【李白对话录之10:白老师的麻烦不是白老师的】

我:

突然想起一句话 怕忘了 写在这:

“白老师的麻烦是 他懂的 我不懂 我懂的 他懂。”

谁的麻烦?

乔姆斯基说 麻烦是白老师的

菲尔默说 麻烦是我的

后一种语义深度分析的结论是如何得出的?

语义要多茁壮 才能敌得过句法的标配啊。

而且这种语义的蛛丝马迹并非每个人都有捕捉的能力 它远远超出语言学 与一个人的背景知识和领悟力有关

遇到这种极深度的人工智慧 目前能想出来的形式化途径 还是词驱动比较靠谱 如果真想较真探索的话

“麻烦 问题 毛病” 这类词有两个与【human】有关的坑

一个是标配 表达的是所有关系 possessive

另一个是 about 要求填坑的是 【event】或【entity】 后者自然也包括 【human】

白:

“他的教训我一辈子忘不了”

谁被教训?

我: 哈。

回到前面, 近水楼台的 【human】 “白老师” 是标配。

另一条词驱动的可能路径自然休眠。因为词驱动 也就埋下来唤醒的种子。

上下文中遇到另一个 【human】 candidate “我”,加上其他一时也整不清楚但终究可能抓到的蛛丝马迹, 于是休眠唤醒 了。

白:

好像sentiment在休眠唤醒中起比较重要的作用

我:

此句是一例 本来是褒 可不唤醒就是贬了。

白:

标配的麻烦,把负面情感赋与那谁,等到后面说的都是正面,纠结了,另一个human就有空子钻了。

我:

对对对

这个 trick 我们做了n年 sentiment 摸索出来了就在用。典型案例是: “Thank you for misleading me”

Thank 里表达的抽象的褒 由于遭遇了 misleading 的较为具体的贬 而转化为讽刺。

还有:“你做的好事儿 great”。这里 great 的讽刺也是有迹可寻的。

白:

more specific expressions承载的sentiment优先

我:

遇到过两次记者采访,两次都被问到 你们教给机器 sentiment,机器可以理解正话反说 和 讽刺 吗?

我的回答是:这是一个挑战 但其中的一些常见的讽刺说法 是可以形式化 可以捕捉到的。举例就是上面。

白:

具体override抽象。

我:

yes yes yes

白:

如果二者纠结,具体承载的sentiment才是基调,抽象的反向sentiment不是抵消而是修辞手法的开关。

我:

我一直在强调,sentiment 的世界里面,主要是两类东西:一类是情绪的表达,一类是情绪背后的理由。

有些人只表达情绪,但有些人为了说服或影响别人,好恶表态的前后,会说一通理由:you make a point,then you need to support your point with arguments

所谓 sentiment analysis 很长一段时间 领域里面以为那是一个简单的分类问题:thumbs up thumbs down。这个浅陋而流行的观点只是针对的情绪,而面对情绪背后千变万化的理由 就有些抓瞎了。可是没有后者,那个sentiment就没啥特别的价值。

所谓讽刺,只是情绪的转向,正话反说。具体的理由是不能转向的,否则人类的交流就没有一个 protocol 而可以相互理解了。褒贬里面具体的东西 我们叫 pros and cons, 那个东西因为其具体,所以语义是恒定的,不会轻易改变。

情绪却不同。人是一个奇怪的动物,爱极而恨,恨极而爱,都有。甚至很多时候 爱恨交织 自己都搞不清楚。表达为语言,就更诡异善变。

英语口语中 sick 是强烈的褒义情绪,shit 和 crap 等词也不是贬义,bad ass is very positive too:

“The inside of a prius is bad ass no lie.” 是非常正面的褒奖。

人类在情绪表达中说反话,或者由于反话说常了 community 都理解成正话了,这种情形也屡见不鲜。

关键词的褒贬分类系统遇到这种东西不傻眼才怪:当然如果input很长,可以 assume 这类现象只是杂音,整个关键词分类还可以靠谱。但一旦是社会媒体的短消息,这种语言模型比丢硬币好不了多少。

汉语中 老婆太喜欢老公了 喜欢到不知道怎么好了 就说 杀千刀的。

再举一个今天遇到的 sentiment 实际案例:
@Monster47_eNd nah, you have no idea how bad I would kill to eat taco bell or any kind of shit like that.
瞧瞧里面的 sentiment triggers: bad;kill;shit 三个都是强烈的 negative triggers
谈论的 topic 是 Taco Bell,一家流行的墨西哥快餐连锁品牌。
这条短消息通篇没有褒义词出现,因此没有理解、缺乏结构的关键词系统只能得出贬义的结论。但这句话其实是对 Taco Bell 异乎寻常的褒奖 用的是完全草根普罗的用语。

谷歌的神经翻译遇到口语化的句子也基本抓瞎,训练的数据严重口语不足(那是因为双语语料质量过得去的来源大多是正规文档,组织人力去标注口语,做地道的口语翻译,是一个浩大的工程,巨头也无能为力吧):
@ Monster47_eNd nah,你不知道我會殺了多少吃塔可鐘或任何種類的狗屎。

尝试“人工”翻译一哈:
@ Monster47_eNd nah,你不知道为了能吃上Taco Bell 的东东,我會怎样不惜代价(哪怕让我杀人都行)。

简单的译法是:
想吃 Taco Bell 这样的垃圾,我他妈都想疯了。

谁要再说 sentiment 好做,我TM跟他急。这无疑是 NLP 中最艰涩的果子之一。
【相关】

《泥沙龙笔记:parsing 的休眠反悔机制》

【立委科普:基于关键词的舆情分类系统面临挑战】

【立委科普:舆情挖掘的背后】

【李白对话录之九:语义破格的出口】 

李白对话录之八:有语义落地直通车的parser才是核武器

【李白对话录之七:NLP 的 Components 及其关系】

【李白对话录之六:如何学习和处置“打了一拳”】

【李白对话录之五:你波你的波,我粒我的粒】

【李白对话录之四:RNN 与语言学算法】

【李白对话录之三:从“把手”谈起】

【李白隔空对话录之二:关于词类活用】

《李白对话录:关于纯语义系统》

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【一日一parsing:“这瓶酒他只喝了一杯”】

白:
“这瓶酒他只喝了一杯。”
两个量词(瓶、杯)和一个名词(酒)关联。
三个问题:1、“这瓶酒”是什么成分?为什么?2、“一杯”是回指到句中的“酒”还是指到另一个省略了的“酒”?3、如果“喝”的逻辑宾语是杯中酒,那么瓶中酒又是什么逻辑角色?
就是说,如果把逻辑宾语看成“部分”,其相对的“总体”提前为“话题主语”或“大主语”,那么后者到底填了什么坑?目测已经没位置了

詹:
“语文他答对了三道题。”跟白老师例子类似。
他只喝了这瓶酒中一杯的量
这瓶酒他只喝了一口
这瓶酒他只喝了二两
“喝”事件可以设计一个“消耗量”的事件元素
“这瓶酒他喝了一大半”

白:
随意增减动词坑的数目总是不好,量词倒是可负载两种结构:一种是绝对量,一种是相对量。相对量有坑,绝对量没坑。

詹:
动词的坑的数量可以设计(因而可调)。消耗量设计为“喝”的一个坑,可以跟“讨论、谈、喜欢”这样的动词对比。“这瓶酒他们讨论了一杯”不能接受。因为“讨论”类动词没有预留这个坑
“这瓶酒他们讨论了一天。”
请教白老师说的绝对量和相对量具体如何理解?形式区别是什么?

白:
相对量和绝对量都是数量组合。绝对量与中心语结合,相对量中心语省略,但与同形的先行中心语形成远距离照应。
“山东聊城市”

我:

1121a
句法是清楚的。

白:
buyu是个大杂烩 装了很多不同的东西,从填坑角度看更是五花八门缺少共性。

我:
那就加个标签【数量补语】,与其他补语对照:【程度补语】【结果补语】或【原因补语】等。如果想进一步区分 “喝了一杯” 与 “喝了一斤”,还可以进一步区分 根据数量结构本身的子类即可。句法到这一步 落地应该水到渠成了。

白:
那倒不必。喝了一口有点麻烦。可是这不是一个好的二元关系。
或者说,buyu才是真正的宾语,O反而只跟buyu发生直接关系,通过buyu才跟动词发生间接关系。O跟buyu的关系是明确的总分关系

我:
喝---酒 应该是直接的关系 否则 语义不搭。

白:
一杯后面有个省略的酒
正常也可以说,走,喝两杯去。省略是肯定的,省略的是酒,则是通过先行词照应出来的。先行词是茶,省略的就是茶。杯和酒,也有强关联,不管语义上还是统计上。
试试:“这瓶酒张三只喝了一杯,李四却喝了三杯。”
要想把“一杯”和“三杯”都分析成buyu,还有点小难度呢。
“一瓶酒四个人喝,张三和李四各喝了一杯,王五和赵六各喝了两杯,瓶里还剩一杯,问这瓶酒共有几杯?”

我:

1121b

一致不一致 只要后面是有准备的 就可以我们在落地模块里面 其实是有这个心理准备的,
并不指望句法分析出现完全一致的结果。关系标签只是落地的条件之一,不是全部条件,如果 x 和 y 的关系都有可能,对付不一致就是 x|y,一般不影响结果。

白:
“X杯”都分析成buyu吗?
不好的句法不一致多些,好的句法不一致少些

我:
一切都是平衡,某个条件宽了,另外的条件就可以弥补。

白:
遇到不好的句法,不一致不是不能对付,只是一边对付一边喷语言学家而已。

我:
哪里都一样。arsing 做不好 可以喷 POS 模块开发人,OS 做不好 可以怪词典学家没弄好。或者学习模块很操蛋 对付不了 sparse data,但是 说到底 在一个真实开发环境里 还是内部协调为纲。要是踢皮球,做不了好系统

白:
但是句法稍作调整,就可以做得更好。
我:

铁路警察各管一段 是一个非常坏的原则,adaptive dev 才是正道。当然,凡事都一个度。

白:
补语和宾语补足语弄成两个东西,一个指向动词,一个指向名词。已经做了初一,还怕十五么?

我:
一杯和酒 脱离上下文 也有很强的特征上的不同 而且也有ontology或大数据方面的高度相关性。因此 句法把它们连成 x 也好 y 也好 都不是大问题,因为各自的本性的、静态的标签是恒定的、随时可check 的

白:
这话推到极端,就是不要句法也行
可你老人家早就有话等在那里,有现成的梯子,为什么不用?
我现在要说,反正也没到顶,有另一部可以爬得更高的梯子,为什么不用?
与大数据或ontology的关系,自然语言是跑不掉的,波粒二象性摆在那里。
其中可以帮到句法的部分,封装成中间件直接拿来用,早已不是禁忌。

我:
真地没看到显然的必要性,起码对于抽取情报,V 连上了实体 N做 O,连上了数量做 Buyu,想从中抽取啥都可以。要细做,也最多是把 Buyu 和 O 再加一条通道,说 Buyu 是限定 O 的。

白:
看看上面的应用题。要解题,不知道总分关系怎么解?不把句法关系标成一致,怎么获取总分关系?

我:
自然语言理解落地为自动解题,作为复杂问答系统的一个分支,这个倒是确实要求比一般情报抽取要高。那天与胡总聊到高考机器人项目,胡总说,数学应用题道理上应该电脑是大拿吧。可惜,电脑读不懂应用题。自然语言理解是拦路虎。如果读懂了题,转化成了公式,电脑当然当小菜来解题。

白:
NLU做应用题,@约翰 师兄三十几年前就在做了。

我:
做几何题,@严 也兴趣了很久。

白:
用填坑来统领句法关系,就不会那么为难了。把二元关系进行到底,把词例化进行到底。吴文俊团队实际上也做了部分几何题理解的工作。不过数学家们认为这是脏活累活,没有学术价值。所以浅尝则止

wang:
机器做数学应用题,是验证自然语言理解效果的一个非常好的测试。但是没有市场。
本人2000年是在做小学数学应用题求解系统,当时也是为了检验自然语言理解效果的。当时系统,本群的刘群老师,周明老师,詹卫东老师,董强老师都见过,只是这些老师是否想起16年前的事就不得而知了。
当时演示的应用题“一条河里有4条小船,5条大船,河里一共有几条船?”--对于求解有几条小船,几条大船,或者颠倒顺序,都可以演示OK。但是在北大詹卫东老师把“一条河”改成“一个河”,系统就出不来结果,量词啊,量词没细致考虑。
这都是过去多年的事了,只是这个系统没有市场,最后只能搁浅。落不了地就被历史淹没了。记得当时台湾的中研院许文廉老师也做数学应用题求解。对于几何求解系统前几年看过文献,好像已经非常成熟了。可能语义理解的信息不是复杂,还是封闭环境非歧义语义,也许相对容易,这个后期我关注就不是很多了。

白:
应用题这东西,换个内容就是上市公司的报表,谁还敢说分析上司公司的报表没有市场?

wang:
白老师,我那个时候抱着系统广泛寻求市场,却没有市场关爱我。

白:
关键是不要被技术的表现形式所迷惑,要看穿技术的实质,有没有用是由实质决定的,不是由眼下的表现形式决定的。定位问题了。天上不会掉下个产品经理,最初的产品经理就是你自己。这世界上能看穿技术实质的人少之又少,要把技术包装对方向,还要扶上马送一程,理解的人才有可能多那么一点点。现在的教育里用人工智能逐渐多起来,但是系统更像系统而不是老师。要想让系统像老师,必须有NLP。像伟哥这样可以躺在垄断场景上高枕无忧,犯不着关注其他场景的人毕竟也是少数。

wang:
遗憾当初没有遇到白老师啊!以白老师的眼力,就活了。
觉得李老师也是在找更宽的场景。
回到昨天的话题“这瓶酒他只喝了一杯”。我的想法是“这瓶酒”--不是补语
应该是个强调部分。类似英语“It is .... that”
这瓶“酒”和一杯(“酒”),这酒是同质的事物,后者必须省略。不同质的事物,必须交代。

白:
还有不涉及量词的总分关系:“我们班的同学就他混到了正部级”
“我们班的同学”相当于瓶中酒,“他”相当于杯中酒。
总分关系,“总”表现为话题主语,“分”表现为动词的直接成分,主语或宾语。
但是按照移位理论,移出来的话题主语的原位必须是某个论元,所以一定要找到这个坑。

wang:
这种情况可否理解介词短语省略了介词“在...中”,(among)
单独“总”这个论元好像对应不了谓词,比如这里“混”

白:
英语介词短语可以修饰名词 总直接对分,分对谓词
我早上核心观点就是这个

wang:
恩,同意白老师

我:
I drink a cup of tea
cup is O of drink and then tea is linked to cup??
this is not what has been practised for long
tea is O of drink and cup (or a_cup_of) is Mod of tea
these are standard treatments

白:
@wei 这个treatment我太同意了。
英语不能省略tea吧。
即使前面提及了tea
壶里的茶我只喝了一杯,英语怎么说?

