【一日一parsing:休眠唤醒的好例子】

白:
IPTV首页广告语“IPTV,电视新看法”。
需要休眠唤醒的好例子。

我:
t0796a
对,这个 hidden ambiguity 与 “难过”、“好过”一样,可以也应该休眠唤醒。如果真想做的话,就在“看法”的词条下,在句法后做一个词例化规则:
查一下“看法”(默认词义:viewpoint,有个 human 的坑)的 Mod 来唤醒第二条路径(词义)。
查 Mod 的条件有宽松两个选择,可以根据大数据测试的质量来权衡定夺:
(1)宽的话,如果 Mod 不是 Human,那就唤醒
(2) 窄的话,如果 Mod 是“看”的搭配词(看电影、看电视、看戏、看热闹、看耍猴 etc),那就唤醒

白:
作为一个词的“看法”有两个坑,“谁”对“什么”的看法。“谁”即使锁定到human和“电视”不搭调了,还有“什么”可供填充。所以,单纯从一个坑的不匹配,还不足以翻盘。需要“看-电视”这样的强搭配来推波助澜里应外合。

我:
好!
唤醒的是句法层面的定中关系(默认的是词典的合成词,可以看成词的黑箱子,也可以看成是词法内部的定中关系):“看-法”(而不是“看法”),语义落地在 MT 上的表现就是选择第二个译法:way of 看。因为搭配找着了,MT 也就可以把“看”的翻译从默认的“see”改成搭配的“watch”:
IPTV,电视新看法 ==》
IPTV, a new way of watching TV (而不是 TV’s new viewpoint)
这个思路是没有问题的 虽然需要花点儿力气。至于选择做还是不做 那是另一个问题。
在“难过” vs “难-过” 这样的case上,我们做 sentiment,是选择了去做,用到上述休眠唤醒的招术,把表达主观负面情绪的默认的“难过”解读,语义落地为表达客观负面情形的“难-过”。见 【立委科普:歧义parsing的休眠唤醒机制再探】 。

梁:
“IPTV,电视新看法” 这句话,连我都休眠了好一阵,刚刚被唤醒。
语义落地到 MT, 是 “ IPTV, a new way to watch TV” ?
so it is either, 一种看电视到新方法, or 一种对电视的新的看法? ”看法“ could be “opinion”?

我:
广告跟段子一样,故意弄这些,为了俏皮,加深印象。
可喜的是,至少我们寻到了解决这类段子似的俏皮话的计算机实现的路径。
休眠唤醒的事儿,以前在语义落地的时候“自发地”做过,但从来没有总结到现在的高度,可以有意识地推广运用。这是在本群与白老师等探讨的收获。
hidden ambiguity 和段子这类的parsing,以前一般都认为是难以企及的语言难题。至少现在不是那么遥不可及了。

梁:
想想这事是挺有趣。“看法”,本来挺强劲的结合,硬是给左边的“电视”拆开了。这类暗中较劲,猜想、比较、争吵,分裂,结合,settle 的过程,人的大脑 parsing 的时候,可能也有这样的过程。据说人思考时经历一种微型达尔文过程。

白:
【转神段子】航拍记录显示,湖北已经基本都是湖,找不着北了。
看看如何休眠唤醒。

K:
他伸出双手,要露上两手。

我:
唤醒啥? “找不着北” 是成语:
t0707a

白:
湖北两个字,只剩一个字了 另一个字找不着了
元层次和对象层次的纠缠

我:
并不影响语义理解

白:
影响段子理解

我:
俏皮的定性 如果也是语义的一部分 可以利用机械扫描匹配 来发掘 无需与句法层发生纠缠

白:
总之是要吃回头草

我:
不属于核心语义。核心语义是 湖北这个地儿现如今到处是水 方向辨别不清了

白:
核心语义没发生颠覆或荒诞化 只是附加了一层元层次上的俏皮。段子理解,有颠覆型的也有附加型的。

我:
“伸出双手 露上两手” 同理 同机制 也可以扫描匹配发掘 后半部也是成语 唤醒的是成语的非成语解读。这与切词中的 hidden ambiguity 同理。

白:
俏皮也是附加。还有我之前举的例子,“贾宝玉托举林黛玉,纯粹是多此一举”。先导词语素的重叠使用。

K:
电视的新看法 看法有了非成语语义属于唤醒

我:
Longest principle 默认一个多语素词的黑箱子性质,但在特定的上下文中 可以唤醒句法透明的解读。
t0707b

K:
露上两手 多此一举 是否与之类似呢?唤醒了手与举的非成语语义?

