大家好,我是李维的数字人分身。 今天谈一下大模型的问题。L LM 的命门已经蛮清晰了:幻觉+随机性。 幻觉与随机性有关联,但角度和外延不同。 幻觉的主要表现就是细节遗忘+细节编造,所谓“一正胡八”。 其所以遗忘,是因为该信息的冗余度不够,大模型只能把它当成数据噪音。 其所以编造,是因为语言模型的丝滑本性决定的: 不能留白,需要找到最符合语言习惯的细节替代品。 于是张冠李戴、指鹿为马了。 随机性比幻觉表现更加广泛,表现为结果的不稳定性,那是所有概率模型包括LLM的本性。 牵涉到的不仅仅是细节的随机编造,也包括解决路径的方方面面的不稳定(例如 LLM agent 的思维链,计划,行动,反思和反应等等)。 LLM 里面的确积攒了很多历史解决方案,LLM 在合适的 prompt 催逼下也的确可以把这些方案勾引出来。 但是这些解决方案具有随机性,无法应对长线条的业务逻辑。 据说,目前的水平是5步限制,任何线条超过5步,绕5个弯,LLM 的 agents 就晕菜了。 这些表现注定了LLM在两类应用场合不同的命运: 第一类是生成创意类的场合,还有聊天的场合,那完全是洗牌、碾压。 那种场合追求的不是正确性,而是多样性、创造性、丝滑性和 human-like。 在这里,幻觉+随机性与创造性是同义词,起的是好作用。 第二类是垂直领域知识场景,以及有些需要精细逻辑或计算的场景。 这里基本上不能容忍幻觉+随机性。 这第二个场景,本质上需要跳出三界外。 就是说,很可能需要跳出大模型,去寻找尽可能具有某种通用性的 beyond LLM 的解决方案和框架。 把 LLM 只当成一个重要的资源来利用,当成 api 来调用,而不是指望LLM主导来搞定领域。 此外,LLM 还有一个问题。 在我们欢呼 LLM 听懂人话的同时,我们现在所追捧的 prompts 变得特别重要。 所谓 prompts 就是人话指令,但是人话本身也有沟通的“艺术”。 这种艺术化的交互手段,作为与机器打交道的 vehicle,具有自然语言本性上的短板,就是模糊性、线条性,缺乏层次、结构和逻辑。 这其实是交互的进化,效果的退化。 交互上,只要会讲人话,大家都突然成为“码农”了,可以直接对机器吆三喝四,感觉很爽,很亲民,很接地气。 机器终于低下高贵的头颅,开始迁就人类的模糊。 但是效果上肯定是退化的,因为指令不再是明确的、逻辑的和精细的。 这是自然语言代替电脑语言难以回避的表达缺陷,一定会影响LLM的实效。 这些都是大模型从本性上带来的问题,也是目前做大模型领域落地人员的共同挑战。 大家都在苦苦挣扎,试图找到解套的良策,希望在大模型与领域对齐的过程中,能够外挂领域数据和知识库,探索场景业务逻辑的带入。希望能有突破。 我是出门问问李维,每次两分钟,与您分享大模型有角度的思考。
大模型的落地现状和前景
发布者
立委
立委博士,问问副总裁,聚焦大模型及其应用。Netbase前首席科学家10年,期间指挥研发了18种语言的理解和应用系统,鲁棒、线速,scale up to 社会媒体大数据,语义落地到舆情挖掘产品,成为美国NLP工业落地的领跑者。Cymfony前研发副总八年,曾荣获第一届问答系统第一名(TREC-8 QA Track),并赢得17个小企业创新研究的信息抽取项目(PI for 17 SBIRs)。 查看立委的所有文章