我:
NMT: I only drank a cup of tea, how to say English?
壶呢?
原来神经做翻译的时候,怎么常见怎么来,拉下的词没处放,就不放,一笔抹去,眼不见为净。这倒是顺溜了,可不带这么糊弄吧以前的 MT,无论 SMT 还是 RMT,大概
不敢这么玩

白:
有些口译人士倒是真的如此

刘:
SMT也一样的,经常丟词,还有论文专门研究SMT的丟词问题

白:
我在上交所的时候,就领教过知名公司的随团口译。我们提出的尖锐问题,一律抹平了翻,尖锐的词儿影都没有。有时我不得不自己用英语纠正一遍。

我:
那就是 RMT 不敢丢,其实也不是不敢,是丢不掉。除非生成程序有意设计了丢的条件。默认,实词是不能丢的。
“壶里的茶我只喝了一杯” 应该是:
as for the tea in the pot, I only drank one cup of it.
“it" refers to the "tea"

白:
it,相当于移走的tea的trace 在汉语是空范畴 在英语里总要有个真实代词。从伟哥的英译可以看出,他是真心不把“壶里的茶”当主语或宾语的。

我:
顺便一提,我觉得将来机器口译会有更好的用户体验
这是因为人的口译也就那么回事儿,糊弄的时候多,不合格的口译多,合格的在时间紧张的时候也老出乱子。这个观察在前些时候尝试用 NMT 翻译汉语到英语的时候就很清晰了。当时翻译到了英语以后,第一个震惊是,NND,神经真厉害,然后看到谷歌翻译下面有一个 speech 的按钮,就顺手一按,这一听,是第二个震惊,听上去比读居然更顺耳!读起来别扭或不合法的地方,给当今的语音合成一糊弄,居然那么自然,加上人的口译也是错误不断,相比之下,机器读出来里面有几个错就相当可以接受了。于是我用 iPhone 把那一段录音下来,放到了我的博客里面,让世人见识一下,机器口译不是梦。见:

谷歌NMT,见证奇迹的时刻

以前一直认为,口语到文字是第一层损耗,文字翻译是信息的第二层损耗,再从目标语文字到语音,是第三层损耗,损耗这样叠加下来,语音机器翻译是一个完全没谱的事儿。但实际上不是这么回事儿。
这第三层损耗,由于有人的陪绑和陪衬,不但不减分,反而加分。第一层的问题也基本解决了。当然前提是语音技术要神(经),语音合成要做得自然巧妙,而这些现在已经不是问题了。前几天讯飞合成一个广告词,居然声情并茂。

赵忠祥当年深陷录音门丑闻,声誉形象大减,那是错了时代。隔现在,赵大叔可以一口咬定那个录音是机器假冒的。

白:
啥时候声乐也能人工合成了,让帕瓦罗蒂唱我写的歌。

我:
白老师等着吧,不远了。

 

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【一日一parsing:他 / 喝了 / 三碗 / 汤】

bai:
“他汤喝了三碗”
问题:“三碗”指向“汤”还是“喝”还是自己的省略被修饰语?
问题:它和“他喝了三碗汤”在语义上等价吗?

马:
强调的内容不一样吧,前者强调喝了三碗的是汤不是别的,后者强调是三碗

我:
要挖出变式的 nuances,不如把表层结构包括词序的差异保存 等到落地的时候 由应用的需要来决定这种差异是不是有必要。脱离落地谈细微差别 及其抽象表达,容易莫衷一是 也容易丢了西瓜。

他喝了三碗汤
他喝了汤三碗
三碗汤他喝了
汤他喝了三碗
他汤喝了三碗
? 他三碗喝了汤
? 三碗他喝了汤

最后两个变式走在句法的边缘。

一个标签是 Mod,一个是 buyu,其余皆同,包括可分离动词合成词“喝汤”,表层结构的所有信息,包括词序,也都 accessible if needed。因为 parer 的内部 representation 通常是增量的、信息 enrich 的过程,除非是信息更新为了改正一个错误,过去的或历史的信息并不丢失。这也是我们以前说过的为什么休眠唤醒机制可以work,因为被唤醒的原始状态并没有丢失,一个子串永远可以重来,二次 parsing。推向极端就是,整个一个句子都可以推倒重来,因为原始的 token string 并没丢弃。当然,实际上的休眠唤醒几乎永远是针对句子中的一个子树,再糟糕的 parser 也不至于全错需要重新来过。

Topic 再进一步转为 S 就完美了,语义中间件还有细致的工作可做。

最后这两句句法边缘的句子不是不可能出现,但比较罕见,对于毛毛虫边缘的毛刺部分的现象,合法非法中间的数据,如果不常见,那就拉倒,parser 出啥结果都无需太 care,反正有做不完的活计,不值当在它们身上花时间。

【相关】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【李白对话录之八:有语义落地直通车的parser才是核武器】

bai:
“你牺牲了的战友不能瞑目。”
“张三打得李四脸都肿了。”

我:
张三打李四
...打得他脸都肿了
...打得他手都肿了
...打得脸都肿了
...打得心直哆嗦
...打得好痛快
...打得鼻青脸肿
...打得天昏地暗

这些后续与第一句的不同组合,有些可以转成白老师的句式
s v o v 得 vp --> s v 得 s2 vp

bai:
填坑角度看不一样,前面topic填名词坑还是动词坑还是与坑无关。天昏地暗可以当一个形容词。拆开来看天和地都不能成为填“打”的坑的共享萝卜。
谓词结合的不同方式,只有显式地描述坑和萝卜才说得清

我:
对,不是都可以转,必须后一个s2是前一个 o 的时候,才可以转。如果 s2 回指第一个 s, 那就是另一组了。
“天昏地暗” 是成语形容词,黑箱子词,句法拆不开。
我用 vp 表达的不是 vp 是“谓语p” 的意思 包括 ap。以后得创造一个合适的标签 PredP
只剩下一个主语的坑待填。对于主语,谓语是ap 还是 vp,不重要。人家自己已经内部摆平了,不关主语事儿。

bai:
类似:(a/b)*(b/c)=a/c

我:
谁脸肿了?
李四。
谁手肿了?
不好说,但张三比李四可能更大,因为打人借助的工具往往是手。打人最常打的部位是脸,
而不是手。这个 minimal pair 真心诡异:

张三打李四打得他脸都肿了
张三打李四打得他手都肿了

也是中文文法很操蛋的鲜活例证。

bai:
没啥,常识都是软的,一碰到硬证据就怂。
你不说对方手上挨打,那就是打人者手肿,说了,那就是挨打者手肿。语言和常识推理已经融为一体。各种标配都是随时准备让位给例外的,例外不出山,标配称大王。

我:
白老师的段子是张口就来啊。这个说段子的功力很神。

bai:
在填坑时,先不管三七二十一按标配填,再给例外一个权利,可以override标配。
试试
“你渴了饮水机里有水可以喝。”
缩合条件。

我:
马上出门 回来再试
喝水不就是 “有 o 可以 vt”?蛮常见的。
有书可读
有澡可洗

bai:
但填坑结构是跨前后件的。
啥句法标签呢?

我:
补足语,逻辑 vo 单标。graph 也不管它怎么绕了,看上去合理就行。反正用的时候都是子树匹配,落地甚至可以是 binary 关系组的匹配。原则上,任何 node 可与 任何 node  发生暧昧,不讲门当户对。
一张分析全图(the entire tree)的元逻辑性(meta logicality)可以不管它,只要个体的 dependency 有说法就行了。英语也是:“have a book to read”
句法标签是 宾语 ➕ 宾补,后加逻辑vo
到了逻辑语义层 或语用层、抽取层,句法的层次理论和原则不算数了。

bai:
“他有三个保镖保护着。”
句法上其实有条件带点笼统性地把坑共享的标配拿出来。

我:
有 np vt,vt 的标配是 np 做宾语(o),若要 s 做逻辑宾就需要外力。

bai:
这房间有三扇窗户可以通风采光。连逻辑宾都不是,最多算间接逻辑宾

我:
我的理解是逻辑主语。两个主语都说得通,全部与部分。

bai:
“这房间”对于“通风采光”来说是填什么坑呢?

我:
主语啊。窗户也是主语,不过是整体和细节的区分而已:
窗户通风了,房间自然通风。

bai:
这套音响有七个音箱和两个低音炮可以营造出环绕立体声效果。

我:
这样不断营造语用现场,其实导致的不是语言学关系的矛盾,而是语义 interpretation 的挑战。
语言学关系的标签,本性是弹性的,哪怕标签取名不一定合适或容易误导(譬如主语误导为施事,其实未必)。 主语也好、宾语也好,都是万能的筐,什么 interpretation 都可能。话题(Topic)就更甭提了。
常识来说 立体声效果的营造,应该是立体装置的总体,这些装置的个体达不成这个效果。这是知识内部的争论,与语言表达背后的结构关系不大。知识内部也可 argue 立体装置中某个装置是决定性的,那个装置效果出来了,立体效果就基本出来了。
这是两套系统,两个层面。 结构关系,与我党对历史事件的原则一致,宜粗不宜细,留下语义解释或争论的空间。

bai:
那就干脆粗到不分主宾语,只计数目,不计语序方向,更不计subcat的相谐,装到框里再说。在遇到多种填坑戴帽可能性的时候,再把这些法宝一个一个祭出来。吃瓜打酱油的捎带着做细了。不是为了做细而做细,是为了增加确定性而做细。这就有意思了,比如量词搭配。看起来是在细化修饰关系,可顺带把逻辑宾语搞定了,纯粹是搂草打兔子。

我:
不是不可。实践中,往往在句法关系或标签的 representation 的极端做法之间,做个折衷。更多是为了方便。说到底,一切句法语义计算的表达,都是人自己玩,方便原则不过是让人玩的时候,少一点别扭而不是求一个逻辑完备性。representation 作为语言理解的输出,本质是人的逻辑玩偶。爱怎样打扮都可以。这个本性是所谓强人工智能的克星。

bai:
我还不那么赖皮……

我:
强ai 更赖皮

bai:
刚性的局部可以顺带给柔性的全局注入一小丢丢刚性,但是出发点就没指望全局会百分之百刚性。

我:
连语义的终极表达都一头雾水,说什么强智纯属扯淡。

bai:
强AI我反对,语义表示太过任意我也不赞成。总要有个松紧带勒着。

我:
system internal 是做现场的人的现实。很多东西就是有一个模模糊糊大的原则,或有相当弹性的松紧带。下面呢,就是一个系统内部的协调(system internal coordination)。在人叫自圆其说,在机器就是内恰。

bai:
二分法是要的,一部分role assignment,一部分symbol grounding。前者是深度NLP的必修课,后者跟现场关系更大些。
过松的松紧带,红利已经吃得差不多了。新兴的松紧带,不紧点就没有投资价值。