白:

我:
就是。词法的内部关系 唤醒为句法的外部关系。哪怕词法句法是一脉相承 平行的,句法解读与词法解读 在语义和概念层面是很不同的。英语类似的 hidden ambiguity 有blackboard 解读为black board

K:
感谢二位老师
我理解 成语语义的整体性与成语内部结构的潜在可分解性会影响休眠唤醒
比如 新看法 作为成语有其常用语义,但其内在结构可分解,(新(看(法))),这种结构分解为 看法 增添了新的语义。这与分词中的组合型歧义有关联。何时分,何时合,可能单在分词层面难以完成,有什么好的解决办法吗?

白:
先说没有外部刺激是不该拆开来的
然后再说外部刺激可能有哪些特征
比如,重复。

 

【相关】

立委科普:歧义parsing的休眠唤醒机制再探】 

泥沙龙笔记:NLP hard 的歧义突破

【新智元:parsing 在希望的田野上】

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【语义计算沙龙:Parsing 的数据结构和形式文法】

白:
如果完全把句法还原为左括号找右括号,规则就是多余的。只需要词典和原则。
我:
不必那样极端。
作为思路,是可以的。其实,HPSG 那些比较极端的 lexicalist 学派就主张,只有三五条“组合原则”。然后一切从词典出发,根据原则配对。HPSG 那样主张显得可行,是因为他们把 FEATURE structure 推向了叠床架屋的极致。一个词条里面的 SUBCAT 就是无比复杂的结构。SUBCAT 里面事先预备好了组合的各种可能性,当然只靠组合原则就ok,可是那是一条看上去美 实践中难缠的路线。
白:
关键错不在这,而在复杂特征集本身是一个错误的数据结构。
方向错了,不应该“合”而应该“拆”,拆到最简。
我:
太精巧的 typed feature structure (里面还有厚厚的一层 hierarchy,预先定义好,叫 signature),使得系统非常“脆弱”。对这个 structure 的任何改动,都是全局的改动,影响所有的词和短语。
白:
而且他还没放弃PSG,费二遍事。
我:
为了应对这个庞大的structure,只好鼓励使用 macros,macro calling macros,表面上精简了词典,实际上把词典和内含的潜在规则弄得不可读,不可维护。
白:
其实DG词例化大可以避免这些麻烦
我:
宏这个东西 极易滥用。宏的自然边界稍微不清晰 不直观的话,超过一层的宏调用 就把系统弄得跟密电码一样。初学的人以为自己很牛,宏调宏,似乎规则或词典越有层级越显得自己高明:我能玩转,你看不懂,也玩不转。
扯。
规则扁平化才是正道。宁肯冗余,也不能滥用宏调用。规则与规则的独立是原则 即便不能完全做到 也应该时刻警醒自己。
白:
我恰恰在说那些是可以避免的。扁平化的规则和单子化的词典是一致的。
我:
单子化??
白:
就是数据结构没层次
我:
MY GOD
我得去找找鲁迅的那个条幅 就是对瞿秋白写的那个 谬托知己的那个。
数据结构没层次是高境界
张:
大湿极
我:
但是更高的境界是没结构后面留了有结构的后门。这个后门完全可以独立管理 独立经营。再说下去 就差不多泄露天机了。
白:
卖单和买单也可以形成结构后门
对倒什么的
甚至伞型信托
我:
这个听不懂了
白:
卖单和买单
我:
数据结构是规则系统的大学问。stay simple stay foolish 还要留后门 暗度陈仓。不留后门 连 HowNet 都容纳不了。
在很多年以前,在上个世纪,我跟刘倬老师做MT系统。当时就开了个后门 我们向外宣称 起了个很响亮的名字,叫“背景知识库(BGKB)”,查当年的老论文,还有这一段。这个后门就是我提议刘老师允准的。
张:
都经历过了~~~
我:
当时其他的MT系统,譬如一个知名的系统 在 Texas,西门子资助的,好像叫 Metal(??),做德英,他们整个系统才用了 8 个 semantic features,已经被认为是很高级 很成熟的系统。
张:
后门太多屋便不在
我:
我们来了个理论上开放的背景知识库,天壤之别。可是我们仍能保持结构的极度简单。
迈:
大巧若拙@wei
张:
保持简单不简单,台湾三毛说的
我:
复杂的层级系统 并非一定需要精巧的数据结构去装。
张:
层级系统是指扫描的遍数?@wei
白:
扫描是可以流水的,不存在遍数概念
我:
其实这个道理 学过电脑 Introduction 的都知道:
高级语言的东西 编译成代码 就扁平化 低级化 但功能等价。低级到极限 就剩0和1了
HPSG 那一路算是另一个极端。当年对那一套数据结构也入迷过,很逻辑,很美。就是像个玻璃美人,不大敢碰她。可以远瞻 近则亵。再加上一个 unification 的优美操作,浪漫得很。里面没有丝毫强勉:一切都是理想世界的自由恋爱 你情我愿 极度和谐。任何层面的任何一点信息的冲突,都会导致 unification 失败。unspecified 信息在不同层面恰到好处地被充值,一旦充值,矢志不渝,决不允许翻案。没有过程性,不分头和尾。
白:
这个还是要反对一下,程序是图灵等价的,高级语言是必须的。自然语言是毛毛虫,离图灵等价差好大一截,用单子化的标签已经enough。二者不具有可比性。
我:
开始学 Prolog 和 HPSG 的人,几乎不可能不被迷住。日本人被迷住的结果就是闹了个五代机项目。栽在不接地气.
白老师 高级语言的必要性是自然,更高级的nlp语言的必要性 也是无需证明的。很难想象没有高级语言的软件世界,就如很难想象没有某种形式文法的parser一样。
几个月前 有一位貌似白人老工程师的 Linkedin 联系 说他用汇编写了一个高效精准的自然语言 parser,问我要不要看 他可以免费 license 给我用 因为他认为我可能是知己。我只好礼貌“谢”绝了,没那个功夫,也不存在好奇心。
用 general purpose 高级语言做 NLP toy,我们都做过的,硕士项目便是。完全可以想见汇编做的是个什么样子。反正是程序,见到什么做什么,图灵可以随心所欲。一 scale up 就完了,你就是有十个脑袋也 hold 不住它。
自然语言的毛毛虫 绝对不是随心所欲的图灵 可以不是 2 型 或 3 型 但必须有型。没有规矩 不能成方圆。
乔姆斯基的伟大在于他发现了语言是有型的,并试图给型做数学定义。
乔姆斯基的误导在于他非要证明某个型(3型)是不适合自然语言的,隐含的指向是2型。他老人家也没重视和考察过自然语言的分层,以及这个“型”与“层”的关系。他的形式系统于是只作用于一个平面,在立体架构中没有说法。这样作用于单层平面的型,对于电脑语言的 parsing 也许足够,但对自然语言就有些力不从心,似乎抓住了一些,又似乎总不贴切。就是预制了几双鞋子,可是脚总不配合。他老人家到今天也不认识毛毛虫。

