【一日一析:“对叙军事打击是一次性行为”】

“对叙军事打击是一次性行为”

对不起,不是对“性行为”或成人话题有偏好,可是这两天老在想这个案例,疑似语言学走火入魔。微信群最近疯传的这个视频,字幕如上,属于 #中文理解太难了# 一类歧义案例,可读出来却不是,那位女播音员低下头,读起来是这样的:“对叙军事打击是一次性…性行为”。

估计是她没有预先看一遍稿子,结果突然看到这三个字,有点不知所措,结巴了。我们 “parse parse see see”:

如果结巴或停顿不用省略号记录的话,就是这样的:

这里面牵涉到的语言学和计算语言学在哪里呢?有什么可琢磨的点?

首先,文句是歧义的(因此可以休眠唤醒:前两天论过,唤醒的时候,把“一次-性”中的后缀“性”剪枝,改嫁给“行为”做定语,只是一个结构微调整,整个NP大局不变,比起VP/NP歧义的cases如“烤红薯”的休眠唤醒要简单一些),到了播音的时候,因为增加了一个“性”而变得没有歧义了。

更有意思的是,为什么没有歧义了,听众却仍然可以排除听到的结构,反而还原为另一种结构解读呢?

一种说法是,听众有常识,说“军事打击”是“性行为”,违背常识。这样解释自然不错。

另一种说法是,语音的音调和重音这些文字通常不记载的痕迹表明播音员口误了,慌张了,结巴了,因此我们还原到另一个结构的解读。如果是正常的阅读,除了两个性之间的停顿外,“一次性性行为” 中第一个“性”是轻声,重音在 “(一)次” 上,第二个“性”则是重音,可是播音员的第二个“性”读出来反而含混了。由此可见,两个 x 很可能是一个 x 的重复或结巴,因此人脑 parse 的时候是利用了 reduplication 机制处理了这个重叠,从而把原结构的歧义凸显出来,为另一种解读留下了空间。

在这个话题的延长线上,我们看某贪官被双规后对其权色交易的辩解:“这次性行为是一次性行为”。

改成“第一次”又如何呢?

有问,这“第一次”词典化了,如果是“第102次”看系统还能如此解析吗?

“这次” 、“第一次”和 “一次” 有啥不同?为什么决定了其后三个字的不同解读?parser 里面到底有什么神机妙算在内可以做出这种区分?

先不说模拟人脑的 parser 如何实现的,说一说人脑怎么 parse 的。人脑大概用的是排除法。另一个结构的解读呈现下列形态:这次 x 是一次 x,这是一句没有信息量的语句(this x is an x)。因为有定(the)或无定(a)的量词结构是很虚的东西,所以上句结构从实体概念看就是: x ISA x,逻辑上的同义重复,基本没有信息。有信息的 ISA 句应该有一个逻辑上的区分量 y(百科全书中概念定义的典型句式):x ISA y x’ (x belongs to x’), 譬如:”贪官就是违法乱纪的官员”,其中 “违法乱纪” 就是 y.

同理,“一次性” 也是 y(“第一次”也是y), 人脑于是排除了无信息量的结构解读“一次-性行为”,大家不约而同的采纳了具有信息量的常规 ISA句式的解读 “一次性-行为”,虽然理论上的结构歧义依然存在。至于,如何让电脑实现人类的歧义辨识语言认知这一套,那是另一个章回了,先打住。有没有下回分解也说不定了,看彼时的情绪吧。兴起而码字,兴尽而收笔,这是自媒体的好处不是?

 

【Parsing 标签】

1 词类:V = Verb; N = Noun; A = Adjective; RB = Adverb;
DT = Determiner; UH = Interjection; punc = punctuation;

2 短语:VP = Verb Phrase; AP = Adjective Phrase; NP = Noun Phrase;
VG = Verb Group; NG = Noun Group; NE = Named Entity; DE = Data Entity;
Pred = Predicate; CL = Clause;

3 句法:H = Head; O = Object; S = Subject;M = Modifier; R = Adverbial;
(veryR = Intensifier-Adverbial); NX = Next; CN = Conjoin;
sCL = Subject Clause;oCL = Object Clause; mCL = Modifier/Relative Clause;
Z = Functional; X = Optional Function

 

 

【相关】

《一日一析系列》

【语义计算:李白对话录系列】

《朝华午拾》总目录

发布者

liweinlp

立委博士,自然语言处理(NLP)资深架构师,Principle Scientist, jd-valley, Netbase前首席科学家,期间指挥团队研发了18种语言的理解和应用系统。特别是汉语和英语,具有世界一流的分析(parsing)精度,并且做到鲁棒、线速,scale up to 大数据,语义落地到数据挖掘和问答产品。Cymfony前研发副总,曾荣获第一届问答系统第一名(TREC-8 QA Track),并赢得17个美国国防部的信息抽取项目(PI for 17 SBIRs)。立委NLP工作的应用方向包括大数据舆情挖掘、客户情报、信息抽取、知识图谱、问答系统、智能助理、语义搜索等等。

发表评论