我:
投资价值与宣传价值还有一些不同。投资价值对松紧不会那么敏感,除非是投资与宣传(marketing)紧密相关的时代,譬如当下ai泡沫的时代,或当年克林顿的时代。
投资价值的落脚点还是语义落地(semantic grounding)。至于怎么落的地,松啊、紧啊,不过是给一个宣传的说法。昨天我还说,syntaxnet 和很多 dl 都是开源的,要是好落地为产品,还不是蜂拥而上。现实是,不好落地。
所谓核武器是这样一个工具,它有一个明确的落地途径,至少从方法学上。system internal 的落地管道,被反复验证的,余下的主要是领域打磨和调试。

bai:
现在很多公司是万事俱备,就差核武器

我:
syntaxnet 至少目前状态没有这个。虽然也是 deep parsing,但并不是所有的 deep parsing 都是核武器,要看是谁家的、怎样的 deep parser 才有核武器的威力。

bai:
你没看上眼的,我们可以不用讨论

我:
看上眼的dl,是有海量带标数据的(最好是自然带标数据,无需组织人去标注),端对端绕过显性结构的,里面满肚子谁也猜不透的隐藏层黑箱子的机器,譬如神经机器翻译( nmt)。

bai:
带标看标在什么地方。标在字典里OK,那算数据资源建设。标在语料里,即便假定标注体系在语言学上是正确的,还要考虑做不做得起呢,何况语言学上错误的标注体系,更让人怀疑有没有价值和意义去如此大动干戈了。

我: 回家了,可以测试:“你渴了饮水机里有水可以喝。”

逻辑的坑都没到位。句法的框架不能算离谱。就是这样。至于叫补足语还是叫 Next,也无大关系,反正后续语义中间件需要这么一个桥梁做细活。“有 NP V” 的句式以前调试过,比想象的复杂,一直没搞定,就放置一边了。

bai:
“有电话可以打”“有空调可以吹”“有大床可以睡”
不必然是逻辑主语,不必然是逻辑宾语,甚至不必然是必选坑。两个谓词中间被NP穿插的,朱先生书里叫“连谓结构”。类似伟哥的next。

我:哈。

bai:
大床居然是S

我:
目前词典没有收可分离合成词 “睡床” 或 “睡大床”。 默认做主语 也是可以的。循 “有 什么什么 发生了” 的句式, 何况 “睡” 做不及物动词的时候更多。不是说分析对了,而是说错得有迹可循。汉语“有”在句首的时候,常常是 dummy,如果 “有” 前有个 NP,那么后面的 NP 做主语的机会就相应减少了。
白老师曰:  大床居然是 S:

有两个哥们,一个叫大床,一个叫小床。大床爱睡懒觉,小床爱撒酒疯。有大床睡,就有小床喝,一刻不得安宁 .... 【谁接龙?】

bai:
白老师还曰,任何成分皆可为专名。

我: =:)
吾谁与归?

bai:
时不我待

我:
想起文革时期的莫须有群众举报,结论是:事出有因,查无实据。然后是 有则改之无则加勉 就是教育被污名者自认倒霉,没的冤枉。
说实心话,昨天白老师说很多公司是,万事俱备,只欠东风。时不我待,我手心的疑似东风如何才能刮起?

bai:
专名是一种层次纠缠。
事出有因,查无实据;有则改之 无则加勉。这是那年代的套话
方言,成了小说里的人名;文章,成了现实中的人名。
找谁讲理去。
只能用“结构强制”,从外部施加影响,再辅以大数据。

我:
说事出有因 是文过饰非。
不过 nmt 测试的结果常常连事出有因 都很难。一个长句 只有一个字不同,而且这个不同的字还是同质的,nmt 翻译结果却有很大的不同。这个现象非dl专家无法解释和理解

bai:
所以规则层面的、用可理解的特征直接表示的知识如何混入大数据直接参与学习甚至“编译”,非常重要。

我:
所谓符号逻辑派 就是错了 也错得事出有因 debug 也知道症结所在

bai:
符号逻辑派缺乏的是柔性,不知道认怂,一错到底。

我:
yeh 见过这种人 还不少

【相关】

【李白对话录之九:语义破格的出路】

【李白对话录之七:NLP 的 Components 及其关系】

【李白对话录之六:如何学习和处置“打了一拳”】

【李白对话录之五:你波你的波,我粒我的粒】

【李白对话录之四:RNN 与语言学算法】

【李白对话录之三:从“把手”谈起】

【李白隔空对话录之二:关于词类活用】

《李白对话录:关于纯语义系统》

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【李白对话录之九:语义破格的出口】

白:
“国内大把的钱想出逃”
钱不会“想”。但是“出逃”只有一个坑,除了“钱”没有其他候选。这种情况下句法优先,语义的不匹配,到语用(pragmatics)层面找辙。一个语用出口是拟人、人格化,把钱人格化。另一个语用出口是延展使动用法,钱的主人“想”使钱出逃。

我:
1117a
出口的问题也许不必存在。句法搞定的东西 默认是 语义不出场 语用不解释,除非落地需要这种解释。落地通常不需要。譬如 mt,一个语言的语义不谐而产生的转义通常可以平移到目标语,哪怕是八杆子打不着的语种之间。譬如乔姆斯基的 green ideas,直译成汉语,同样可以反映乔老爷想 make 的 point:句法确定的时候 可以排除语义。

白:
聚焦句法的人看到的是half full,聚焦全局的人看到的是half empty。

我: 哈
这里谈的是默认。默认做法是、一直是,语义破格是默认许可的,句法破格才需要语义出场。 因为自然语言中,句法确定场合下 语义破格太常见了,常见到见怪不怪。无需解释。而受体在理解过程中 常常各有各的理解 根据这个人的教育和素养 而不是语言学 后者个体差异不大。

白:
默认的主体是谁
分析器么?分析器我同意。但默认的主体不必然是分析器。

我:
换句话说,如语义破格一定要给一个语用出口的话,很可能莫衷一是,标准很难制定。譬如乔老爷的破格的 green ideas,我们语言学家的理解 与普罗的理解 在语用层面相差太大。但是在句法层面,精英与普罗是一致的,虽然普罗可能不知道主谓宾定等术语。

白:
钱想出逃,在应用场景中是有意义的,不管精英普罗,并没有大的分歧

我:
洗钱 的意思?

白:
不一定,也有正常的恐慌.包括本地赚了人民币觉得不安全的,以及外资觉得不想继续玩下去的。

我:
这些破格带来的附加的意义,是听众体会出来的。每个人的体会即便大体方向一致,也很多差异。白老师的理解,比我的理解要丰富,比普罗更不同。很难形式化。即便能形式化 也很危险,因为有强加于人 限制其他可能的缺陷。

白:
这不重要,重要的是面向大众中和精英的预警都要take it into account。

我:
也许只要指出某个关节 语义破格 就可以了,至于这个破格意味什么 让人各自琢磨。其实破格的事儿 指出不指出 大家都心知肚明。

白:
伟哥说的是模块视角,不是系统或服务视角。换到服务视角,即便面向普罗,但是定位也可以是让普罗觉得专业,精英觉得不外行。一个带有修辞性语义破格的表述只有把附加意义掰开揉碎了才能向后传播,跟其他信息滚在一起发酵。在NLP同行间心知肚明的事,要想在知识情报各个piece之间引发chemistry,必须还原为掰开揉碎的形态。形成看上去专业的影响链、作用链。

我:
语义计算提供多种可能 在语用中发酵 是个好主意 ,可能提升人工智能的深度。

白:
所以,一个有追求的服务,不会迁就普罗的非专业理解,而是想办法把专业的理解用普罗便于接受的形式展现出来。

我:
不过 也有可能是潘多拉的盒子

白:
不喜欢不买便是

我:
发酵到不可收拾 不收敛,语义破格的确是 nondeterministic,本性就是发散。其本质是诉诸的人类的想象力。

白:
有些破格已经是家常便饭了
像这句家常便饭就是。

我:
“家常便饭”的破格 通常固化到词典里面去了 。绑架以后 就把破格合法化了 可以不算是破格了。只是词源上 可以看到 两个语义 对于同一个词。系统是看成两个个体的 尽管实际操作我们常常绕过wsd,不做区分 但是如果需要区分 词典是给出了两条路径的。

白:
但和本意还是两个义项
“没怎么特意准备,就是家常便饭,大家随意吃哈。”
家常便饭遇到吃,和难过遇到小河,是一个性质。

我:
感觉正好反着
家常便饭遇到吃 是常态 默认;就好比 难过 遇到 人【human】。
家常便饭甚至谁也遇不到,也还是默认为本义 【food】。
“难过” 稍微模糊点 谁是本义 谁是转义 可以 argue,但通常按照 hidden ambiguity 的原则,词法大于句法,“难过”因此本义是 sad

白:
计算机只管一个是本义、另一个是转义,其他不care

我:
转义带有强烈的句法组合色彩 ,是 difficult to cross。
当然 这一切都听人的安排,遵从便利原则。
语义计算 没有人工 便没有语义,没有语义 就谈不上计算。
说到底 人的语义 design 以及系统内部的协调的考量,是语义计算的出发点 数据是语义计算的营养基地。

白:
如果说到相似性,就是固定组合里面的词素和外面的词素产生了搭配趋势,改变了原来的结合路径。

我: 对。
“这条河很难过。”
lexical entry “难过”里面的词素“过”与外面句法的词素“河”发生了 VO 的关系纠缠。
“这孩子很难过。”
就没有纠缠,桥是桥路是路。

白:
本义的家常便饭,和外面的“吃”有纠缠,转义的没有纠缠;本义的难过和外面的“小河”有纠缠,转义的没有。本义的不一定是概率最高的,譬如本义的“难-过”就可能比不上转义的“难过”概率高。

我:
所以说,要 遵从便利原则, 系统内部协调。本义、转义的区分不重要,重要的是内部协调:哪个义项最方便作为标配。一旦作为标配,就不必考虑纠缠的条件了。只有不是标配的选项 才需要条件,或者需要唤醒。一般而言是概率高的做标配。或者条件混沌、难搞定的那个做标配。然后让条件清晰的去 override 标配,此所谓 system internal coordination。遵循 longest principle,具有 hidden ambiguity  的“难过”,词典标配可以是 sad

白:
选最高概率的作为标配是情理之中,但标配如果恰好是本义,就不需要纠缠去唤醒本义了。“把国民经济搞上去”

我:
最高概率原则保证的是,万一系统没有时间充分开发,标配至少保证了从 bag of word 的传统模型上看,数据质量最优。我们实践中也遇到过决定不采用概率最大的作为标配,这是因为概率大的那个选项,上下文条件很清晰,规则容易搞定。而概率小的选项却条件模糊,所以索性就扔进词典做了标配。所有这些考量都是 system internal,与语言学或词源学上的本义、转义没有必然的对应联系。

白:
吃豆腐,标配是本义,搭配在本义内部纠缠,遇到sex上下文时进入转义。不一定显性,隐形的sex也在内。比如,“张三的豆腐你也敢吃?” 当然,张三卖的豆腐有食品安全问题时,也可以这么问。后者更加specific,是“例外的例外”

我:
例外之例外不得超过三层,这是我的原则,甚至不超过两层。虽然人使劲想,可以一直想到更精巧的例外之例外来。系统不要被带到沟里去。曾经由着性子这么干过,一路追下去,自以为得计。在某个时间的点,一切都 ok,但除非封装为黑箱,只要系统还在继续开发中,那种追求例外之例外的开发路线,结果是捉襟见肘,不堪维护。鲁棒的系统不允许规则具有嵌套层次的依赖性。【科研笔记:系统不能太精巧,正如人不能太聪明

白:
这话放在比特币上,一堆人会跟你急。比特币的设计实在是太精巧了。

我:
超人例外。电脑例外。机器学习例外。
肉身凡胎的人做自然语言系统,stay simple,stay foolish 怎么强调也不过分。

白:
“人家都出轨了,你为啥还没上轨”这标题有意思

我:
机器学习例外是因为反正就是个黑箱子,里面有多少参数,调控成了怎样都是一锅粥,在 retraining 之前,这就是一锤子买卖,好坏就是它,不跟人类讲理。

白:
无规则的系统例外

我:
无 symbolic rule 的系统例外。规则的广义似乎也包括黑箱子系统。严格说该是,无可以让人干预的 symbolic rule 系统例外,如果是 symbolic,但是人不得干预,那也无妨。跟封装等价。

白:
完全词例化的系统也是无symbolic rule的系统吗?

我:
在我这里是。每一条都可以做符号逻辑的解释,都遵循某种语言学的思路。

白:
人只能干预词典

我:
1117b
句法是超然的,处变不惊。只有语义甚至修辞,才需要把 出轨 与 上轨 联系起来,感受其中的“深意”。interpretation 是围绕人跳舞的,譬如我们做 sentiment,把大选舆情挖掘出来,至于如何解读,各人面对挖掘出来的同样的情报,会各自不同。很多人想让机器也做这个解读,基本是死路。上帝的归上帝,凯撒的归凯撒。剥夺人的解读机会,简直蛮不讲理,而且也注定无益。

白:
在证券领域,就是智能投研和智能投顾的关系。

我:
解读的下一步是决策。机器不能也不该做决策。

白:
智能投顾也可以是机器人,但根据一份智能投研报告,不同的智能投顾机器人可以做出不同的投资决策。机器真做决策。但是决策机器人和语义分析机器人之间有防火墙。在投资领域,机器比人强。人过于贪婪和不淡定。人处理信息特别是把握瞬间机会的能力不如机器。做对冲的不利用机器是不可想象的。

我:
这个我信。
甚至银行的那些投资顾问,遇到过不止一个了,老是忽悠我们每年定期去免费咨询他们,感觉他们的平均水平低于一台机器。按照他们几乎千篇一律的所谓投资建议去投资,不会比遵循某个设计良好的系统的建议,更有好处。这些顾问应该被机器把饭碗砸了,省得误导人。
【相关】

从 colorless green ideas sleep furiously 说开去

《泥沙龙笔记:parsing 的休眠反悔机制》

李白对话录之八:有语义落地直通车的parser才是核武器

【李白对话录之七:NLP 的 Components 及其关系】

【李白对话录之六:如何学习和处置“打了一拳”】

【李白对话录之五:你波你的波,我粒我的粒】

【李白对话录之四:RNN 与语言学算法】

【李白对话录之三:从“把手”谈起】

【李白隔空对话录之二:关于词类活用】

《李白对话录:关于纯语义系统》

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【一日一parsing:parser 超越创造parser的人,不是不可能的】

460225017498569285白:
“那些林彪说过的话”
看看复数指示词(det)是如何跳过单数NP找到自己的中心语的。

我:

0924a

0924b
何难之有?

