辑的表达,大多没有黑白分明的标准答案。
就是自己这么给了 显得蛮合理 也好记忆 否则自己就不舒服 或记不住。更重要的是 给了 features 以后 规则好写了 规则自然 简洁 有概括性 且方便维护。
almost everything is coordination
u assign
u use
no one is in between
no intelligence no god
as long as it makes sense to you (not to others) so u know what u r doing
as long as it is natural and easy to remember
as long as you find it convenient to use certain features in rules and rules are easy to read and easy to maintain
in principle u can assign anything to any words
or choose not to assign
what goes around comes around
you play with yourself
computer knows nothing
features are just 0s or 1s
WHAT GOES AROUND COMES AROUND
that is NLP in an integrated system
whether it refers to POS, chunking, SVO or logical form
it is to make your job easy and yourself comfortable
u have no need to make others happy unless your system is a middleware commodity to serve your clients
if your NLP and your NLP apps are within your own control
they are integrated in your system in your own architecture
everything is internal coordination
This is my lecture on NLP Architecture for Dummies

白:
you是谁?个人、团队、公司?

我:
good question, it is the architect in most cases: he has the say.  Sometimes it can be a bit democratic if the architect wants to motivate his team, for example the naming right.

白:
是全局系统的architect,还是NLP这嘎达的architect?

我:
a bit of knowledge is named as f1 or f2, that is arbitrary and the major consideration is memonic-like,  features must be easy to remember, but sometimes we let a team member decide its name, such practice often makes the team happy, wow I can act like God, wow I can decide a drop of the sea in the system language ...

白:
伟哥还没回答我最后一个问题: 是全局系统的architect,还是NLP这嘎达的architect?

我:
the former because we are talking about NLP and NLP apps in an integrated system:
apps 不是产品 而是语义落地。落地后 还有一个产品层面 包括 UI 等 那已经不劳我们操心了。落地是与产品的接口而已。NLP 核心引擎与 NLP 落地 是一个无缝连接的系统 这种 design 可以羡慕死人。
如果是有缝对接 如果是两拨人马 两个设计师 甚至两个公司 那就扯不完的皮 擦不完的屁股 成不了大事儿。NLP 和 NLP 产品可以分开 而且应该分开  但是 NLP 与 NLP落地 最好不分开。NLP 落地 包括(1) IE (2) MT (3) dialogue (mapping) (4) QA (5)...... 内部分层 但外部不分开 这就叫无缝连接

可以说 offshelf 害死人,component technology 没有啥前途。选择 offshelf 或 license components 往往是无奈之举,自己暂时没有能力 或不具备条件做,也有找的借口冠冕堂皇:不要 reinvent wheels,最后害的还是自己。
我们已经害过几次自己了 吃尽了苦头 才有这 “十年一悟”,以前说过的: 做工业NLP 自给自足是王道。

白:
这个,关键看公司拥有什么样的专家了。专家不同模式也不同。

我:
也与时代有关: 20 年后也许不必自给自足,就一样做好NLP落地。

【相关】

【立委科普:NLP 联络图 】

【立委科普:自然语言系统架构简说】

自给自足是NLP王道

置顶:立委科学网博客NLP博文一览(定期更新版)】

《朝华午拾》总目录

 

语义计算笔记:坐而论道谈“的”“地”

【立委按】以前在语言学圈子里有些高雅的沙龙,譬如在冯志伟老师回忆 中津津乐道过的语言学沙龙,每周一次,通常在北大,参与的圈子很小,都是精英之精英,朱德熙(语言学大家,北大副校长)、陆捡明(汉语语法学家)、马希文(计算语言学家,传奇人才,白老师的导师)、冯志伟(计算语言学家)等。坐而论道,雅致之极,令人羡慕嫉妒恨不能入。如今时代不同了,这种沙龙还有吗?回答是,有,譬如白老师主持的【新智元语义计算群】即是:谈笑皆鸿儒,往来有白丁,微信群使得高大上的沙龙平民化了,但高度、大度、上度不浅反深,盖因所延揽的精英早已不再局限于小小的京城,而是遍及全球。白老师树大招风,与NLP有关的华裔背景的顶级专家学者毛姑姑也有90%了,或高论,多潜水,胜景跌出,风光无限。甚至连中国NLP旗手董振东老前辈也上了“贼船”,乐在其中。此番繁荣,拜技术所赐,先给张小龙敬个礼。