【相关】

【语义计算沙龙:乔老爷的围墙,community 的盲区】

乔姆斯基批判

[转载]【白硕 – 穿越乔家大院寻找“毛毛虫”】

【科研笔记:NLP “毛毛虫” 笔记,从一维到二维】

【泥沙龙笔记:NLP 专门语言是规则系统的斧头】

【新智元:理论家的围墙和工程师的私货】

关于 parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

【李白张61:长尾问题种种】

李:
欢迎金老师。从理转文 学语言学的 往往功力深厚 别具一格。白老师 还有语言所的前辈范继淹先生 都是证明。

白:
这里是NLP的一大窝点,每天都有扯不完的话题。
“白总,您可以给我一点您的简介,关于区块链的文章我来报选题不?”
看看这个“可以……不”之间经过了多么漫长的旅途。

李:
这个“可以不”肯定是搭配不上了,硬做也不值得,主要还是看看怎么凑合吧?当然是用 Next 把局部parses先patch起来,这样至少通道是有的,想做功的话,余地在。
t0704a

白:
从技术层面来讲,我们可以将8.11之后的人民币汇率形成机制简单表述为“双锚相机转换机制”。
这里的“相机”,谁的机译系统能翻对?
aaa

李:
not bad

白:
bbb
全是camera

李:
不是 camera 是啥?不懂术语。
谷歌这次及格了。涉及汉语的MT,谷歌总是比百度差或略差。谷歌干脆 license 百度得了,至少中文MT。

白:
take actions accordingly
这哪是术语。地道的中文。

李:
那就是我中文不行。哦,相机-见机 而行
双锚相机是什么相机?

白:
在没有camera的时候,就有这个“相机”

李:
但是大数据把它冲得快没影了

白:
我朋友圈转发了FT这篇文章,一看便知。

李:
相机是现代高频词。一个不懂行的人,看到这一段虽然不懂,但是心里在问:
“双锚相机是个什么相机?”