0924c

看着最后这句出来,不禁有些惶恐:这样下去,机器超越造机器的人,不是不可能的。内行看门道,自不必说,可今天还是对后学做个科普吧:为什么说此句的 deep parsing 牛得达到了语言学专家的水平,已经超越了普通人的语言结构分析的能力呢?这个自动生成、看似简单的树形图涵盖这么多的语言学:

(1) 复数指示词 “那批” 跳过了近距离的“你”,甚至跳过了定语从句的谓词“写-过”,连上了远距离的中心词“文章”,做其修饰语(Mod),牛不牛?

(2) 确定了定语从句(Mod-S)“你写过的”及其中心词“文章”;

(3) 定语从句谓词“写过”的主语(S)“你”和逻辑宾语(O)“文章”(所谓的 argument structure 的解构);

(4) 句首的这个带有定语从句的名词短语(“......文章”),与后续句子的谓词“保存-着”的远距离动宾关系(O)也揭示了,这个也有点儿牛吧;

(5) 事实上,句子主干的主(S)谓宾(O)都是各就各位,还有那些小词也都附着到了应该存在的地方(X)。

从深度结构分析的逻辑语义角度,可以说以上的分析已臻完美。

科普完。

能够达到以上对咱中文语句的语言学自动深度分析(deep parsing)水平的,得瑟一哈,也许算是可以原谅的“寡人之疾”了吧。

得瑟毕。

抹一把插大葱的象鼻,拍拍尘土,咱继续谦虚谨慎愚公移山去也。

白:
最后这句的next有些多余
即使去掉,所有有用的关系都在

我:
Next 是桥梁(敲门砖),本来是可以用完扔掉的,后来觉得留下也可以。
做个青春的纪念。
青春是褒义词,耍流氓是贬义词,但都是一回事儿:盲目躁动。(Next 残存了一点语序的信息,虽然逻辑上没有语序的地位,但在语义落地的时候,这个痕迹有时可能还有一点用。)

我一直相信,结构分析,机器达到或超越人的水平,是在望的。
结构分析后的语义落地,与人类的智力还有一些距离。但是因为语义落地几乎都是面向领域或应用的,因此有 leverage,有些觉得是天大的难题,有时在领域语用里面,就自然化解了,或者简化了。由此看来,NLU (或语义计算)是靠谱的 monster。

近两个月出了两件牛刀宰鸡的事儿。一个是英文,一个是中文。具体不让说,但可以假语村言。都是在某个产品领域被认为是拦路虎的与自然语言有关的难题。研究了一下,回答说,有了 deep parsing 的核武器,这有何难?

演练了一下,真地就是牛刀宰鸡,一眼见底。很多人以为核武器之说是立法委的极度夸张。天知地知,还真不是。被演义的对象说,这个难题在这个产品领域一旦解决,有很多后续的应用。可是如果不是不得已,还是想做牛刀宰牛的活计,而不是陷入鸡窝去没完没了地宰鸡。胜之不武啊。古训不是有说,不为五斗米折腰嘛。但愿不至于落到五斗米的田地。

【相关】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

【李白对话录:如何学习和处置“打了一拳”】

白:
“张三打了李四一拳”“张三打李四的那一拳”
我的问题:1、“一拳”在两个例子里,跟“打”的“逻辑语义关系”是否是相同的?
2、如果相同,这种关系是不是萝卜和坑的关系?
3、如果是,那么这个坑是“打”自带的,还是被“一拳”的出现逼出来的?
4、非自带但可以被逼出来的坑,是一个个别现象还是一个普遍现象?是汉语特有的现象还是一个语言共性现象?
2':如果不同,第二例中的定语从句和中心语“那一拳”之间的关系是怎么建立的?
“张三喊了一嗓子”“张三喊的那一嗓子,我老远就听见了”,一个道理
另外,“回马枪”“窝心脚”等“工具扩展为招式”固定短语,是不是可以直接略掉量词,与数词结合?

我:

1. 逻辑语义上应该相同,句法上有【主谓】和【定语从句+NP】 的不同,很典型。

2 具体说,“打一拳” 就是搭配,是合成动词,与“洗澡”可比,不过后者是动宾搭配,前者是动补搭配。都是合成词的句法表现,都涉及词典与句法的动态接口。
直接量的搭配,当然属于罗卜与坑。
语言中的萝卜和坑,不外是 :(1)一个直接量(词)准备了一类词(feature)的坑;(2)一个直接量(词)准备了另一个直接量(词)的坑,通常叫强搭配;(3)一类词(feature)准备了另一类词(feature)的坑。(3) 是常规句法的表现,属于空对空,两边都不着地。其规则(feature based grammar)概括性强,但容易遭遇例外的滑铁卢。lexicalized grammar or word driven rules,越来越远离(3),或者把(3)限定在一个极少的数量上。那么就剩下(1)和(2)了。
“打...一拳” 是(1),这就到了你的第三个问题,两个直接量的搭配,谁 expects 谁?
纯技术上讲,根本就没有区分,或者说,等价。x 与 y 相互勾搭,说是 x 勾搭了 y 或者 y 勾搭了 x,都无所谓,反正他们是一家人,本来就是一个词,一个概念,不过到了语言表达,被人为分开了距离。

【3、如果是,那么这个坑是“打”自带的,还是被“一拳”的出现逼出来的?】
“打一拳”就是一个词条,概念上是混为一体的,不分你我,无所谓主次(动补的主次是词法内部的,可以无视)。但是操作上,可以有说法。(不知道汉语的搭配词典里面,“打一拳”这样的条目是放在 “打” 的下面,还是 “一拳” 的下面,还是两个地方都有?)但是,在NLP实现中,“打一拳” 与 “洗澡” 一样,是一个特定的分离词词条。不过是标签不同而已,譬如 Vo 与 Vbu,其他的事儿就交给句法了。

【4、非自带但可以被逼出来的坑,是一个个别现象还是一个普遍现象?是汉语特有的现象还是一个语言共性现象?】
对于直接量搭配,我的看法是,没有自带和被逼的问题,都是两厢情愿的相互吸引。
这个应该属于普遍现象: x--y,汉语有 “洗-澡”, 英语有 “take--bath”。词法是动补或者动词与状语这样的直接量与直接量的搭配,其他语言肯定也会有,不过一时想不到例子而已。

白:
打一苕帚疙瘩,也是搭配
任何顺手的东西,都可以抄起来就打
搭配的做法未免太ad hoc

我:
所有的词典都是 ad hoc,不然就不叫绑架了。但是 词条背后的 x--y 搭配 则是有语言共性的。

白:
问题是不可穷尽,而且本来能产,是一个有规律性的现象,打两鞭子,砍三刀,踹五脚。

我:
不可穷尽 那就不是 x--y 强搭配。理论上 不是 x --- y,就只能是 x ---- feature,或者 feature1 ----- feature2,没有其他的框可以进去。
“砍三刀” 与 “洗三个澡” 可比吗?要是可以,那就是 x --- y,可变的不过是 numeral,两端还是固定的:“踹-脚”,“砍--刀”。

白:
加量词的不算,只算省略量词的.明显的是工具,但是原动词很难说自带了“工具”这个坑。

我:
有些中间地带的现象。
说到底是路线问题。如果是 lexicalist 的路线,中间地带的一律进入词典,不在乎 ad hoc,不在乎冗余,好处是精准。如果是“传统”的文法,那就把中间地带划归到句法去,具有完全的产生性,好处是 不错的recall,但很容易被例外搅合,损失了精准(precision)。当然也可以二者结合,先弄一条 recall 的兜底,然后见到中间地带弄错了的,再去结合词典堵它。recall 楼底的可以想象的 rule 是这样的,利用了汉语名词通常不能直接为数词修饰的句法特点:

V + CD + N --> V Buyu

这一条可以搂住很多,但是危险。修修补补也可以把这条规则的危险减小,但不能杜绝,因为这是 feature based rule 的本性(POS 是 feature )。

接着练,我们可以有个楼底的规则来满足白老师说的某种语言现象的共性:

V +(时态小词)+ CD + N ==> V <-- Buyu[CD+N]

这条规则可以 parse 上面列举的所有现象,但是还是 too “powerful”, recall 有余,precision 不足。不过 precision 这东西,工程上靠的就不断扩大测试,测试不错的话就当没有精度问题,如果测试遇到问题了,有三个路子:(1)一个是在这一条规则中打磨,把 POS 条件细化成子类或ontology,或其他限制;(2) 第二个路子是另写一条细线条规则去 override 它,使得文法成为一个 hierarchy 的模块;(3) 第三个路子就是把错的东西(例外)扔进词典, 这实际上等价于第二条路子的极限 case,把词典当成是 rule hierarchy 的极端。有了这么一个从词典规则,到细线条 feature 规则,最后到 POS 的抽象层规则的 hierarchy 的规则化设计,就可以应对语言的例外、个性一直到共性及其之间的灰色地带。

懒得大数据,甚至懒得词典绑架搭配,上面那条默认规则送进系统先凑合事儿吧,就坐等今后例外慢慢地出现,再说。

0925b

0925c

白:
为什要在细粒度基于规则
这里说的这个层面规则的缺点,用学习对付起来正是优势

我:
不要细粒度也可以啊,抓两头带中间。大不了有些 redundancy,灰色的一律当成黑色。不可穷举不过是一种修辞说法。从统计上,处于灰色地带的东西一定是可以穷举的,不过是穷举到后来成了统计性长尾,不要再举而已。

白:
我是说,这里不存在二分法,除了词典捆绑就是基于规则, 可以基于学习

我:
白老师可以 illustrate 基于学习的东西,优势在哪里?(其实这个问题,我没觉得是一个对规则系统的挑战。没觉得它的挑战超越了 “洗澡”)

白:
不能穷举、规则又零乱,正好拿可以部分例子来学。feature很值钱,长尾的实例也很值钱,裹在一起学才是正道,既有泛化,又有死记硬背。

白:
拿有规律性的东西死记硬背,是逼着好孩子耍流氓

我:
从良性角度,也可以说是教育孩子脚踏实地,一步一个脚印。

白:
在泛化和死记硬背的灰色地带,该用学习就用学习。
看着不爽,又不是没办法。
只有应试教育、临阵磨枪,才把什么活的都搞死

我:
这里面的根本是,迄今为止,一个系统要不是统计的,要不是规则的。所谓 hybrid 的系统,大多是是两个系统的叠加,而不是融合。在这样一个 context 下,就不是说,我规则的规则,词典的词典,中间混杂一些统计学习。虽然后者应该是一个研究方向,而且应该可能做得比叠加式 hybrid 更高明。如果白老师说的是纯粹的学习系统,那是另一套话语体系,no comment。从规则这边看,抓两头,把灰色当黑色做,没有问题,不过是磨时间而已。共性规则保证了 recall,而 precision 就是时间的函数。

白:
我说的是,谁可能跟谁结合用规则,在同样符合规则情况下,谁排除跟谁结合用学习,但这是无监督学习,标注来自词典。前面用规则的只涉及萝卜、坑和帽子,不涉及subcat。后面学习的则是用subcat。

我:
其实 就用 V+CD+N 这个简单的模式到海量数据去,抓回来的无监督学习也大体就齐了。这是一个很狭窄的语言现象。无监督学习的结果就是这个特定的 subcat 的 knowledge acquisition,这是一个 offline 的学习过程。然后再利用学习出来的结果,支持 parsing

白:
其实这楼已经歪了。我的本意是在探讨逼出来的非标配的坑。
如果可以那样做,离语言的本质或许更近。

“他上学的那个学校”;“他约会的那个晚上”。

不加数词也存在把在一个句式里充当状语或补语的名词在另一个相关句式中充当主谓语,而逻辑语义关系不变的情况。而那个名词的真实身份是工具、处所、时间等角色。本来对于动词来说不是标配的。来到了某种位置,就逼迫动词把这个角色变为标配。
英语的介词结尾:the man you look for,可以给它们明确身份,即使在定语从句,也是庶出(介词养的,不是动词养的)。当然可以说动介组合look for养的。
汉语里进入定语从句后分不出来谁养的,反正介词消失了,带着反而不对。带着就要把零形式用真实代词替换:“你在其中上学的学校”,“你与之结婚的女人”