白:
“这本书的匆忙de出版,险些坏了大事。”  这里的“de”,是“的”还是“地”,为什么?
如果按照“从里到外”的原则,是“匆忙de”先跟“出版”结合,彼时“出版”尚未被强制,因此还是满格的动词属性,de理应为“地”。但是……个人语感为什么倾向于“的”,而且理论上找不出理由。
“今天真遗憾,错过了大师的精彩de指挥。” 这个就是百分之百的“的”了。
我:
既然白老师爱钻牛角尖儿,咱们就钻钻。
白:
难道这个“指挥”不是被强制的?
我:
不能说 100% 可能是 90%+ 吧。验证的话,可以用大数据。
白:
大数据里有错别字
我:
哪怕大数据里面出来的结果是 100%,用“超大数据” 也会发现不是 100% 而且不仅仅是由于错别字。
白:
验证如果找100个文字编辑,我没意见。
我:
这里面的道理就不是大数据这种表象了,而是某种语言学。
动词概念被性状概念的词修饰,在具体语言中的形式应该是怎样的?就是这个问题。到了汉语,默认的形式是:(1)前置 (2) 加“地”。凡是默认 必有例外。如果 大数据发现了例外 或者 100 个文字编辑的内在句法趋向于一种例外的结果 这个例外就有语言学上的说法。
这里面还有一个微妙之处:口语中是de1 de2不分的,因此上述形式的讨论只限于书面汉语,而书面汉语受到了文法规范化教育的灌输。因此至少从一个层面看,这个问题就是一个 moot point,因为每个人的受教育程度是不同的,而每个人的儿童时学会语言的过程则是相当类同的。这二者打架的结果就会出现不一致,因此 100% 很难。如果聚焦到 100 个文字编辑做裁判的话,实际上是放大了教育的影响。有意思的问题于是成为:本来 “的”是 de 的默认,而非默认的“地”的使用是受教育的结果,因此文字编辑应该趋向于在形状类概念修饰动词性概念的时候,使用“地”而不是“的”。但是,这个 case 却不是(假如白老师的语感或修养靠谱的话),正相反,受过教育的人在这个 case 中,更趋向于用 “的”。这是为什么呢?这里面必有更深层的说法。
还要继续吗?或者谁继续牛角尖下去?
白:
其实,我是在对“从里到外”和“从左到右”的原则在质疑。如果“从左到右”,名物化结构强制的痕迹在不断加重,用“的”就理所当然了。如果“从里到外”,强制在外层,里层在不确定情况下会追随标配。
我:
其实我也正想说到这点儿,就是发散太远,还没收回来。
白:
所以,我认为是“从左到右”的分析策略在起作用。
我:
左右就是词序形式。抽象一点,不是词序,而是【层次性】与【去层次性】在语义表达或理解中的矛盾体现。这在句法学界已经打了很久很久了。层次性是一派,去层次性(扁平化)是另一派。公、婆各有理。
白:
不需要那么极端,就是已经读进来但还没有构造成树的成分,是完全被动地等在那里,还是对后续的消岐有所影响的问题。

我:
层次性的理解涉及多性状概念的 scope 边界,这是乔姆斯基短语结构的真义。去层次性的理解不强调这种 scope 的严密性,而是把他们的配置看成是自由搭配。这是为什么 dependency grammar 的结构树放弃非终结节点的表达。
白:
结构强制发生在有明确结构预期的时刻,而不是真正等来了结构强制对象的时刻。
伟哥可以顺带看看“恢复疲劳”那段。
我:
层次性一派的假设: x1 de x2 de x3 == [x1 de [x2 de [x3]]]
去层次性一派的假设: x1 de x2 de x3 == x2 de x1 de x3
两个假设都可以找到语言事实的支持。
白:
应该有 强去层次 和 弱去层次 之分
强:等价;弱:sometimes等价
我:
相信层次化的理解和去层次化的理解,在相当多的人中其实是模糊的。人的语义,无论表达还是理解,都充满了模糊性,而这种模糊性基本上也不影响语义的语用。换句话说,怎么说都可以,人类在交流中基本不 care。
白:
对分析策略似有影响
我:
歧义不仅可以保留或休眠,直到语用,甚至可以 beyond 语用,一直到死:严格说到死的歧义超越了交流,不能算歧义,最多算伪歧义。从这一点看(伪)歧义,就发现很多问题是人自找的;董老师也说过类似的意思。“人” 指的是系统设计师。
白:
又漂了
我:
漂是因为某个思路还没到终点,意犹未尽,很难受的。
回到分析策略,自底而上最实在。自底而上与层次化自然相配,但也不必然采纳层次化的 representation。
说说 恢复疲劳 吧。这是个固定用法 词典化的条目。
白:
结构强制是个特殊的操作,如果承认在短语“这本书的不出版”中,“不出版”是个状中结构,而再外层是个定中结构,于是结构强制就发生在这两层的衔接当中。“这本书的匆忙de出版”站在层次观点也是一样的,但我质疑层次结构在先结构强制在后。
我:
虽然汉语的 动宾句法 可以有 n 种逻辑语义,但是作为 open-ended 的句法语义解读,这 n 种解读不能是非自然的或满拧的语义。“恢复”与“疲劳”就是满拧。里面省略了的 FROM 就是反映这种蛮拧的。如果 FROM 不出现,那么必然要词典化 用记忆去绑架。
白:
“维持骚乱”的说法也成立
我:
如果要探究为什么这种乍听上去矛盾的说法进入了人类的语言 被词典化,简单的说法就是约定俗成。深究的话 其实是因为矛盾的双方是共现频率极高的相关概念。因为高度相关,所以本来可以明晰的连接双方的句法手段(词序啊,小词 from、against 啊等)就显得太啰嗦,偷懒的人开始省去这些句法元素 共同体开始接受这种省略。最后就进入了集体的固定用法的记忆。“从疲劳中恢复” >> “恢复疲劳”;“维持和平以防骚乱” >> “维持骚乱”。
白:
我的观点是,分析不在乎是不是词典化,生成在乎。哪怕是第一次看到这样的组合,也会放行的,因为张力的指向一览无余。
我:
分析不在乎,是语义不落地,只是休眠。管它什么宾呢 动宾是无疑的。
白:
“维持骚乱”就不必有什么固定记忆,一看这俩词儿,就知道是从不正常状态努力进入正常状态。
我:
没进入固定记忆,是还在过程中。
董:
知网词典的词语,与两位讨论的有关,供参考:

W_C=打扫房间
G_C=verb [da3 sao3 fang2 jian1]
S_C=
E_C=
W_E=clean the room
G_E=verb [51cleanverb-0vi      ]
S_E=
E_E=
DEF={clean|使净:patient={room|房间}}
RMK=

W_C=打扫垃圾
G_C=verb [da3 sao3 la1 ji1]
S_C=
E_C=
W_E=sweep away rubbish
G_E=verb [51sweepverb-0vi      ]
S_E=
E_E=
DEF={remove|消除:patient={waste|废物}}
RMK=