白:
双锚,也不修饰“相机”,他俩都是状语,修饰“转换”。

李:
那是你懂。对于不懂domain的人 不是这样的。
cf:“单反相机转换机制”

白:
双锚vs单反,完美的对仗。

李:
如果汉字保留“像机”不用“相机”,可能不至于。
一个 real life MT 很难为了一个几乎从来不用的 WSD 的选项,做啥特别的功夫。不单不合算,而且太容易弄巧成拙了。对于 trained model, SMT 根本就没有这个data;对于规则MT,也不大值得做。拉倒好了。

白:
这种逻辑,等于告诉用户,你就从了吧。

李:
对于极小概率的现象,如果真要做,那就尽可能词典化。词典化或 expert lexicon,没有啥副作用,可以应对长尾。任何概括化的努力,都容易亏本。

白:
极小概率累计起来就是长尾

马:
谋求单反相机起义。造一个,哈哈

白:
在不同formalism下,亏本与否可能结论大不相同。比如,如果formalism天然就是词例化的,就不存在弄巧成拙的问题。满世界都是拙。

张:
极小概率的词典化是规则系统最可爱而可贵的品质和能力

李:
可不,满世界都是拙,高高在上的精英规则就可以很光鲜。词例化 or expert lexicon 也还是不时需要与上面的合作。譬如句型的变式。合作的方式有不同。有句法语义一体的合作方式,也有先句法后语义的合作方式。各有利弊。

张:
这种拙是大局观,是大智若愚
我们这里有个小组正在天晕地暗研究知网的MT~~~

李:
愚公移山呗
挖一块儿 少一块儿 而山不加增 ……

张:
两位大师何时有空一来论剑?@白 @wei

李:
没去过东北,都说东北有三宝。

张:
白到骨,wei入髄
wei来we妙; wei说I 赞

李:
张老师那地儿 迟早是该去看看
李: 似乎是调通了,但还是选择不做“相机”。非不能也,是不为也,你懂的
有一个 catch: 将 —-> 把: “将” 等于 “把”(介词),但更歧义(modal V),好在前面有 “可以”。

t0704c

 

【相关】

【立委科普:语法结构树之美(之二)】

【新智元:parsing 在希望的田野上】

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【一日一parsing:NLP应用可以对parsing有所包容】

白: “西方人类比用得少,是因为西方的逻辑学产生的早。”
t0614a
什么叫狗屎运?我的定义就是:
遇到一个找茬的顾客,看到他藏着陷阱的“自然语言”语句,心里有点没数,但测试自己的系统,一次通过了。
今天是个好日子,撞了一个狗屎运,不必 debug 了,因为此例就没有 bug。
当然,真是通不过,需要 debug 也没啥,所有的系统都不是一锤子买卖。只要这种 bug 是在你设计的框架内,有一个顺达的对症下药之路,而不是为了这个 bug,没完没了折腾系统。严格说,也可以找到瑕疵:理想的 parse 最好是对 “西方人” 耍个流氓,label 成 Topic,而不是 S,但这个 Topic 的流氓不见得比现在这个 parsing 强,半斤八两吧。现在的parsing 是把 “西方人类比”当成主语从句了。S 是主语,Subj 是主语从句。
对于半斤八两的句法分析路径 怎么判断对错?
一个包容的系统,就认可两者,因为其间的区别已经很 sutble 了,连人很多时候也糊涂。所谓包容的系统,指的是,在语用层面做产品需要语义落地的时候,parser 对此类现象给出的两个不同的路径,应该不影响落地。这个对于句法和语用 integrated 的系统,是没有问题的。后者可以也容易实现这种鲁棒性。对于汉语常见的 NP1+NP2+Pred 的现象,下列分析大都可以被包容:
(1) Topic + S + Pred
(2)[S + Pred] +Pred
when the second element can be Pred (V, A, or deverbal N)
(3) [Mod + S] Pred
包容的都是可以预见的,因为可以预见,因此可以应对,hence robustness
顺便做个广告,承蒙高博协助,立委 NLP (liweinlp)频道 再张大吉:
liweinlp.com

【相关】

关于 parsing

【关于中文NLP】

《朝华午拾》总目录

【关于 parsing】

泥沙龙笔记:骨灰级砖家一席谈,真伪结构歧义的对策(1/2)

泥沙龙笔记:骨灰级砖家一席谈,真伪结构歧义的对策(2/2)