加数词,只不过突出了动量含义,不改变逻辑语义关系。

砍张三的斧子……着眼工具
砍张三的两斧子……着眼动作的次数
砍张三的斧子……用来(以/之/其)砍张三的斧子

我:
补语表示次数是逻辑语义工具在语言中的"虚化"(同时“形象化”)的用法,这种虚化用法本身不是语言共性,但可以映射到到深层的逻辑语义【工具】: 【工具】是 universal 的。就“砍”而言,【工具】不是逼迫出来的标配,而是自带的标配,不信可以查董老师的 HowNet,结婚 的标配是 with [human],对于 上学, 学校 是不是自带的?大概也可以这么说,不知道知网里面 上学 有没有一个 location 的槽,标配是学校。

可以找一个完全 random 的定义或状语试试,好像不行。似乎很难找到一个具有同样逻辑语义的,并且可以参与下面两个句式的案例:补语句式(表示次数)和定语句式。换句话说,这种现象要不就是搭配,要不就是搭配的延伸,而不是 random 的修饰语(adjunct)的组合,或者从 adjunct 被逼迫成的 complement,里面的逻辑语义是概念关系的某种 argument,有其结合的必然性。这种搭配似乎可以是词对词(两条腿落地),也可能是词对小类(feature:一条腿落地)。前者是强搭配的词典绑架,后者是灰色的,不一定可以绑架得了,统计可以学习出来。

白:
正是我要说的

我:
白老师岂止是四两拨千斤 lol

词对小类的subcat的习得,譬如 某个动词要求的是某种宾语(譬如【human】),这种东西可以从大数据学习出来:这个概念已经有日子了。剑桥大学一个教授多年前就倡导这种学习,好像也做了一批实验,印象也发表了一些文章。但这些研究总体来说是零星的,研究的归研究,应用的归应用,二者似乎也没有什么结合起来让人印象深刻的成果。

白:
没有把搭配学习锚定在结构上,是没戏的
你如果又学结构又学搭配,肯定乱套
一定是选定少数几种可能的结构,让搭配来进一步甄别,各司其职

白:
“砍”的工具可以是标配,“打”不行。适合“打”的subcat很不整齐,我们心里想的是“顺手可以抄起来的物件”但是subcat列表上不会顺顺当当给你这个。于是,要诸多subcat、诸多词例都当作features,想办法从可以列举的例子(包括已经可以确认的词例-subcat子规则)学出来。
炉子太大,抄不起来。房子更大。扫把大小适中。细菌太小。所以,“张三打李四一大肠杆菌”不通。

我:
用 pattern 打+CD+N,一学一个准 只要有海量数据,根本不用怕噪音,因为这个 pattern 非常好使。
联想到10多年前谷歌有人发过一篇论文,用两个特别拣选的 ngram patterns,学出了 ISA 的 taxonomy,让人印象深刻。后来我们还重复了这个工作,虽然并没真正用上其结果,但路子是对的。照着类似学习的路子,HowNet 有一天也是可以学出来的,只要董老师定义好要学的几个语义关系的性质,找到合适的 patterns。
谷歌用的两个 patterns 是: N such as X, Y, Z ;X, Y, Z and other N

e.g.
furniture such as desks, chairs, coffee-tables
desks, chairs, coffee-tables and other furniture (will all be on sale)
taxonomy is: {X, Y, Z} -->N

学他有啥用,反正人拍着脑袋慢慢想也可以想出来呀。HowNet 语义关系丰富,所以编写了很多年,但是终究还是编写出来了,几乎完备了(董老师好像如今只是零星地补充和添加了)。既然专家可以人工编写,既完备,又精良,有什么理由指望大数据去习得这些知识呢?这是问题的一面,特别是对于相对恒定久远的概念语义关系,确实没有道理不用专家的产品。

问题的另一面是,对于具有某种流动性的概念关系,专家很难赶得上机器习得(acquisition),还有不同领域的知识,等等。这是人力不及的地带,只有指靠大数据和机器了。上面的谷歌论文中举了一些例子,特别有意思,记得是说,学出来一个 dictator 的下位概念,里面的成员极具大数据的特点,有 卡斯特罗,毛泽东,斯大林,希特勒,etc。

白:
这是主观分类了,不合适放词典里。还有“知名品牌”的实例, 马上就有商业价值了。

我:
这不是我每天做的工作吗:social media mining of public opinions and sentiments
我们公司定期出版全球知名品牌的口碑排行榜之类,印刷精良。以前出版的是奢侈品牌(名牌包、名牌轿车、高级香水)等。最近出的一期是: Social Media Industry Report 2016: Restaurant Brand

刚测试了一下白老师的例句,最奇葩的是这个:

0925a

长成葫芦状的树形图,以前还真没见过。(词典里没有小词 “与之”,PP 也没合成它,于是被略去。)尽管如此,整个图是很逻辑的,撞了不知道什么运:“你”是结婚的一方(S),“女人”也是结婚的一方(S),这两方结婚的事件是一个定语从句(Mod-S),修饰到了“女人”的头上。至于小词 “的”、“之”,还有耍流氓的咸猪手 Next,这一切都是帮助建立结构的敲门砖,这些表层东西与逻辑语义无关,留在那里不是为了碍眼,而是为了在语义的语用落地的时候,万一需要表层痕迹的一些帮助呢。after all 语义计算的的目的不是为了画出好看的逻辑的图,自娱娱人,而是为了落地、做产品。

 

【相关】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

Interaction of syntax and semantics in parsing Chinese transitive verb patterns

Interaction of syntax and semantics in parsing Chinese transitive verb patterns *
(old paper in Proceedings of International Chinese Computing Conference, ICCC'96)

Wei  LI

Department of Linguistics, Simon Fraser University
Burnaby, B.C. V5A 1S6 CANADA (email: [email protected])

Keywords: Chinese processing, transitive pattern, syntax, semantics, lexical rule, HPSG

Abstract

This paper addresses the problem of parsing Chinese transitive verb patterns (including the BA construction and the BEI construction) and handling the related phenomena of semantic deviation (i.e. the violation of the semantic constraint).

We designed a syntax-semantics combined model of Chinese grammar in the framework of Head-driven Phrase Structure Grammar [Pollard & Sag 1994]. Lexical rules are formulated to handle both the transitive patterns which allow for semantic deviation and the patterns which disallow it. The lexical rules ensure the effective interaction between the syntactic constraint and the semantic constraint in analysis.

The contribution of our research can be summarized as:

(1) the insight on the interaction of syntax and semantics in analysis;
(2) a proposed lexical rule approach to semantic deviation based on (1);
(3) the application of (2) to the study of the Chinese transitive patterns;
(4) the implementation of (3) in an unification-based Chinese HPSG prototype.

  1. Background

When Chomsky proposed his Syntactic Structures in Fifties, he seemed to indicate that syntax should be addressed independently of semantics. As a convincing example, he presented a famous sentence:

1)             Colorless green ideas sleep furiously.

Weird as it sounds, the grammaticality of this sentence is intuitively acknowledged: (1) it follows the English syntax; (2) it can be interpreted. In fact, there is only one possible interpretation, solely decided by its syntactic structure. In other words, without the semantic interference, our linguistic knowledge about the English syntax is sufficient to assign roles to each constituent to produce a reading although the reading does not seem to make sense.

However, things are not always this simple. Compare the following Chinese sentences of the same form NP NP V:

2a)           dianxin  wo           chi           le.
                Dim-Sum I               eat           LE.
The Dim Sum I have eaten.
Note:        LE is a particle for perfect aspect.

2b)   wo dianxin chi le.
I have eaten the Dim Sum.

Who eats what? There is no formal way but to resort to the semantic constraint imposed by the notion eat to reach the correct interpretation [Li, W. & McFetridge 1995].

Of course, if we want to maintain the purity of syntax, it could be argued that syntax will only render possible interpretations and not the interpretation.  It is up to other components (semantic filter and/or other filters) of grammar to decide which interpretation holds in a certain context or discourse. The power of syntax lies in the ability to identify structural ambiguities and to render possible corresponding interpretations. We call this type of linguistic design a syntax-before-semantics model. While this is one way to organize a  grammar, we found it unsatisfactory for two reasons. First, it does not seem to simulate the linguistic process of human comprehension closely.  For human listeners, there are no ambiguities involved in sentences 2a) and 2b). Secondly, there is considerable cost on processing efficiency in terms of computer implementation. This efficiency problem can be very serious in the analysis of languages like Chinese with virtually no inflection.

Head-driven Phrase Structure Grammar (HPSG) [Pollard & Sag 1994, 1987] assumes a lexicalist approach to linguistic analysis and advocates an integrated model of syntax and the other components of grammar. It serves as a desirable framework for the integration of the semantic constraint in establishing syntactic structures and interpretations. Therefore, we proposed to enforce the semantic constraint that animate being eats food directly in the lexical entry chi  (eat) [Li, W. & McFetridge 1995]: chi (eat) requires an animate NP subject and a food NP object. It correctly addresses who-eats-what problem for sentences like 2a) and 2b). In fact, this type of semantic constraint (selection restriction) has been widely used for disambiguation in NLP systems.

The problem is, the constraint should not always be enforced. In the practice of communication, deviation from the constraint is common and deviation is often deliberately applied to help render rhetorical expressions.

 

3) xiang      chi           yueliang,  ni             gou           de3    zhao       me?
    want        eat           moon,       you          reach       DE3  -able          ME?
Wanting to eat the moon, but can you reach it?
Note:  DE3 is a particle, introducing a postverbal adjunct of result or capability. ME is a sentence final particle for yes-no question.

4) dajia         dou   chi           shehui zhuyi,           neng         bu            qiong       me?
     people      all      eat           social -ism,               can            not           poor         ME
Everyone is eating socialism, can it not be poor?

yueliang (moon) is not food, of course. It is still some physical object, though. But in 4), shehui zhuyi (socialism) is a purely abstract notion. If a parser enforces the rigid semantic constraint, there are many such sentences that will be rejected without getting a chance to be interpreted. The fact is, we do have interpretations for 3) and 4). Hence an adequate grammar should be able to accommodate those interpretations.

To capture such deviation, Wilks came up with his Preference Semantics [Wilks 1975, 1978]. A sophisticated mechanism is designed to calculate the semantic weight for each possible interpretation, i.e. how much it deviates from the preference semantic constraint. The final choice will be given to the interpretation with the most semantic weight in total. His preference model simulates the process of how human comprehends language more closely than most previous approaches.

The problem with this design is the serious computational complexities involved in the model [Huang 1987]. In order to calculate the semantic weight, the preference semantic constraint is loosened step by step. Each possible substructure has to be re-tried with each step of loosening. It may well lead to combinatorial explosion.

What we are proposing here is to look at semantic deviation in the light of the interaction of the syntactic constraint and the semantic constraint. In concrete terms, the loosening of the semantic constraint is conditioned by syntactic patterns. Syntactic pattern is defined as the representation of an argument structure in surface form. A pattern consists of 2 parts: a structure's syntactic constraint (in terms of the syntactic categories and configuration, word order,  function words and/or inflections) and its interpretation (role assignment). For example, for Chinese transitive structure, NP V NP: SVO is one pattern, NP NP V: SOV is another pattern, and NP [ba NP] V: SOV (the BA construction) is still another. The expressive power of a language is indicated by the variety of patterns used in that language. Our design will account for some semantic deviation or rhetorical phenomena seen in everyday Chinese without the overhead of computational complexities. We will focus on Chinese transitive verb patterns for illustration of this approach.

  1. Chinese transitive patterns

Assuming three notional signs wo (I), chi (eat) and dianxin (Dim Sum), there are maximally 6 possible combinations in surface word order, out of which 3 are grammatical in Chinese.[1]

5a)           wo chi le dianxin.                                   SVO
5b)           wo dianxin chi le.                                   SOV
5c)           dianxin wo chi le.                                    OSV

SVO is the canonical word order for Chinese transitive structure. When a string of signs matches the order NP V NP, the semantic constraint has to yield to syntax for interpretation.

NP V NP: SVO

6)  daodi         shi     ni             zai         du       shu          ne,
haishi                 shu           zai         du       ni             ne?

     on-earth     be     you          ZAI        read     book        NE,
or                        book        ZAI        read     you          NE?

Are you reading the book, or is the book reading you, anyway?
Note:        ZAI is a particle for continuous aspect.
NE is a sentence final particle for or-question.

Same as in the English equivalent, the interpretation of  6) can only be SVO, no matter how contradictory  it might be to our common sense. In other words, in the form of NP V NP, syntax plays a decisive role.