W_C=打扫卫生
G_C=verb [da3 sao3 wei4 sheng1]
S_C=PlusEvent|正面事件
E_C=
W_E=cleaning
G_E=noun [7 cleaningnoun-0action,uncount,ofnpa次    ]
S_E=PlusEvent|正面事件
E_E=
DEF={clean|使净:StateFin={spotless|洁}}
RMK=

W_C=恢复疲劳
G_C=verb [hui1 fu4 pi2 lao2]
S_C=PlusEvent|正面事件
E_C=
W_E=recover from tiredness
G_E=verb [51recoververb-0vi      ]
S_E=PlusEvent|正面事件
E_E=
DEF={BeRecovered|复原:StateIni={tired|疲乏}}
RMK=

W_C=恢复知觉
G_C=verb [hui1 fu4 zhi1 jue2]
S_C=PlusEvent|正面事件
E_C=
W_E=recover consciousness
G_E=verb [51recoververb-0vi      ]
S_E=PlusEvent|正面事件
E_E=
DEF={BeRecovered|复原:StateIni={dizzy|昏迷}}
RMK=

W_C=救火
G_C=verb [jiu4 huo3]
S_C=
E_C=
W_E=fight the fire
G_E=verb [51fightverb-0vi      ]
S_E=
E_E=
DEF={remove|消除:patient={fire|火}}
RMK=

W_C=救生
G_C=verb [jiu4 sheng1]
S_C=PlusEvent|正面事件
E_C=
W_E=lifesaving
G_E=noun [3 lifesavingnoun-0action,uncount,ofnpa次    ]
S_E=PlusEvent|正面事件
E_E=
DEF={rescue|救助:StateFin={alive|活着}}
RMK=

W_C=救穷
G_C=verb [jiu4 qiong2]
S_C=
E_C=
W_E=help the needy
G_E=verb [51helpverb-0vi      ]
S_E=
E_E=
DEF={rescue|救助:StateIni={Circumstances|境况:host={group|群体}{human|人},modifier={poor|穷}}}
RMK=

W_C=救命
G_C=verb [jiu4 ming4]
S_C=PlusEvent|正面事件
E_C=
W_E=save somebody's life
G_E=verb [51saveverb-0vt,sobj      ]
S_E=PlusEvent|正面事件
E_E=
DEF={rescue|救助:StateFin={alive|活着}}
RMK=

W_C=救灾
G_C=verb [jiu4 zai1]
S_C=PlusEvent|正面事件
E_C=
W_E=provide disaster relief
G_E=verb [51provideverb-0vi      ]
S_E=PlusEvent|正面事件
E_E=
DEF={rescue|救助:StateIni={mishap|劫难:cause={NaturalThing|天然物}}}
RMK=

白:
比如“打击卖淫嫖娼”为什么不能是“打击卖淫 嫖娼”而必须是“打击 卖淫嫖娼”?就是因为一个正面一个负面,是拧巴的,两个正面,就顺当了。这说的是sentiment对分析的反作用。
我:
“维持骚乱”对我这个个体 目前处于一种不接受的状态。并不因为拧巴 我就接受它合法。如果我是语文老师,我会判错 我自己也避免这样用 也不会这样用。但是如果共同体在这个演变过程的终点选择接受 也就是选择词典化,那么我只得也选择接受 并加入我的词典。这是其一。
其二,拧巴的确在语言交流中起作用。拧巴迫使人放弃默认 去探索其他的语义路径 达成理解 虽然心里可能依然别扭。心里别扭是因为还没有词典化 黑箱化。
白:
参加维和部队,到非洲去维持骚乱。
好点没?
我:
有了上下文,当然别扭感好一些。(同理,我也可以这样加上下文:恐怖主义分子猖獗得很,他们要维持骚乱,我们怎能坐视不理。)
在 sentiment 中,有些故意矛盾的说法来表达讽刺,也是这个拧巴理解的过程。以前说过的 thank you for misleading me,thank 的正面褒扬与 misleading 的反面 是拧巴的。理解放弃了默认,选择了 misleading,是客观sentiment对主观emotion的胜利。thank 的正面语义因此消失,被讽刺取代。
白:
“感谢你八辈祖宗”
我:
英语的 improve 是这样一个褒义词,以至于它不在乎宾语是正面反面。可是 维持 在汉语不是,因此“维持骚乱”的别扭感更强,除非是置于合适的上下文,或被语言共同体词典化绑架。