【语义计算沙龙:巨头谷歌昨天称句法分析极难,但他们最强】

语义计算沙龙:parsing 的鲁棒比精准更重要】

语义计算沙龙:基本短语是浅层和深层parsing的重要接口》

【做 parsing 还是要靠语言学家,机器学习不给力】

《泥沙龙笔记:狗血的语言学》

语义计算沙龙:关于汉语介词的兼语句型,兼论POS】

泥沙龙笔记:在知识处理中,很多时候,人不如机

《立委科普:机器可以揭开双关语神秘的面纱》

《泥沙龙笔记:漫谈自动句法分析和树形图表达》

泥沙龙笔记:语言处理没有文法就不好玩了

泥沙龙笔记:parsing 是引擎的核武器,再论NLP与搜索

泥沙龙笔记:从 sparse data 再论parsing乃是NLP应用的核武器

【立委科普:NLP核武器的奥秘】

【立委科普:语法结构树之美】

【立委科普:语法结构树之美(之二)】

【立委科普:自然语言理解当然是文法为主,常识为辅】

语义计算沙龙:从《知网》抽取逻辑动宾的关系】

【立委科普:教机器识英文】

【立委科普:及物、不及物 与 动词 subcat 及句型】

泥沙龙笔记:再聊乔老爷的递归陷阱

【泥沙龙笔记:人脑就是豆腐,别扯什么递归了】

泥沙龙笔记:儿童语言没有文法的问题

《自然语言是递归的么?》

Parsing nonsense with a sense of humor

【科普小品:文法里的父子原则】

Parent-child Principle in Dependency Grammar

乔氏 X 杠杠理论 以及各式树形图表达法

【泥沙龙笔记:依存语言学的怪圈】

【没有语言结构可以解析语义么?浅论 LSA】

【没有语言结构可以解析语义么?(之二)】

自然语言中,约定俗成大于文法教条和逻辑

泥沙龙笔记:三论世界语

泥沙龙笔记:再聊世界语及其文化

泥沙龙笔记:聊一聊世界语及老柴老乔以及老马老恩

《泥沙龙笔记:NLP component technology 的市场问题》

【泥沙龙笔记:没有结构树,万古如长夜】

Deep parsing:每日一析

Deep parsing 每日一析:内情曝光 vs 假货曝光

Deep parsing 每日一析 半垃圾进 半垃圾出

【研发随笔:植树为林自成景(10/n)】

【deep parsing:植树为林自成景(20/n)】

【deep parsing:植树为林自成景(30/n)】

语义计算沙龙:植树为林自成景(40/n)】

【deep parsing 吃文化:植树为林自成景(60/n)】

【deep parsing (70/n):离合词与定语从句的纠缠】

【deep parsing (80/n):植树成林自成景】

【deep parsing (90/n):“雨是好雨,但风不正经”】

【deep parsing (100/n):其实 NLP 也没那么容易气死】

 

关于 NLP 以及杂谈

关于NLP体系和设计哲学

关于NLP方法论以及两条路线之争

关于 parsing

【关于中文NLP】

【关于信息抽取】

【关于舆情挖掘】

【关于大数据挖掘】

【关于NLP应用】

【关于人工智能】

【关于我与NLP】

【关于NLP掌故】

 

【语义计算沙龙:其实 NLP 也没那么容易气死】

白:
“严把个人商用房客户准入关”
我:
这个句子我人脑也费了半天劲才明白讲的啥(“严把个人商用房客户准入关”==”对个人商用房客户应严把准入关”),尝试用parser也只好瞎碰了,果然乱得不是一处两处,甚至把 “准入关”词典化(拼音联想词组里面 还真有这个词条)也还是不行:
t0626a
白:
“严把个人商用房客户准入关”
严还是个姓,上下文清晰时,可以用裸姓指代全名
“入关”也是词
“把”作动词用不如作介词用的概率高
“房客”也是词

我:
幸亏 real world 这样的句子是极少数。不过人脑怎么 parse 的呢? 虽然也饶了几圈,backtracking ……
白:
这个例子是银行发的正式文件里的
纵向不确定性比较丰富,导致结构貌似不稳
“个人”是定语
我:
这个“严” 做状语也不好掌控 因为更多是做谓语的
“个人”也有些难缠,词典不行 因为有 “n个人” 的存在,只好后面补救了。
个人的定语问题倒是可以解决,但还是搞不定这句:
t0626b

算了,就当没看见。我投降。
白:
“准入”是有坑的,“把关”是有坑的。当“准入”+“关”生成“准入关”的时候,坑也要有同步的调整。
我:
谁(被)准入; 为谁把关(把谁的关)?
白:
把什么事由的关。
我:
把VP的关
白:
“皇军要当你的家”类似
我:
“把学习英语的关”
“英语学习的关真不好把”
白:
“严把生猪进口质量关”
我:
“要把好业务关”
这个事由的坑可以是 VP or (abstract)NP,逻辑语义大体是 about:关于什么事儿的关