In contrast, to interpret the form NP NP V as SOV in 2b), the semantic constraint is critical. Without the enforcement of the semantic constraint, the interpretation of SOV does not  hold. In fact, this SOV pattern (NP1 NP2 V: SOV) has been regarded as ungrammatical in a Case Theory account for Chinese transitive structure in the framework of GB. According to their analysis, something similar to this pattern constitutes the D‑Structure for transitive pattern and Chinese is an underlying SOV language (called "SOV Hypothesis": see the survey in Gao 1993). In the surface structure, NP2 is without case on the assumption that V assigns its CASE only to the right. One has to either insert the case-marker ba to assign CASE to it (the BA construction) or move it to the right of V to get its CASE (the SVO pattern). This analysis suffers from not being able to account for the grammaticality of sentences like 2b).  However, by distinguishing the deep pattern SOV from the 2 surface patterns (the SVO and the BA construction), the theory has its merit to alert us that the SOV pattern seems to be syntactically problematic (crippled, so to speak). This is an insightful point, but it goes one step too far in totally rejecting the SOV pattern in surface structure. If we modify this idea, we can claim that SOV is a syntactically unstable pattern and that SOV tends to (not must) "transform" to the SVO or the BA construction unless it is reinforced by semantic coherence (i.e. the enforcement of the semantic constraint). This argument in the light of syntax-semantics interaction is better supported by the Chinese data. In essence, our account is close to this reformulated argument, but in our theory, we do not assume a deep structure and transformation. All patterns are surface constructions. If no sentences can match a construction, it is not considered as a pattern by our definition.

This type of unstable pattern which depends on the semantic constraint is not limited to the transitive phenomena. For example, the type of Chinese NP predicate defined in  [Li, W. & McFetridge 1995] is also a semantics dependent pattern. Compare:

7a)  zhe           zhang       zhuozi                  san          tiao          tui.
        this           Cl.         table(furniture)      three        Cl.            leg
This table is three-legged.
Note:        Cl for classifier.

7b) *        zhe           zhang       ditu                          san          tiao          tui.
                this           Cl.           map(non-furniture)  three        Cl.            leg

There is clearly a semantic constraint of the NP predicate on its subject: it should be furniture (or animate). Without this "semantic agreement", Chinese NP is normally not capable of functioning as a predicate, as shown in 7b).

Between semantics dependent and semantics independent patterns, we may have partially dependent patterns. For example, in NP NP V: OSV, it seems that the semantic constraint on the initial object is less important than the semantic constraint on the subject.

8)   shitou                wo              ye   xiang  chi,    kexi      yao       bu      dong.
   stone(non-food)  I(animate) also want  eat,    pity       chew    not      -able

Even stones I also want to eat, but it's such a pity that I am not able to chew them.

If the constraint on the object matches well, is the subject allowed to be semantically deviant?

9) ?          dianxin                     zhuozi                        chi           le.
                Dim-Sum(food)        table(non-animate)  eat           LE.

Those are the marginal cases, a grammar may choose to be more tolerable to accept it or to be more restrained to reject it.

Unlike SOV, but similar to its English counterpart, OSV is one type of Chinese topic constructions and the relationship between the initial O and V is of long distance dependency.

10a)  dianxin      wo     xiangxin   ni           yiwei        Lisi          chi           le.
          Dim-Sum    I         believe     you          think        Lisi           eat           LE

The Dim Sum I believe you think that Lisi ate.

10b) *      Lisi wo xiangxin ni yiwei dianxin chi le.

10b) will not be accepted in our model because (1) it cannot be interpreted as OSV since it violates the semantic constraint on S: dianxin is not animate; (2) it can neither be interpreted as SOV since it violates the configurational constraint: SOV is simply not of a long distance pattern. In fact, NP NP V: SOV is such a restricted pattern in Chinese that it not only excludes any long distance dependency but even disallows some adjuncts. Compare 11a) in the OSV pattern and 11b) and 11c) in the SOV pattern:

11a)  dianxin      wo           jinjinyouwei             de2           chi           le.
          Dim-Sum      I              with-relish                DE2         eat           LE

The Dim Sum I ate with relish.
Note:        DE2 is a particle introducing a preverbal adjunct of  manner.

11b) *      wo dianxin jinjinyouwei de2 chi le.

11c) *      wo jinjinyouwei de2 dianxin chi le.

There is another pattern of the linear order SOV, the Chinese notorious BA construction. ba is usually regarded as a preposition which introduces a preverbal object for transitive verbs.

NP [ba NP] V: SOV

12a)  wo           ba            dianxin       jinjinyouwei             de2          chi           le.
           I              BA           Dim-Sum     with-relish                DE2         eat           LE

I ate the Dim Sum with relish.

12b)         wo jinjinyouwei de2 ba dianxin  chi le.
With relish, I ate the Dim Sum.

12c)         dianxin  ba wo jinjinyouwei de2  chi le.
The Dim Sum ate me with relish.

12d)         dianxin jinjinyouwei de2 ba wo  chi le.
With relish, the Dim Sum ate me.

For the OSV order, there is another so-called BEI construction. The BEI construction is usually regarded as an explicit passive pattern in Chinese.

NP [bei NP] V: OSV

13a)        dianxin       bei          wo           chi           le.
                Dim-Sum     BEI          I               eat           LE

The Dim Sum was eaten by me.

13b)         wo bei dianxin  chi le.

I was eaten by the Dim Sum.

The BEI construction and the BA construction are both semantics independent. In fact, any pattern resorting to the means of function words in Chinese seems to be sufficiently independent of the semantic constraint.

To conclude, semantic deviation often occurs in some more independent patterns, as seen in 5d2), 6), 8), 12c), 12d), 13b). Close study reveals that different patterns result in different reliance on the semantic constraint, as summarized in the following table.

                syntactic pattern                                 semantic dependence

                NP V NP: SVO                                                    no dependence
                NP [ba NP] V: SOV                                            no dependence
                NP [bei NP] V: OSV                                           no dependence
                NP NP V: OSV                                                    partial dependence
                NP NP V: SOV                                                    full dependence
............

It should be emphasized that this observation constitutes the rationale behind our approach.

  1. Formulation of lexical rules

Based on the above observation, we have designed a syntax-semantics combined model. In this model, we take a lexical rule approach to Chinese patterns and the related problem of semantic deviation.

A lexical rule takes as its input a lexical entry which satisfies its condition and generates another entry. Lexical rules are usually used to cover lexical redundancy between related patterns. The design of lexical rules is preferred by many grammarians over the more conventional use of syntactic transformation, especially for lexicalist theories.

Our general design is as follows, still using chi (eat) for illustration:

(1)   Syntactically, chi (eat) as a transitive verb subcategorizes for a left NP as its subject and a right NP as its object.

(2)   Semantically, the corresponding notion eat expects an entity of category animate as its logical subject and an entity of category food as its logical object. Therefore the common sense (knowledge) that animate being eats food is represented.

(3)   The interaction of syntax and semantics is implemented by lexical rules. The lexical rules embody the linguistic generalizations about the transitive patterns. They will decide to enforce or waive the semantic constraint based on different patterns.

As seen, syntax only stipulates the requirement of two NPs as complements for chi and does not care about the NPs' semantic constraint. Semantics sets its own expectation of animate entity and food entity as arguments for eat and does not care what syntactic forms these entities assume on the surface. It is up to lexical rules to coordinate the two. In our model, the information in (1) and (2) is encoded in the corresponding lexical entry and the lexical rules in (3) will then be applied to expand the lexicon before parsing begins. Driven by the expanded lexicon, analysis is implemented by a lexicalist parser to build the interpretation structure for the input sentence. Following this design, there will be sufficient interaction between syntax and semantics as desired while syntax still remains to be a self-contained component from semantics in the lexicon. More importantly, this design does not add any computational complexities to parsing because in order to handle different patterns, the similar lexical rules are also required even for a pure syntax model.

Before we proceed to formulate lexical rules for transitive patterns, we should make sure what a transitive pattern is. As we defined before, a pattern consists of 2 parts: a structure's syntactic constraint and the corresponding interpretation. Word order is important constraint for Chinese syntax. In addition to word order, we have categories and function words (preposition, particle, etc.). As for interpretation, transitive structure involves 3 elements: V (predicate) and its arguments S (logical subject) and O (logical object). There is a further factor to take into account: Chinese complements are often optional. In many cases, subject and/or object can be omitted either because they can be recovered in the discourse or they are unknown. We call those patterns  elliptical patterns (with some complement(s) omitted), in contrast to full patterns. With these in mind, we can define 10 patterns for Chinese transitive structure: 5 full patterns and 5 elliptical patterns.

We now investigate these transitive patterns one by one and try to informally formulate the corresponding lexical rules to capture them. Please note that the basic input condition is the same with all the lexical rules. This is because they share one same argument structure - transitive structure.

Lexical rule 1:   

                V ((NP1, NP2), (constr1, constr2)) --> NP1 V NP2: SVO

The above notation for the lexical rule should be quite obvious. The input of the rule is a transitive verb which subcategorizes for two NPs: NP1 and NP2 and whose corresponding notion expects two arguments of constr1 and constr2NP is syntactic category, and constr is semantic category (human, animate, food, etc.). The output pattern is in a defined word order SVO and waives the semantic constraint.

Lexical rule 2:   

      V ((NP1, NP2), (constr1, constr2)) --> [NP1, constr1] [NP2, constr2] V: SOV

Please note that the semantic constraint is enforced for this SOV pattern. Since this pattern shares the form NP NP V with the OSV pattern, it would be interesting to see what happens if a transitive verb has the same semantic constraint on both its subject and object. For example, qingjiao (consult) expects a human subject and a human object.

14)           ta                     ni                               qingjiao    guo        me?
                he(human)     you(human)             consult     GUO        ME

Him, have you ever consulted?
Note: GUO is a particle for experience aspect.

15)           ni ta  qingjiao guo  me?

You, has he ever consulted?

In both cases, the interpretation is OSV instead of SOV. Therefore, we need to reformulate Lexical rule 2 to exclude the case when the subject constraint is the same as the object constraint.

Lexical rule 2' (refined version):

                V ((NP1, NP2), (constr1, constr2), (constr1 not = constr2))

                --> [NP1, constr1] [NP2, constr2] V: SOV

Lexical rule 3:

                V ((NP1, NP2), (constr1, constr2)) --> NP1 [ba NP2] V: SOV

This is the typical BA construction. But not every transitive verb can assume the BA pattern. In fact, ba is one of a set of prepositions to introduce the logical object. There are other more idiosyncratic prepositions (xiang, dao, dui, etc.) required by different verbs to do the same job.

16a)      ni             qingjiao    guo         ta             me?
              you          consult     GUO        he            ME

Have you ever consulted him?

16b)         ni             xiang        ta             qingjiao    guo        me?
                 you          XIANG     he            consult     GUO        ME

Have you ever consulted him?

16c) *      ni             ba            ta             qingjiao    guo        me?
                you          BA           he            consult     GUO        ME

17a)         ta             qu             guo         Beijing.
                 he            go-to        GUO        Beijing

He has been to Beijing.

17b)         ta             dao         Beijing     qu             guo.
                 he            DAO        Beijing     go-to        GUO

He has been to Beijing.

17c) *      ta             ba            Beijing     qu            guo.
                 he            BA           Beijing     go-to        GUO

18a)         ta             hen         titie                             zhangfu.
                 she           very       tenderly-care-for      husband

She cares for her husband very tenderly.

18b)         ta             dui          zhangfu       hen        titie.
                 she           DUI         husband      very       tenderly-care-for

She cares for her husband very tenderly.

18c) *      ta             ba            zhangfu         hen                          titie.
                she           BA           husband         very                         tenderly-care-for

This originates from different theta-roles assumed by different verb notions on their object argument: patient, theme, destination, to name only a few. These theta-roles are further classification of the more general semantic role logical object. We can rely on the subcategorization property of the verb for the choice of the preposition literal (so-called valency preposition). With the valency information in place, we now reformulate Lexical rule 3 to make it more general:

Lexical rule 3' (refined version):

       V ((NP1, NP2), (constr1, constr2),  (valency_preposition=P), (P not = null))

       --> NP1 [P NP2] V: SOV

Lexical rule 4:   

                V ((NP1, NP2), (constr1, constr2)) --> NP2 ... [NP1, constr1] V: OSV

This is a topic pattern of long distance dependency. It is up to different formalisms to provide different approaches to long-distance phenomena. In our present implementation, NP2 is placed in a feature called BIND to indicate the nature of long distance dependency. One phrase structure rule Topic Rule is designed to use this information and handle the unification of the long distance complement properly.

Following the topic pattern, the passive BEI construction is formulated in Lexical rule 5.

Lexical rule 5:   

                V ((NP1, NP2), (constr1, constr2)) --> NP2 [bei NP1] V: OSV

We now turn to elliptical patterns.

Lexical rule 6:   

                V ((NP1, NP2), (constr1, constr2)) --> V NP2: VO

19)           chi           guo          jiaozi                        me?
                eat           GUO        dumpling                 ME

Have (you) ever eaten dumpling?

Lexical rule 7:   

                V ((NP1, NP2), (constr1, constr2)) --> [NP1, constr1] V: SV

20)           wo           chi           le.
                I               eat           LE

I have eaten (it).

21)           ji                                 chi           le.
                chicken1(animate)   eat           LE

The chicken has eaten (it).

Like its English counterpart, ji (chicken) has two senses: (1) chicken1 as animate; (2) chicken2 as food. We code this difference in two lexical entries. Only the first entry matches the semantic constraint on the subject in the pattern and reaches the above SV interpretation in 21). Interestingly enough, the same sentence will get another parse with a different interpretation OV in 23) because the second entry also satisfies the semantic constraint on the object in the OV pattern in Lexical rule 8.

22)           ni             qingjiao    guo         me?
                you          consult     GUO        ME

Have you consulted (someone)?