宋:
“这本书的匆忙的出版”和“这本书的匆忙地出版”都是合乎语法的,而且都是指称语。深入一层,“匆忙的出版”和“匆忙地出版”都受“这本书的”修饰,也都是指称语。再深入一层,“匆忙的出版”中的“出版”是指称语,“匆忙地出版”中的“出版”是述谓语。“匆忙的出版这本书”语法上是错的,“匆忙地出版这本书”没问题。一般来说,动词V的语用功能既可能是指称语,也可能是述谓语,依靠它的句法位置来区别。被“Adj的”修饰的V是指称语,被“Adj地”修饰的V是述谓语。修饰后得到的短语,“Adj的V”是指称语,“Adj地V”与V一样,既可能是指称语,也可能是述谓语,依靠它的句法位置来区别。
我:
基本同意宋老师。
顺便提一句,感觉与白老师对话的时候,常常是,似乎是两股道上跑的车,这不影响互相听得见;这两股道不是完全平行的 而是中间老有交叉点。仔细想来,估计是白老师是广度优先的对话算法;而我是深度优先的算法:一条路径不穷尽不愿意回头,就是所谓 “漂”或发散性思维。因为对话是在有限时空中进行,无论什么算法都不可能穷尽路径,因此就造成白老师提纲挈领 总站在云端俯瞰的效果,而深度优先的算法就成了啥了,捡了芝麻,丢了西瓜的印象。宋老师则不同,广度深度都有,但往往是隐而不发 一锤定音。董老师更是大师了 拈花微笑,howNet 拨千斤。就没有能超出 HowNet 的,简直就是如来佛的手掌心。
董:
“出版”,这对于Hownet曾有重要意义。HowNet当年就此要回答两个问题:第一,“出版”(或类似的“计算”、“分析”等)在汉语里也类似于英文既有动词词性,还有一个名词词性吗?这涉及在知网词典中,它们应有两个词条,还是只有一个词条?第二,“这本书的出版”和“这本树的不出版”,在理论意义上它们的区别是什么?
“出版”的问题,HowNet与宋老师是一致的。以前在我们对这个问题的说明时,我们说:“出版这本书”和“这本书的出版”中两个“出版”在核心语义上没有差别,所差的是:前者是有过程的,而后者是静态的,是一个事实。用比喻说,前者是一段视频,后者是一个镜头。这也就是宋老师的述谓性的和指称性的理论。HowNet基于这样的认识,“出版”这样的词语在词典中,只有一个词性,即动词,但对应着两个英文词条,动词和名词。
白:
“这本书的出版”揭示的结构强制现象概括为三句话:1、修饰语决定整体的词性;2、中心词保持原有的词性;3、修饰语填中心语的坑。
我:
Ontology 是逻辑的 高于语言的。在 ontology 的顶层 也有类似词类的东西,可以称作 逻辑类:逻辑动词 逻辑名词 逻辑形容词。这个思考在hownet 得到印证。我个人的这个思考发源于对世界语的钻研及其与不同类语言的比较。我学过法语 俄语 加上英语 汉语 世界语,有足够的表征支持跨语言、高于语言的逻辑类的探索。特别是世界语的构词法 对于这类研究的启示,当年感觉是醍醐灌顶。
白:
中心词的词性也可以“嫁鸡随鸡”,强制前保持原有词性,强制后由修饰语决定。此处特别容易走向拍脑袋。
我:
强制前强制后,原逻辑类都是恒定不变,它是这个语词概念的本质类别,不随句法词法而变。到了特定语言 会有一个类似的 field,俗称 pos,这个是可以改变的。但是传统上 nlp 定义的 pos 任务 很容易过火 过犹不及 结果是让开发者陷入依赖pos的误区(见【中文处理的迷思之二:词类标注是句法分析的前提】)。尤其是照搬英语pos做法到汉语的人 特别要警惕 pos 的陷阱。【迷思】里蕴涵很多只可意会的实践体会和哲学思考,说给世界听 但并不在乎世界听不听。陷阱本就是为人预备的 栽进去也没啥 不过是重复我们曾经的苦难而已。不说不忍,说了也就是菩萨心肠。

quote 需要说明的是,笔者并不反对先POS后Parser的中文处理策略,只是指出POS并非Parser的先决条件,还有一种句法直接建立在词典之上的一步走的策略。顺着这个思路,一步半的策略也许更好。所谓一步半,就是做一个简单的 POS 模块(算是半步)把词类区分中比较大路容易的现象标注好,并不求对所有词类施行标注。

这里要提的建议是:推向极端可以不做汉语 pos,为了工程方便 可以做,但不要过火 不能依赖。
董:
说得太对了。我们在HowNet 那本书的最后单有一章,讲的是中文。其中批评了宾州中文树库,说那是照着英文套中文。特别举得例子是他们标注:年平均(adv)-增长3倍,同句中的年平均(adj)增长率,中文真是如此吗?我们中文的哪本词典里有如此区分词性的。英文词典里look是动词还是名词表的清清楚楚。我们中文是到真实文本中浮动的。英文的文法是百姓的文法,中文的文法是汉语学家的文法。
清:
董老师分析的透彻!
我:
董老师做 HowNet 的30年,所经过的思考,是我们一般人难以企及和想象的,所以我说,真地就好像如来佛的手掌心,有时候我们自以为自己有什么创新思维,最多也不过是个孙猴子,还不等到得意,就发现董老师高高在上 拈花微笑呢。
白:
不过只要伪歧义控制得住,就算多几个POS,技术上也没什么大不了的。至少这不是个技术问题。
我:
问题是,这些都是相互关联的。多数人,特别是没有经过磨练的新毕业生,一头栽进去,根本就无法控制伪歧义。汉语处理一不留神就是个泥淖。
白:
毕业生学什么课太关键了,学了错的课,时间还不够用来消毒的。
杨:
精辟!

白:
NLP的精妙所在就是纵向不确定性(一个位置上取什么标签)和横向不确定性(哪两个标签之间有关联性,独享还是共享)互相交织,最后还给出一个确定的解。
我:
就好比一个迷宫。虽然说走出迷宫 并非只有一条路径 但能走出来的路径真心并不多,而且每条到达终点的路径都必然七曲八拐 暗礁险滩。可以展示最终的形态 很难展示历经的过程。有人认为 只要最终形态是相对确定的 这个路径就必然可以根据最终形态学出来。这就是黑箱子的哲学。似乎天然可行 也赢得了全领域 甚至全人类(大部分是外行)的理所当然的认同。我称它为学习乐观主义。有没有 catch 只有天知道 白老师知道。
白:
七拐八拐真心不是障碍,障碍是目标函数是什么。
我:
七拐八拐关涉多层,不也是毛毛虫的一个部分?