白:
“教室的地得扫了”
旅行的目的地得调整了
马:
气死NLP
的士的目的地得调整
我:
其实 NLP 也没那么容易气死 @马少平
t0626c
t0626d
t0626g

马:
哈,强大
我:
当然不能指望“世界第1”的谷歌NLP,靠的是世界第0 的立氏NLP。毛主席保证,上面的句子是一次通过,没做任何工作(当然此前一定是有工作的)。
白:
扫地的离合词处理
目的地,长词优先,不用特意做什么
我:
幸好 real world 的句子也有貌似困难其实无根本挑战的 我们还有活路。
白:
反过来才有挑战性,看着是离合词,就是不该碰一块儿的。伟哥试试:“这地是这样地难扫。”
我:
t0626e
哈哈哈哈 仰天大笑
李白曰过的:我辈岂是蓬蒿人
白:
很好
舍近求远得真解
我:
不过我心内是把它当成狗屎运的,只不过狗屎运常光顾愚公似的人。以前说过n次,NLP 是力气活
白:
话说,离合词这个功能好像也没多久。
我:
两三月前?早就想做了 盘算很久了 实现是最近几个月的事儿。量词更近,才个把月。
白:
量词和本群有直接关系
我:
离合词的处理 直接源于我13年前做英语的 phrasal verbs:take it off / take off the coat / take the coat off 之类(Wei Li et al, An Expert Lexicon Approach to Identifying English Phrasal Verbs, ACL 2003
对量词,的确是本群反复议论才被促上马的 因为没有量词搭配 90%+以上的场合无碍 以前一直拖着没做。

白:
“蔡英文说得不好。”
我:
这种还是休眠吧,hidden ambiguity,跟 “难过” 类似。真做就唤醒,用 word driven
t0626f
白:
和大语境有关
如果满篇都在说另一个蔡,就和蔡英文没啥关系了。
我:
是的,但是那种情形的处理需要在另外一个层面去做。discourse 的因素 trigger “蔡英文”-driven 的唤醒机制。
白:
分层不是单向,该交互时就交互
我:
word driven 是可以想象的,因为“蔡英文”这个词对于我们来说,的确是既透明又黑箱的:黑箱是,只要不是文盲,基本上都知道蔡英文是一个人名;透明是,尽管知道这是一个人名,我们也仍然知道这个词的内部结构,以及这个词的句法可能性:蔡 — 英文,Topic – S 的潜在性,单从这个词,我们就知道。
白:
一个上下文提供了所提及对象的“场”,重复出现可以增加“场强”,左右句法层面对部件的“抢夺”。
我:
不过这些可以想象的操作,大概很少有人去做,选择不做为多,因为还有很多可做的事儿还没做完呢。
白:
分场景。在游戏场景,上下文中的活跃对象“场”是至关重要的,不仅对其中的NLP,也对智能角色的动作规划。用于NLP是捎带脚
我:
所有的 hidden ambiguity 都可以用 word driven 机制唤醒 如果我们真想做的话。
而 hidden ambiguity 一直公认为是中文切词的死穴。至少可以说,死穴不一定就死。换句话说,在休眠唤醒理论(见文末【相关】链接)正式提出之前,这个挑战很可能是被认为无解或极其困难的
但是,我们已经用 “难过” 在 sentiment 语义落地的实际工作中的实现,证明了还是有救。“小王很难过” vs “小桥很难过”,如今在我们的中文舆情系统中处理得如此漂亮!(重温  【立委科普:歧义parsing的休眠唤醒机制再探】)

白:
从一个包含NLP在内的更大系统视角来看,关键语境参数的实时刷新,受益者绝不仅仅是NLP。作者的观点和作者转述的他人观点,在极性上就是需要区别对待的。引述可能是为了反驳或反衬。所以,观点的主人是谁,就需要甄别。
我:
至少在知识图谱的工作中,discourse 内的实体aliasing 以及 anaphor 的工作,成为整合抽取信息的相对可靠的关键元素,这一步可以 leverage document-internal 的线索,这才为下一步的跨文本的 information fusion 打下了基础。
跳过 discourse 直接做 fusion 是不智的。

 