22) indicates that the SV interpretation is preferred over the OV interpretation when the semantic constraint on the subject and the semantic constraint on the object happen to be the same. Hence the added condition in Lexical rule 8.

Lexical rule 8:   

                V ((NP1, NP2), (constr1, constr2), (constr1 not = constr2))

                --> [NP2, constr2] V: OV

23)           ji                                 chi           le.
                chicken2(food)         eat           LE

The chicken has been eaten.

Lexical rule 9:   

                V ((NP1, NP2), (constr1, constr2)) --> NP2 [bei V]: OV

24)           dianxin    bei           chi           le.
                Dim-Sum  BEI          eat           LE

The Dim Sum has been eaten.

Lexical rule 10:

                V ((NP1, NP2), (constr1, constr2)) --> V: V

25)           chi           le             me?
                eat           LE            ME?                        

(Have you) eaten (it)?

  1. Implementation

We begin with a discussion of some major feature structures in HPSG related to handling the transitive patterns.  Then, we will show how our proposal works and discuss some related implementation issues.

HPSG is a highly lexicalist theory. Most information is housed in the lexicon. The general grammar is kept to minimum: only a few phrase structure rules (called ID Schemata) associated with a couple of principles. The data structure is typed feature structure. The necessary part for a typed feature structure is the type information. A simple feature structure contains only the type information, but a complex feature structure can introduce a set of feature/value pairs in addition to the type information. In a feature/value pair, the value is itself a feature structure (simple or complex). The following is a sample implementation of the lexical entry chi for our Chinese HPSG grammar using the ALE formalism [Carpenter  & Penn 1994].

hpsg3

Note:  (1) Uppercase notation for feature; (2) Lowercase notation for type; (3) Number indices in square brackets for unification.

Leaving the notational details aside, what this roughly says is: (1) for the semantic constraint, the arguments of the notion eat are an animate entity and a food entity; (2) for the syntactic constraint, the complements of the verb chi are 2 NPs: one on the left and the other on the right; (3) the interpretation of the structure is a transitive predicate with a subject and an object. The three corresponding features are: (1) KNOWLEDGE; (2) SUBCAT; (3) CONTENT. KNOWLEDGE stores some of our common sense by capturing the internal relation between concepts. Such common sense knowledge is represented in linguistic ways, i.e. it is represented as a semantic expectation feature, which parallels to the syntactic expectation feature SUBCAT. KNOWLEDGE defines the semantic constraint on the expected arguments no matter what syntactic forms the arguments will take.  In contrast, SUBCAT only defines the syntactic constraint on the expected complements. The syntactic constraint includes word order (LEFT feature), syntactic category (CATEGORY feature) and configurational information (LEX feature).  Finally, CONTENT feature assigns the roles SUBJECT and OBJECT for the represented structure.

A more important issue is the interaction of the three feature structures. Among the three features, only KNOWLEDGE is our add-on. The relationship between SUBCAT and CONTENT has been established in all HPSG versions: SUBCAT resorts to CONTENT for interpretation.  This interaction corresponds to our definition of pattern. Everything goes fine as far as the syntactic constraint alone can decide interpretation. When the semantic constraint (in KNOWLEDGE) has to be involved in the interpretation process, we need a way to access this information. In unification based theories, information flow is realized by unification (i.e. structure sharing, which is represented by the co-index of feature values). In general, we have two ways to ensure structure sharing in the lexicon. It is either directly co-indexed in the lexical entries, or it resorts to lexical rules. The former is unconditional, and the latter is conditional. As argued before, we cannot directly enforce the semantic constraint for every transitive pattern in Chinese, for otherwise our grammar will not allow for any semantic deviation. We are left with lexical rules which we have informally formulated in Section 3 and implemented in the ALE formalism.

CATEGORY is another major feature for a sign. The CATEGORY feature in our implementation includes functional category which can specify functional literal (function word) as its value. Function words belong to closed categories. Therefore, they can be classified by enumeration of literals. Like word order, function words are important form for Chinese syntactic constraint. Grammars for other languages also resort to some functional literals for constraint. In most HPSG grammars for English, for example, a preposition literal is specified in a feature called P_FORM. There are two problems involved there. First, at representation level, there is redundancy: P_FORM:x --> CATEGORY:p (where x is not null). In other words, there exists feature dependency between P_FORM and CATEGORY which is not captured in the formalism. Second, if P_FORM is designed to stipulate a preposition literal, we will ultimately need to add features like CL_FORM for classifier specification, CO_FORM for conjunction specification, etc. In fact, for each functional category, literal specification may be required for constraint in a non-toy grammar. That will make the feature system of the grammar too cumbersome. These problems are solved in our grammar implementation in ALE. One significant mechanism in ALE is its type inheritance and appropriateness specifications for feature structures [Carpenter  & Penn 1994]. (Similar design is found in the new software paradigm of Object Oriented Programming.) Thanks to ALE, we can now use literals (ba, xiang, dao, dui, etc) as well as major categories (n, v, a, p, etc.) to define the CATEGORY feature. In fact, any intermediate level of subclassification between these two extremes, major categories and literals, can all be represented in CATEGORY just as handily. They together constitute a type hierarchy of CATEGORY. The same mechanism can also be applied to semantic categories (human, animate, food, etc.) to capture the thesaurus inference like human --> animate. This makes our knowledge representation much more powerful than in those formalisms without this mechanism. We will address this issue in depth in another paper Typology for syntactic category and semantic category in Chinese grammar.

In the following, we give a brief description on how our grammar works. The grammar consists of several phrase structure rules and a lexicon with lexical entries and lexical rules. First, ALE compiles the grammar into a Prolog parser. During this process (at compile time), lexical rules are applied to lexical entries. In the case of transitive patterns, this means that one entry of chi will evolve into 10 entries. Please note that it is this expanded lexicon that is used for parsing (at run time).

At the level of implementation, we do not need to presuppose an abstract transitive structure as input of the lexical rules and from there generates 10 new entries for each transitive verb. What is needed is one pattern as the basic pattern for transitive structure and derives the other patterns. In fact, we only need 4 lexical rules to derive the other 4 full patterns from 1 basic full pattern. Elliptical patterns can be handled more elegantly by other means than lexical rules.[2]

The basic pattern constitutes the common condition for lexical rules. Although in theory any one of the 5 full patterns can be seen as the basic pattern, the choice is not arbitrarily made. The pattern we chose is the valency preposition pattern (the BA-type construction) NP1 [P NP2] V: SOV (see Lexical rule 3').[3] This is justified as follows. The valency preposition P (ba, xiang, dao, dui, etc.) is idiosyncratically associated with the individual verb. To derive a more general pattern from a specific pattern is easier than the other way round, for example,  NP1 [P NP2] V: SOV --> NP1 V NP2: SVO is easier than NP1 V NP2: SVO --> NP1 [P NP2] V: SOV. This is because we can then directly code the valency preposition under CATEGORY in the SUBCAT feature and do not have to design a specific feature to store this valency information.

 

  1. Summery

The ultimate aim for natural language analysis is to reach interpretation, i.e. to assign roles to the constituents. An old question is how syntax (form) and semantics (meaning) interact in this interpretation process. More specifically, which is a more important factor in Chinese analysis, the syntactic constraint or the semantic constraint? For the linguistic data we have investigated, it seems that sometimes syntax plays a decisive role and other times semantics has the final say. The essence is how to adequately handle the interface between syntax and semantics.

In our proposal, the syntactic constraint is seen as a more fundamental factor. It serves as the frame of reference for the semantic constraint. The involvement of the semantic constraint seems to be most naturally conditioned by syntactic patterns. In order to ensure their effective interaction, we accommodate syntax and semantics in one model.  The model is designed to be based on syntax and resorts to semantic information only when necessary. In concrete terms, the system will selectively enforce or waive the semantic constraint, depending on syntactic patterns.

It needs to be advised that there are other factors involved in reaching a correct interpretation. For example, in order to recover the omitted complements in elliptical patterns, information from discourse and pragmatics may be vital. We leave this for future research.

 

References

Carpenter, B. & Penn, G. (1994): ALE, The Attribute Logic Engine, User's Guide, Version 2.0

Gao, Qian (1993): “Chinese BA-Construction: Its Syntax and Semantics”, OSU Working Papers in Linguistics 1993, Kathol A. & Pollard C. (eds.)

Huang, Xiuming (1987): “XTRA: The Design and Implementation of A Fully Automatic Machine Translation System”, Ph.D. dissertation.

Li, Audry (1990): Chapter 6 “Passive, BA, and topic constructions”, Order & Constituency in Mandarin Chinese. Kluwer Academic Publishers

Li, Wei & McFetridge, Paul (1995): “Handling Chinese NP predicate in HPSG”, Proceedings of PACLING-II, Brisbane, Australia

Pollard, Carl  & Sag, Ivan A. (1994): Head-Driven Phrase Structure Grammar,  Centre for the Study of Language and Information, Stanford University, CA

Pollard, Carl  & Sag, Ivan A. (1987): Information-based Syntax and Semantics. Vol. 1: Fundamentals. Centre for the Study of Language and Information, Stanford University, CA

Wilks, Y.A. (1978): “Making Preferences More Active”,  Artificial Intelligence, Vol. 11