 

【相关】

中文处理的迷思之二:词类标注是句法分析的前提

[转载]【白硕 - 穿越乔家大院寻找“毛毛虫”】

【置顶:立委科学网博客NLP博文一览(定期更新版)】

《朝华午拾》总目录

计算语言学的尴尬

白:
我关心“老婆情人”在那个语境下为啥不是定中结构。
老王卖瓜自开涮,
创新形容瓜特甜。
老婆情人小三见,
买回刀劈报仇般,
我:
没看懂。似乎有个 context:
老婆情人小三见 == 老婆情人见小三 or
老婆情人小三见 == 老婆见情人小三 ?
诗人特权害死人
Nick:
老婆情人小三见==三缺一
洪:
老婆/情人/小三见
两者兼顾,读诗看图,歧义何出?误解消除。
情人/小三,心理概念;原型维度,因人而殊。
RW:
情人/老婆,心理概念;原型维度,因人而殊。
我:
情人(lover)与小三当然不同。小三虽然没有法统地位,但既然排了次序,就有了事实的地位(“事实婚姻”的事实)。因此还有小四小五之说,这个次序也可能有新来后到的意思,或反映了喜新厌旧,数字越大新人可能越受“老爷”的宠(沿袭三妻四妾的旧制度思维),虽然事实的地位在俗众的心目中似乎越低。
陈:
情人一般是有夫之妇?小三是未婚?
我:
情人比较浪漫,超脱,爱情唯上。与世俗的地位和次序脱钩,倒是有某种秘密的刺激。
Nick:
小三是有上位企图的,情人没有。so情人就是炮友的意思。法国人那种关系都叫情人?我:
情人一旦转成小三 就低下了浪漫的头 失去了独立性 成了金屋藏的娇。广义的情人 也可以转成夫人 实现从浪漫到世俗的脱胎换骨。窄义的情人 专对已婚而言 那是法国英国贵族爱玩的公开的秘密游戏。
白:
你们都是发散思维,就我死啃一个点,结果没人回应。
我:
白老师的问题是老婆小三之间的顿号,是怎么进入人的语言心理的?虽然根本就没看见顿号的影子。为什么顿号不是“的”?
为什么呢?因为大数据!
白老师这次不是“窃喜”,而是感叹心有灵犀了吧
@白老师 “大数据" 是不是你心中老婆情人parsing的标准答案
白:
@wei 大数据中,老婆情人的对举用法远多于修饰用法,这是肯定的。另外老婆的情人有个更简约的用法“情敌”,放着不用偏要拐着弯说,浪费能源。现实中两个因素都在起作用。
我:
白老师的问题是太能干 这个世界不够他玩的。又是语言学 又是金融平台 又是什么块什么链。否则的话 拉出来我们搭个档 做做 NLP 多刺激。就依照你那个 RNN 还是啥的路子走。别人的路子不敢信服。别人也很少懂这一边。
白:
身不由己啊
我:
说什么两条路线斗争 宗教门派之别 主流非主流 眼珠转与不转 这些都不是本质 本质就是鸡同鸭讲。隔行如隔山 同行也隔山。隔了山还讲个球。鸡犬之声相闻 老死不相往来。白马非马 计算语言学亦非语言学 只剩下语言的计算 这就是【计算语言学】的尴尬。这是一个非常奇怪的交叉学科 两路完全不是一个类型的人 没有 chemistry 没有基本的共同背景、世界观和方法学 没有共同语言  兴趣迥异 无法正常对话  更甭提恋爱结婚 最简单的办法 就是一派灭了另一派 眼不见为净。结果就是虽然被扫地出门了 语言学对于多数的殿堂内人 依然是格格不入 而又回避不了。某些主流 NLP 大牛 不懂语言学常识的 并不鲜见 这在任何其他学科都是不可思议的。
但是语言学比共产主义还更像一个幽灵,一直在殿堂徘徊 主流可以不转眼珠 可是心里并不是想象的那么有底气 一个潮流来 可以鸡血一下 忘记幽灵的飘荡 但幽灵始终徘徊。

【相关】

【文傻和理呆的世纪悲剧(romance tragedy)】

【科普随笔:NLP主流的傲慢与偏见】

没有语言学的 CL 走不远

老教授回函:理性主义回摆可能要再延迟10几年

【科普随笔:NLP的宗教战争?】

Church - 计算语言学课程的缺陷 (翻译节选)

泥沙龙笔记:从乔姆斯基大战谷歌Norvig说起

【NLP主流的反思:Church - 钟摆摆得太远(1):历史回顾】

【Church - 钟摆摆得太远(5):现状与结论】

《泥沙龙笔记:【钟摆摆得太远】高大上,但有偏颇》

【泥沙龙笔记:语法工程派与统计学习派的总结】

【科普小品:NLP 的锤子和斧头】

【新智元笔记:两条路线上的NLP数据制导】

置顶:立委科学网博客NLP博文一览(定期更新版)】

《朝华午拾》总目录

【河东河西,谁敢说SMT最终一定打得过规则MT?】

Xi:
@wei , 评论一下李明教授的机器翻译。我纳闷这年头这么多人跨界来和你抢食啊?

我:
评论啥,我对MT无感了,都。
我现在是,胸怀知识图谱,放眼世界大同。早翻过MT那一页了。
不过话说回来,学自然语言的人如果入行做的就是规则机器翻译,那是上天的赐福。新一辈这种人没有了,所以很多入行多年的人,看到的语言世界,还是井底的一线天。
如果你在没有平台支持下被逼着去做机器翻译,你有福了。你必须从头开始做词典、做 tokenization,做 POS,做短语,做 SVO 句法,你还要做双语结构转换、WSD 词义消歧,最后还有目标语的生成,包括形态生成、调序,修辞上的一些 final touches。
总之 方方面面 你必须全部做到 如果没有平台 没有专用语言 像我们做硕士论文那样用 general purpose language (COBOL,ALGOL,BASIC,甚至汇编)做,那就是在太上老君八卦炉里炼 没得不炼成火眼金睛 后去做 NLP 任何一个方面和应用 都洞若观火。
现在的 CL 硕士博士呢 动不动就下载一个软件包,瞅准一个子任务 譬如切词,譬如 sentiment,譬如WSD,哪怕是做 MT, 也不用涉及那么多的层次和模块。
老老年文:【立委科普:机器翻译】 但并没完全失效。还有这篇:【立委随笔:机器翻译万岁】。
SMT 不用涉及那么多层次 是因为迄今的 SMT 基本是在浅层打转 从来就没有做到深层,论深度和结构 远远不及我们 30 年前做的 规则MT。
马:
但是比规则的系统实用啊
我:
河东河西啊。
如今董老师的系统等也打磨经年了,很难说谁更实用。论精度 则绝对是后者强,甩出一条街去。
smt 的先驱应该是 ibm ,从加拿大议会英法双语语料开始的。

Guo:
Translation memory 算什么?