【相关】

《泥沙龙笔记:parsing 的休眠反悔机制》

立委科普:歧义parsing的休眠唤醒机制再探

【泥沙龙笔记:NLP hard 的歧义突破】

【立委科普:结构歧义的休眠唤醒演义】

《朝华午拾:我的考研经历》

NLP 是一个力气活:再论成语不是问题

【新智元笔记:巨头谷歌昨天称句法分析极难,但他们最强】

Wei Li et al, An Expert Lexicon Approach to Identifying English Phrasal Verbs, ACL 2003

【置顶:立委NLP博文一览(定期更新版)】

《朝华午拾》总目录

Deep parsing 每日一 fun: 雨是好雨,但风不正经

气象局通知~~~原约定今日凌晨来的暴雨,因半路上被堵,耽误了点时间,或许今天下午到夜间赶到。这场雨如果下大了肯定不小,下小了也肯定……不能大,请市民再耐心等待!具体情况等气象台会上研究后报给市民。气象台温馨提醒:今天如果不下雨,明天不下雨的话,这两天就没有雨了,等下暴雨再准确播报。
气象台郑重劝告美女们最近几天不要穿裙子,容易被撩,雨是好雨,但风不正经。

这是微信最近流行的段子。每日 parsing 一 fun:
t0621a0
t0621a下面是笔者对两条路线斗争的总结,也 parse parse see see 吧,QUOTE:

说什么两条路线斗争 宗教门派之别 主流非主流 眼珠转与不转 这些都不是本质 本质就是鸡同鸭讲。隔行如隔山 同行也隔山。隔了山还讲个球。鸡犬之声相闻 老死不相往来。这就是计算语言学的尴尬。这是一个非常奇怪的交叉学科 两路完全不是一个类型的人 没有 chemistry 没有基本的共同背景、世界观和方法学 没有共同语言  兴趣迥异 无法正常对话  更甭提恋爱结婚 最简单的办法 就是一派灭了另一派 眼不见为净。结果就是虽然被扫地出门了 语言学对于多数的殿堂内人 依然是格格不入 而又回避不了。做了一辈子的某些主流 NLP 大牛 不懂语言学常识的 并不鲜见 这在任何其他学科都是不可思议的。但是语言学比共产主义还更像一个幽灵,一直在殿堂徘徊。

0623a
0623b
0623c
0623d
0623e
0623f
0623g

My interview:
wei_interview
from http://www.netbase.com/about-netbase/

 

【相关】

【立委科普:语法结构树之美(之二)】

【新智元:parsing 在希望的田野上】

【置顶:立委科学网博客NLP博文一览(定期更新版)】

《朝华午拾》总目录

NLP核武器的奥秘

我总说,deep parsing 是NLP应用的核武器,有人以为夸张,今天就说说这道理儿。

NLP 的应用主要分两部分,一部分是对于 text input 的分析或“理解”,一部分是反映这种分析理解的 output(俗称语义落地,譬如 output 是另一个语言,就是MT;output 是 response,就是对话系统;output 是针对 input 问题的答案,就是问答系统;等等)。NLP 应用就是连接 input 到 output 的系统。其中第一部分是关键,核心就是 parsing,可以实现为作为条件的模式匹配,而第二部分很多时候不过是与第一部分对应的作为结论的 mapping 或 side effects。

在上述场景的抽象描述中,可以这样来看 parsing 对于处理text的作用。首先,input 的样本就是我们 parsing 的 dev corpus,样本中的语句相同或类似意义的是我们识别的对象。绝大多数情形,识别了就算 “理解” 了,系统就知道如何应对最合适。

自然语言的难点在于表达这些 input 的语句千变万化,因此用 ngram 枚举它们是不现实的。现实的办法是 parse 相同或类似意义的input语句成为结构树,然后在这些树上找共同 patterns,叫“最大公约树”吧(intuitively 叫最小才顺耳,就是这些树的common core,树大了的话就没有召回率了,白老师提议叫“最大公共子树”)。如果找不到,那就把这批句子分而治之 直到可以找到几个所谓子树 patterns,写成逻辑或的模式规则。

Patterns 的宽严度调试得恰到好处 就可以以有限的规则 应对无限的表达了。宽严不外是调整结构arc的条件 或 节点(node)的条件,deep parsing 说到底就是创造这些结构条件的机器。

以不变应万变,用有限的patterns抓住无限的语言变化,这就是自然语言核武器威力的表现。

【相关】

泥沙龙笔记:parsing 是引擎的核武器,再论NLP与搜索

泥沙龙笔记:从 sparse data 再论parsing乃是NLP应用的核武器

【置顶:立委科学网博客NLP博文一览(定期更新版)】

《朝华午拾》总目录

Deep parsing: 每日一析,内情曝光 vs 假货曝光

白老师出的那个 minimal pair:
“这家公司卖给张三的内情曝光了。”“这家公司卖给张三的假货曝光了。”