我:
说起这个概念,我还有掌故呢。以前记过,差不多也成了 MT 野史或外传了,见《朝华午拾:欧洲之行》,Victor 称作为 translation unit (TU)。他们的所谓的 Chinese Week,当时董老师也去了,我和刘老师也去了。傅爱萍大姐派人领我们参观了红灯区以后,并没有随着我们去参加这个活动。这个活动的设立与我当年为他们做的“汉语依存文法”的工作密切相关。
QUOTE 研究组的骨干还有国际世界语协会的财务总监,知名英国籍世界语者 Victor Sadler 博士,我在71届国际世界语大会上跟他认识。作为高级研究员,他刚刚完成一项研究,利用 parsed (自动语法分析)过的双语对照的语料库(BKB, or Bilingual Knowledge Base)的统计信息,匹配大小各异的翻译单位(translation unit)进行自动翻译,这一项原创性研究比后来流行的同类研究早了5-10年。显然,大家都看好这一新的进展,作为重点向我们推介。整个访问的中心主题,仍然是解答他们关于汉语句法方面一些疑难问题。他们当时正在接洽欧洲和日本的可能的投资人,预备下一步大规模的商业开发,汉语作为不同语系的重要语言,其可行性研究对于寻找投资意义重大。
索性把怀旧进行到底 《朝华午拾:一夜成为万元户》: 这是我为这个DLT项目所做的 Chinese Dependency Grammar 的故事。这篇汉语形式文法的原始版本有链接可以下载:Li, W. 1989. “A Dependency Syntax of Contemporary Chinese”, BSO/DLT Research Report, the Netherlands.  我的工作应该是中国做依存关系最早最完整的作品了。所谓 【美梦成真】 就是这么个来历,跨越近 30 年,纸上谈兵的 syntax 终于化为现实的 deep parser。
刚才一边吃晚饭,一边琢磨这段MT外传,觉得还是有几点可以总结的,笔记如下,各位指正。
(1) 荷兰这个多语 MT 计划本来是规则系统起家,用世界语作为媒介语,用的是依存关系文法的框架,实现的机制是 ATN (Augmented Transition Network),技术领头是德国语言学家舒伯特。
(2) 可是做着做着,剑桥出身的 Victor 博士想出了统计的路线,定义了一个在句法分析基础上、根据统计和记忆决定的可大可小的 Translation Unit (有点像我们用的“句素”的概念),做了实验验证了这条路线的创新,把整个项目在收尾阶段翻了个个儿。而这时候(1989年),其他的MT研究虽然也有 IBM 等开始的统计 MT,但没有一个达到这样的深度。
(3)事实上,直到今天,回顾这个科研创新可以看出,根据 parsed 以后的双语数据库的平行对比,从统计去找 Translation Units,比起后来多数缺乏结构、本质上是 ngram 记忆的 SMT,还是远高出一筹。
(4)在 SMT 中加入 parsing 并不是每个人都有这个条件,DLT 赶巧是先做 parser 做了四五年,有了这个基础。现在和今后的方向从宏观上来看是,SMT 应该重温类似 BKB 双语parsed平行语料库的尝试,走带入结构的道路,才有希望克服现在显而易见的结构瓶颈,譬如定语从句翻译的错误。

mei:
语言学家做MT注重语言的结构,深的浅的。我是ai出生,注重“知识“,互相通融的,但侧重点有区别。
Guo:
一谈到统计和规则,总不免让人想起,库恩的科学革命的结构。根本说来,统计和规则,对于什么是nlp,是有完全不同的定义的。站在统计的角度,古埃及文的解读,作者和鹰品的辨识,错别字的检查和矫正,文章可读性的分类,还有很多很多这样的,都是历史悠久的成功故事。说历史悠久,是因为他们早于乔姆斯基太多年了。但是从规则的角度看,这些大概都不属于nlp。

我:
规则也并非一定要是句法的规则,任何 patterns 包括 ngrams 都可以是规则。学习派用的是 ngram 的分布统计,规则派很难量化这些 ngrams 的统计数据,只好把“gram”定义为从线性序列到句法单位的一个动态 unit,用结构化的深度 弥补统计性的不足。

Guo:
其实对于mt,统计这一派也更多的是从"机助"翻译甚至阅读来看问题。不管大佬们怎么吹牛,统计这一派从来不以理解人模仿人为目标。他们是非常工程性,实用主义的。

我:
当 gram 被定义为我导师刘倬老师所阐述过的“句素”以后,产生了两个飞跃:
第一是距离从线性走向平面,甚至远距离现象也可以被这种 “ngram” 抓住了: 这类例证我此前显示过很多。第二是 gram 本身从直接量 (literal) 提升为一个具有不同抽象度的 features 的语言学单位总和,连ontolgy亦可带入。这两个飞跃使得应对自然语言错综复杂的规则,变得切实可行。
smt 我们迄今看到的流行成熟的系统,譬如大投入造就的百度和谷歌MT,其缺乏结构和parsing支持的缺点是如此显然,结构瓶颈随处可见。可反过来看董老师在群里显示出来的传统规则+知识 的系统,结构的优势不言而喻。
也许从 scale up,从对付鸡零狗碎的成语性的 ngrams,董老师这类系统目前还无法匹敌百度谷歌 smt,但是假如以董老师系统为核心,给以同等的资源投入和维护,我觉得百度系统无法打得过规则 MT。当然 最佳的办法是二者的某种结合,取长补短。我想说的是,如果硬要硬碰硬的话,在同等投入的基础上,谁敢拍胸脯说主流 smt 一定会胜过规则 mt 呢?
现在是不平等比较,根本不是 apple to apple 较量。历史把 规则mt 推下了主流舞台,但是 smt 的人无论多么傲慢 也还是应该看得见自己的短板和规则mt的亮点。

Guo:
统计这一派,其实有很多人试图引入结构,但鲜有能够有效减少perplexity的。核心的争论,就是问题到底出在哪儿?一种观点是,结构,并不承载太多的附加信息。另一种就是,我们还没有发现更好的更有效的数学模型。这就是为什么,好些人对深度神经就像打了鸡血。

我:
heterogeneous features 引入后的 evidence overlapping 以及 perplexity 等,是研究课题,不过说结构不承载太多附加信息等价于说 ngram 线性的 model 无需改变,这个 model 在20多年中已经被推向了极致,没有多少油水了。白老师说话,model 不对,语言长得啥样框架上就没留下空间,再多的数据,再deep的学习,也是必然遭遇瓶颈的。
的确在某些粗线条任务中 譬如 document classification,一袋子词的ngram模型已经足以满足应用的需要,精度已经够高,结构即便加入也改进余地不大了:这不是我们需要讨论的。我们关注的都是那些显然遭遇瓶颈的任务,包括 MT、包括 IE、包括 Sentiment Analysis,这些任务,显然统计的路线在没有结构助力下,深入不下去。
到目前为止 纵然有一些带入结构的尝试,但很可能是浅尝辄止,还不到结论的时候。
深度神经是一种训练的算法,与语言的结构深度没有必然联系。事实上 迄今为止 对于 text NLP 的深度神经的尝试,除了专门做中间件 parsing 的 research 如 SyntaxtNet 外,对于 NLP 应用方面的任务,基本上还是在语言浅层进行。带入结构的深度神经用于 text NLP, 到底有几家在做?如果没做 或还没做出结果来 那么所谓 Deep Text 就是有意无意的误导(见 【遭遇脸书的 Deep Text】 )。

杨:
我理解:深度学习主要是可能在语意理解领域 可能会有所改变

我:
譬如?
哪些任务是深度神经擅长、文法工程短板的语义理解呢?
凡是条分缕析的细线条任务,想不出来深度学习可做,文法工程不可做的,无论语义如何落地。

杨:
比如文字到图像的映射搜索呢?我不懂,瞎说的。当然 这个目前远远不成熟 只是猜想

我:
这个还真是没想到,因为其中一端是 text (captions?),可另一端是 image,对于学习,无论神经的深浅,这个任务只要有大量的 data (带有 captions 的 图片集),就是一个很自然的学习的任务。而对于规则,这种形式化的语义落地(映射到图像)在图像那边如何处理并integrate 到规则系统中来对接,似乎没有显然而见的自然接口。

杨:
不过 图像这块就不够成熟 要做这个且早呢。

我:
好。短板不怕,只要心里有数就好。早就知道规则的“经典”短板了:
手工规则系统的软肋在文章分类】 。
QUOTE 人脑(规则)可能顾不上这么多细微的证据及其权重,但是人脑往往可以根据不同状况抓住几条主线,然后在其中调控,达到解决问题。在 deep parsing 这个 NLP 的关键/核心领域,规则系统的优势更加明显
再有就是搜索。关键词检索的鲁棒、对付长尾 query 的能力,是规则系统难以匹敌的。
但是如果把关键词搜索作为 backoff,那么加入结构的精准智能搜索(我们叫 SVO search)就顺理成章了。

 

【相关】

立委科普:机器翻译
立委随笔:机器翻译万岁

朝华午拾:欧洲之行
朝华午拾:一夜成为万元户
美梦成真
手工规则系统的软肋在文章分类
遭遇脸书的 Deep Text

Li, W. 1989. “A Dependency Syntax of Contemporary Chinese”, BSO/DLT Research Report, the Netherlands.

【置顶:立委科学网博客NLP博文一览(定期更新版)】

《朝华午拾》总目录

【关于NLP方法论以及两条路线之争】

【新智元笔记:工程语法和深度神经】

【新智元笔记:李白对话录 - RNN 与语言学算法】

《新智元笔记:再谈语言学手工编程与机器学习的自动编程》

《新智元笔记:对于 tractable tasks, 机器学习很难胜过专家》

《新智元笔记:【Google 年度顶级论文】有感》

《新智元笔记:NLP 系统的分层挑战》

《泥沙龙笔记:连续、离散,模块化和接口》

《泥沙龙笔记:parsing 的休眠反悔机制》

【立委科普:歧义parsing的休眠唤醒机制初探】

【泥沙龙笔记:NLP hard 的歧义突破】

【立委科普:结构歧义的休眠唤醒演义】

【新智元笔记:李白对话录 - 从“把手”谈起】

《新智元笔记:跨层次结构歧义的识别表达痛点》

立委科普:NLP 中的一袋子词是什么

一切声称用机器学习做社会媒体舆情挖掘的系统,都值得怀疑

立委科普:关键词革命

立委科普:关键词外传

《立委随笔:机器学习和自然语言处理》

【泥沙龙笔记:语法工程派与统计学习派的总结】

【科普小品:NLP 的锤子和斧头】

【新智元笔记:两条路线上的NLP数据制导】

《立委随笔:语言自动分析的两个路子》

Comparison of Pros and Cons of Two NLP Approaches

why hybrid? on machine learning vs. hand-coded rules in NLP

Why Hybrid?