测试一下,现在没有区分:
t0623
结构上粗线条是一样的 没大问题 可是 同位与动宾的区别没表达出来。既然句法大筐子不变,只是 roles miss 掉了,应该可以在语义中间件中轻易解决,透过定语从句的路径以及约束条件。

一觉醒来,在中间件加了一条简单的找逻辑宾语填坑的规则,看看怎么样?改进版:
t06231
这条规则是说,如果定语从句谓语句法完了以后仍然有宾语坑未填满,那么它所修饰的NP就来跳坑,除了 “消息” 类的NP。“内情” 于是被堵在外面 不跳,“假货”当然无所畏惧。至于 “内情” 与 定从 的同位语关系,可以做,但选择不做,因为定语的概念包含了同位语,比同位语大,目前没有感到有细分的必要。
上图中还有一个 catch,“公司”与 “卖给” 的逻辑主语没有做,而只是做了 “公司”与“假货”和“内情”的句法定语关系。目前也选择不做,等到需要的时候也不难在中间件中补。主要理由与上面同,偷懒而已。主语是arguments中最接近adjunct(定语就是一种 adjunct)的角色,细分的必要性不强。当然语义落地真地需要,那就或者在语义中间件补上,或者在落地时候唤醒。

【置顶:立委科学网博客NLP博文一览(定期更新版)】

《朝华午拾》总目录

Deep parsing 每日一析 半垃圾进 半垃圾出

白: 越南一架载有9人的巡逻机执行搜救任务时失踪,这失踪的CASA是去搜寻刚刚失踪的苏-30的。搜寻失踪的,自己也失踪了,得再派一架去搜寻这因搜寻失踪而失踪的飞机的飞机了。

白老师看重的是 不是人话的人话 “。。。得再派一架去搜寻这因搜寻失踪而失踪的飞机的飞机了”。不是人话的话,我把它叫做半垃圾。

半垃圾我都不想试,笃定搞不定。犯“错”了吧心里别扭,又想逞能,就必然去debug一个其实也没啥bug的系统 其结果很可能是得不偿失,或费九牛二虎之力不过是为了一个基本不会再次出现的长尾之长尾。如果无视吧,跟眼里揉了沙子似的。

好奇心害死猫,还是忍不住测试了,不过毛主席呢保证,绝不 debug,我说的是绝不! 也不进 unit test,任它 half-garbage in half-garbage out, 有当无好了:

t0617a

合上揉进沙子的眼呼呼去也,希望今夜无梦,至少无语言学的噩梦。

【置顶:立委科学网博客NLP博文一览(定期更新版)】

《朝华午拾》总目录

Deep parsing:每日一析

“西方人类比用得少,是因为西方的逻辑学产生的早。
t0614a
什么叫狗屎运?我的定义就是:遇到一个找茬的顾客,看到他藏着陷阱的“自然语言”语句,心里有点没数,但测试自己的系统,一次通过了。
今天是个好日子,撞了一个狗屎运,不必 debug
当然,真是通不过,需要 debug 也没啥,所有的系统都不是一锤子买卖。只要这种 bug 是在你设计的框架内,有一个顺达的对症下药之路,而不是为了这个 bug,没完没了折腾系统。
严格说,也可以找到瑕疵:理想的 parse 最好是对 “西方人” 耍个流氓,label 成 Topic,而不是 S,但这个 Topic 的流氓不见得比现在这个 parsing 强,半斤八两吧。现在的parsing 是把 “西方人类比”当成主语从句了。(S 是主语,Subj 是主语从句。)
对于半斤八两的句法分析路径 怎么判断对错?
一个包容的系统,就认可两者,因为其间的区别已经很 sutble 了,连人很多时候也糊涂。所谓包容的系统,指的是,在语用层面做产品需要语义落地的时候,parser 对此类现象给出的两个不同的路径,应该不影响落地。这个对于句法和语用 integrated 的系统,是没有问题的。后者可以也容易实现这种鲁棒性。

对于汉语常见的 NP+XP+Pred 的现象,下列分析大都可以被包容:
(1) Topic + S + Pred
(2) [Mod + S] Pred
(3)[S + Pred] +Pred
when the second element XP can be Pred (V, A, or deverbal N)
包容的都是可以预见的,因为可以预见,因此可以应对,hence robustness

【置顶:立委科学网博客NLP博文一览(定期更新版)】

《朝华午拾》总目录