钩沉:Early arguments for a hybrid model for NLP and IE

【李白对话录:你波你的波,我粒我的粒】

【泥沙龙笔记:学习乐观主义的极致,奇文共欣赏】

《泥沙龙笔记:铿锵众人行,parsing 可以颠覆关键词吗?》

泥沙龙笔记:铿锵三人行

《泥沙龙铿锵三人行:句法语义纠缠论》

【科普随笔:NLP主流的傲慢与偏见】

【科普随笔:NLP主流最大的偏见,规则系统的手工性】

再谈机器学习和手工系统:人和机器谁更聪明能干?

乔姆斯基批判

Chomsky’s Negative Impact

[转载]【白硕 - 穿越乔家大院寻找“毛毛虫”】

【语义计算沙龙:乔老爷的围墙,community 的盲区】

【新智元笔记:语法糖霜论不值得认真对待】

【科研笔记:NLP “毛毛虫” 笔记,从一维到二维】

【泥沙龙笔记:NLP 专门语言是规则系统的斧头】

【新智元:理论家的围墙和工程师的私货】

泥沙龙笔记:从乔姆斯基大战谷歌Norvig说起

【Church - 钟摆摆得太远(2):乔姆斯基论】

【NLP主流的反思:Church - 钟摆摆得太远(1):历史回顾】

【Church - 钟摆摆得太远(3):皮尔斯论】

【Church - 钟摆摆得太远(4):明斯基论】

【Church - 钟摆摆得太远(5):现状与结论】

《泥沙龙笔记:【钟摆摆得太远】高大上,但有偏颇》

自给自足是NLP王道

自然语言后学都应该看看白硕老师的“自然语言处理与人工智能”

语言创造简史

Notes on Building and Using Lexical Semantic Knowledge Bases

【NLP主流成见之二,所谓规则系统的移植性太差】

Domain portability myth in natural language processing (NLP)

【科普随笔:NLP的宗教战争?】

Church - 计算语言学课程的缺陷 (翻译节选)

【科普随笔:NLP主流之偏见重复一万遍成为反真理】

坚持四项基本原则,开发鲁棒性NLP系统

NLP 围脖:成语从来不是问题

NLP 是一个力气活:再论成语不是问题

立委围脖:对于用户来说,抓住老鼠就是好猫

《科普随笔:keep ambiguity untouched》

【科研笔记:NLP的词海战术】

在构筑一个模型时,枚举法是常用的必要的强盗分类

没有语言学的 CL 走不远

[转载]为什么谷歌搜索并不像广泛相信的那样主要采用机器学习?

手工规则系统的软肋在文章分类

老教授回函:理性主义回摆可能要再延迟10几年

每隔二十年振荡一次的钟摆要多长?

【系统不能太精巧,正如人不能太聪明】

《泥沙龙李白对话录:关于纯语义系统》

【泥沙龙笔记:语义可以绕过句法吗】

一袋子词的主流方法面对社交媒体捉襟见肘,结构分析是必由之路

《通用的机器人都是闹着玩的,有用的都是 domain 的》

 

关于 NLP 以及杂谈

关于 parsing

【关于信息抽取】

关于人工智能

关于NLP体系和设计哲学

 

《朝华午拾》总目录

【置顶:立委NLP博文一览(定期更新版)】

立委NLP频道

 

遭遇脸书的 Deep Text

前几天脸书发布 Deep Text 新闻,在AI和自然语言理解领域引起热议,媒体上也闹出很大的动静。昨天笔者第一次亲身遭遇脸书的 deep text, 确认了其浅层无结构的本质,甭管它训练了多少层。
我跟女儿对话总是用脸书,她的圈子都用脸书,基本不用微信。她遇到一个烦扰有点着急,我就告诉她 take a deep breath, 没想到脸书立即跳出了 Uber 的链接:我只要一按钮 出租车就会来。
天哪 这就是所谓 deep?很可能不过是个基于 ngram 的分类系统,哪里有 deep nlp 和结构的影子?
大概训练集里有不少 Take a ride, Take a cab,  结果 take a deep breath 就也成了“出行”类事件了。这种信息抽取要是在 parsing 的结构基础上,哪里会出这样的笑话。
报道说什么deep text理解语言接近人的水平,牛皮吹没边了。比我们 parsing 支持的抽取能力和精准 相差何止以里计。
这其实不是意外的发现,因为机器学习界一直就是在浅层做NLP,没有深度,没有结构,没有理解,缺乏细线条的分析 (parsing) 能力,大多是粗线条的分类 (classification) 工作。
对于分类系统 只有输入text大 机器学习才有效。如果是短消息,基本就是瞎蒙,关键词密度在短消息中没有了优势,缺乏 data points 的证据。
事实上,迄今的几乎所有的nlp应用,基本局限于无结构,机器学习 deep 不 deep 没有改变这一点。这很可能是为什么深度学习(DL)在 text 方面似乎不给力的症结所在。
宋老师前两天说话,学习 deep 了 的好处是可以消化更多的训练数据,但是数据的增加永远是线性的,而 text 里面的结构性决定了语言的组合爆炸,因此深度学习不会因为增加数据而根本改观,稀疏数据依然是挑战。ngram 与 bow(bag of word) model 不变,再深的训练依然是在语言浅层挣扎,只能做粗线条的 nlp,却难以胜任细线条nlp的任务。ngram 只是语言结构的拙劣近似,缺乏结构是迄今的死穴。
parsing 基础上的事件抽取(event extraction)比ngram上的事件分类(event classification)高出岂止一头,一细一粗,一精一庸。