Wilks, Y.A. (1975): “A Preferential Pattern-Seeking Semantics for Natural Language Interference”, Artificial Intelligence, Vol. 6

~~~~~~~~~~~~

* This research is part of my Ph.D. project on a Chinese HPSG-style grammar, supported by the Science Council of British Columbia, Canada under G.R.E.A.T. award (code: 61). I thank my supervisor Dr. Paul McFetridge for his supervision. He introduced me into the HPSG theory and provided me with his sample grammars. Without his help, I would not have been able to implement the Chinese grammar in a relatively short time. Thanks also go to Prof. Dong Zhen Dong and Dr. Ping Xue for their comments and encouragement.

 

[1]               The other combinations are:

5d1) *      dianxin chi le wo.              OVS

5d2)         dianxin chi le wo.
The Dim Sum ate me.

Note:        It is OK with the 5d2) reading in the pattern NP V NP: SVO.

5e1) *      chi le wo dianxin.               VSO
5e2)         chi le wo dianxin.

(Somebody) ate my Dim Sum.

Note:        It is OK with the 5e2) reading of in the pattern V [NP1 NP2]: VO where NP1 modifies NP2.

5f1) *      chi le dianxin wo.                 VOS
5f2)         chi le dianxin, wo.

Eaten the Dim Sum, I have.

Note:        It is OK in Spoken Chinese, with a short pause before wo, in a  pattern like V NP, NP: VOS.

[2]   The conventional configurational approach is based on the assumption that complements are obligatory and should be saturated. If saturation of complements were not taken as a precondition for a phrase, serious problems might arise in structural overgeneration. On the other hand, optionality of complement(s) is a real life fact. Elliptical patterns are seen in many languages and especially commonplace in Chinese. In order to ensure obligatoriness of complements, the lexical rule approach can be applied to elliptical patterns, as shown in Section 3. This approach maintains configurational constraint in tree building to block structural overgeneration, but the cost is great: each possible elliptical pattern for a head will have to be accommodated by a new lexical entry. With the type mechanism provided by ALE, we have developed a technique to allow for optionality of complement(s) and still maintain proper configurational constraint. We will address this issue in another paper Configurational constraint in Chinese grammar.

[3]    This choice is coincidental to the base‑generated account of the BA construction in [Li, A. 1990], but that does not mean much. First, our so‑called basic pattern is not their D‑Structure. Second, our choice is based on more practical considerations. Their claim involves more theoretical arguments in the context of the generative grammar.

 

 

[Related]

Handling Chinese NP predicate in HPSG (old paper)

Notes for An HPSG-style Chinese Reversible Grammar

Outline of an HPSG-style Chinese reversible grammar

PhD Thesis: Morpho-syntactic Interface in CPSG (cover page)

PhD Thesis: Chapter I Introduction

PhD Thesis: Chapter II Role of Grammar

PhD Thesis: Chapter III Design of CPSG95

PhD Thesis: Chapter IV Defining the Chinese Word

PhD Thesis: Chapter V Chinese Separable Verbs

PhD Thesis: Chapter VI Morpho-syntactic Interface Involving Derivation

PhD Thesis: Chapter VII Concluding Remarks

Overview of Natural Language Processing

Dr. Wei Li’s English Blog on NLP

【一日一parsing:舍我其谁,我又是谁?】

昨夜名段:
【中秋,混得好的是花前月下,混得一般的是月下花钱,混得最差的是花下月的钱,混得最好的是钱下月花。】

0916a

0916b

几乎完美parsing了,但有一个分离词没有搭配的瑕疵,对比:

0916d

合在一起就眼花缭乱了,这是非一般的 graph,与多数句法树颇不同:

0916c

索性把前天的 parsing 也秀一秀。汉语 deep parsing 没有绝对的标准,但语言学家心里还是有杆秤的:靠谱不靠谱,内行看门道,外行看热闹罢。这种感觉有些奇诡刺激,一方面觉得是在走前人没走过的路,充满了拓荒者的悲壮与豪情。另一方面,也好像冥冥之中的命定,替天行道,舍我其谁,我又是谁?如果语言是思想的载体和表达(presentation),parsing 就是思想的形式化机器展示(representation),而我就是贯通二者的使者。感谢上帝,在创造了谜一样的语言的同时,没忘记把钥匙留下。

0915a

0915b

0915c

0915d

是的,【人类最无法理解的事情,就是机器对人类语言结构的分析能力】。机器达到人类的语言结构分析能力,现在已经没有悬念了。而机器难以达到的那部分理解能力,可以用人机辅助的方式进行,这个景象就在不太远的将来,已然历历在目了。让我们准备好,去拥抱这个人机交融的新时代。

洪爷有诗云:
庖丁解牛在语言,伟爷Parser之中练。善刀藏之于深山,实则乱麻可以斩。

【相关】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

【博士涂鸦回顾:把常识代入文法的尝试】

上次说过,绝大多数的parsers对于谓词的 subcat 的表达都很简陋,伸展不开,多数不过把 subcat 当成一个代码,然后在相关的 subcat 规则中去确定 pattern。但是词驱动的文法 HPSG 却可以丝丝入扣,合情合理,可以直接在词典里面把 subcat 的 pattern 细致地描述,并对其句法语义的输入(pattern的条件)和输出(逻辑语义)之间的映射和解构,做出一个符合语言学原则的表达(representation)。

简陋有简陋的工程考量和理由,叠床架屋有叠床架屋的逻辑优美。鱼与熊掌不可兼得,我们最终还是更加倾向于简陋之法。尽管如此,走简陋快捷的路线的人,如果对结构表达的优美有所体验,还是有莫大的好处,至少不会被简陋的表象所迷惑,对于复杂的语言现象,逐渐摆脱简陋的捉襟见肘。

最近回看当年博士阶段的涂鸦文章,虽然其中反映出的对汉语句法的见识并不出彩,但是得力于 HPSG 的结构丰富性,还是把 subcat 在汉语文法中应用,表现得有条不紊,经得起时间的检验。当年钻研 HPSG 还是很专心的,吃得蛮透。正因为吃得透了,后来扬弃的时候就没有拖泥带水的牵挂。

譬如,在论及汉语NP带坑的现象的时候,是这样模型的:

11a)     桌子坏了。
11b)     腿坏了。
11c)     桌子的腿坏了。
12a)     他好。
12b)     身体好。
12c)     他的身体好。

When people say 11b) tui huai le (leg went wrong), we know something (the possessor) is omitted. For 11a), however, we have no such feel of incompleteness.

Although we may also ask whose table, this possessive relation between who and table is by no means innate. Similarly, ta (he) in 12a) is a complete notion denoting someone while shenti (body) in 12b) is not. In 11c) and 12c), the possessor appears in the possessive structure DE-construction, the expectation of tui (leg) and shenti (body) is realized. These examples show that some words (concepts) have conceptual expectation for some other words (concepts) although the expected words do not necessarily show up in a sentence and the expectation might not be satisfied. In fact, this type of expectation forms part of our knowledge (common sense). One way to represent the knowledge is to encode it with the related word in the lexicon.
Therefore we propose an underlying SYNSEM feature KNOWLEDGE to store some of our common sense knowledge by capturing the internal relation between concepts. KNOWLEDGE parallels to syntactic SUBCAT and semantic RELATION. KNOWLEDGE imposes semantic constraints on their expected arguments no matter what syntactic forms the arguments will take (they may take null form, i.e. the underlying arguments are not realized). In contrast, SUBCAT only defines syntactic requirement for the complements and gets interpreted in RELATION. Following this design, syntactic form and semantic constraints are kept apart. When necessary, the interaction between them can be implemented by lexical rules, or directly coindexed in the lexicon. For example, the following KNOWLEDGE information will be enforced as the necessary semantic constraints when we handle Chinese NP predicates by a lexical rule (see 3.3).

把常识暗度陈仓从后门带入文法,就是从那时候开始的。这个做法在欧洲语言的形式文法中不多见,因为句法形式大体够用了,通常不需要常识的帮忙。但是对于汉语,没有某种常识的引入,想做一个成熟的深度分析系统,则很难。当年带常识的的句法结构模型是这样定义的:

PHON      shenti
SYNSEM | KNOWLEDGE | PRED [1] possess
SYNSEM | KNOWLEDGE | POSSESSOR [2] human
SYNSEM | KNOWLEDGE | POSSESSED [3]
SYNSEM | LOCAL | CONTENT | INDEX [3]
SYNSEM | LOCAL | CONTENT | RESTRICTION { RELATION body }
SYNSEM | LOCAL | CONTENT | RESTRICTION { INSTANCE [3] }

最后,汉语文法中常识的引入被认为是对欧洲语言利用性数格的 agreement 的一个自然延伸。句法手段到语义限制的延伸。

Agreement revisited
This section relates semantic constraints which embody common sense to the conventional linguistic notion of agreement. We will show that they are essentially the same thing from different perspectives. We only need slight expansion for the definition of agreement to accommodate some of our basic knowledge. This is important as it accounts for the feasibility of coding knowledge in linguistic ways. Linguistic lexicon seems to be good enough to house some general knowledge in addition to linguistic knowledge.

为 parse“我鸡吃“ 和“鸡我吃”, 常识进入了文法(现在也可以利用大数据把常识代入):

A typical example of how concepts are linked in a network (a sophisticated concept lexicon) is seen in the representation of drink ((*ANI SUBJ) (((FLOW STUFF) OBJE) ((SELF IN) (((*ANI (THRU PART)) TO) (BE CAUSE))))) in Wilks 1975b. While for  various reasons we will not go as far as Wilks, we can gain enlightenment from this type of AI approach to knowledge. Lexicon-driven systems like the one in HPSG can, of course, make use of this possibility. Take the Chinese role-assignment problem, for example, the common sense that ANIMATE being eats FOOD can be seamlessly incorporated in the lexical entry chi (eat) as a semantic agreement requirement.

PHON chi
SYNSEM | KNOWLEDGE | PRED [1]  eat
SYNSEM | KNOWLEDGE | AGENT [2] animate
SYNSEM | KNOWLEDGE | PATIENT [3] food
SYNSEM | LOCAL | CATEGORY | SUBCAT | EXTERNAL_ARGUMENT [NP: [4]]
SYNSEM | LOCAL | CATEGORY | SUBCAT | INTERNAL_ARGUMENTS <[NP: [5]]>
SYNSEM | LOCAL | CONTENT | RELATION [1]
SYNSEM | LOCAL | CONTENT | EATER [4] | INDEX | ROGET [2]
SYNSEM | LOCAL | CONTENT | EATEN [5] | INDEX | ROGET [3]

可见,看上去不过是 POS 细分后的一个 subcat 的代码,里面其实包含了多少结构及其蕴含其内的知识。在 unification grammars 几乎成为历史陈迹的今天,我还是认为 HPSG 这样的表达是最优美的语言学的逻辑表达之一,论逻辑的清晰和美,后来的文法很难超越。

 

[Related]

Handling Chinese NP predicate in HPSG (old paper)

Notes for An HPSG-style Chinese Reversible Grammar

Outline of an HPSG-style Chinese reversible grammar

PhD Thesis: Morpho-syntactic Interface in CPSG (cover page)

 

Overview of Natural Language Processing

Dr. Wei Li’s English Blog on NLP

 

Handling Chinese NP predicate in HPSG (old paper)

Handling Chinese NP predicate in HPSG
(old paper in Proceedings of the Second Conference of the Pacific
Association for Computational Linguistics, Brisbane, 1995)

Wei Li & Paul McFetridge

Department of Linguistics
Simon Fraser University
Burnaby, B.C. CANADA  V5A 1S6

 

Key words: HPSG; knowledge representation, Chinese processing 

 

Abstract 

This paper addresses a type of Chinese NP predicate in the framework of HPSG 1994 (Pollard & Sag 1994). The special emphasis is laid on knowledge representation and the interaction of syntax and semantics in natural language processing. A knowledge based HPSG model is designed. This design not only lays a foundation for effectively handling Chinese NP predicate problem, but has theoretical and methodological significance on NLP in general.

In Section 1, the data are analyzed. Both structural and semantic constraints for this pattern are defined. Section 2 discusses the semantic constraints in the wider context of the conceived knowledge-based model. The aim of natural language analysis is to reach interpretations, i.e. correctly assigning semantic roles to the constituents. We indicate that without being able to resort to some common sense knowledge, some structures cannot get interpreted. We present a way on how to organize and utilize knowledge in HPSG lexicon. In Section 3, a lexical rule for this pattern is proposed in our HPSG model for Chinese, whose prototype is being implemented.

  1. Problem

We will show the data of Chinese NP predicate first. Then we will investigate what makes it possible for an NP to behave like a predicate. We will do this by defining both the syntactic and semantic constraints for this Chinese pattern.

1.1. Data: one type of Chinese NP predicate

1) 他好身体。

ta         hao      shenti.
he        good    body
He is of good health.

2)  张三高个子。

Zhangsan         gao      gezi
Zhangsan         tall       figure.
Zhangsan is tall.

3)  李四圆圆的脸。       Lisi

Lisi      yuanyuan         de        lian.
Lisi      round-round    DE       face.
Lisi has a quite round face.

4) 这件大衣红颜色。

zhe       jian      dayi     hong    yanse.
this      (cl.)      coat     red       colour.
This coat is of red colour.

5)  明天小雨。

mingtian          xiao     yu.
tomorrow        little     rain.
Tomorrow it will drizzle.

6)  那张桌子三条腿。

na        zhang   zhuozi san       tiao      tui.
that      (cl.)      table   three    (cl.)      leg
That table is three-legged.

Note:      (cl.) for classifier.
DE for Chinese attribute particle.

The relation between the subject NP and the predicate NP is not identity. The NP predicate in Chinese usually describes a property the subject NP has, corresponding to English be-of/have NP. In identity constructions, the linking verb SHI (be) cannot normally be omitted.[1]

7a)  他是学者。

ta         shi        xuezhe.
he        be        scholar
He is a scholar.

8b) ?他学者。

ta         xuezhe.  他学者。
he        scholar

1.2.  Problem analysis

1.2.1. We first investigate the structural characteristics of the Chinese NP predicate pattern.

A single noun cannot act as predicate. More restrictively, not every NP can become a predicate. It seems that only the NP with the following configuration has this potential: NP [lex -, predicate +].  In other words, a predicate NP consists of a lexical N with a modifying sister. Structures of this sort should not be further modified.[2] Thus, the following patterns are predicted.

8a)      那张桌子三条腿。

na        zhang   zhuozi san       tiao      tui.                   [ same as 6) ]
that      (cl.)      table    three    (cl.)      leg
That table is three-legged.

8b)       那张桌子塑料腿。

na        zhang   zhuozi suliao   tui.
that      (cl.)      table    plastic leg
That table is of plastic legs.

8c) * 那张桌子三条塑料腿。
*    na        zhang   zhuozi san       tiao      suliao   tui.       [too many attributes]

8d) * 那张桌子腿。
*    na        zhang   zhuozi tui.                                           [no attributes]

1.2.2. What is the semantic constraint for the Chinese predicate pattern?

Although there is no syntactic agreement between subject and predicate in Chinese, there is an obvious semantic "agreement" between the two: hao shenti (good body) requires a HUMAN as its subject; san tiao tui (three leg) demands that the subject be FURNITURE or ANIMATE. Therefore, the following are unacceptable:

9) * 这杯茶好身体。

* zhe       bei       cha       hao      shenti.
this      cup      tea       good    body

10) * 空气三条腿。

* kongqi san       tiao      tui.
air        three    (cl.)      leg

Obviously,. it is not hao (good) or san tiao (three) which poses this semantic selection of subject. The semantic restriction comes from the noun shenti (body) or tui (leg). There is an internal POSSESS relationship between them: shenti (body)  belongs to human beings and tui (leg) is one part of an animal or some furniture. This common sense relation is a crucial condition for the successful interpretation of the Chinese NP predicate sentences.

There are a number of issues involved here. First, what is the relationship of this type of knowledge to the syntactic structures and semantic interpretations? Second, where and how would this knowledge be represented? Third, how will the system use the knowledge when it is needed? More specifically, how will the introduction of this knowledge coordinate with the other parts of the well established HPSG formalism? Those are the questions we attempt to answer before we proceed to provide a solution to the Chinese NP predicate. Let us look at some more examples:

11a)     桌子坏了。

zhuozi huai     le.
table    bad      LE
The table went wrong.

11b)     腿坏了。

tui        huai     le.leg       bad      LE
leg       bad      LE
The leg went wrong.

11c)     桌子的腿坏了。

zhuozi  de        tui        huai     le.
table    DE       leg       bad      LE
The table's leg went wrong.

12a)     他好。

ta         hao.
he        good
He is good.

12b)     身体好。

shenti   hao.
body    good
The health is good.

12c)     他的身体好。

ta         de        shenti   hao.
he        DE       body    good
His health is good.

note: LE for Chinese perfect aspect particle.

When people say 11b) tui huai le (leg went wrong), we know something (the possessor) is omitted. For 11a), however, we have no such feel of incompleteness. Although we may also ask whose table, this possessive relation between who and table is by no means innate. Similarly, ta (he) in 12a) is a complete notion denoting someone while shenti (body) in 12b) is not. In 11c) and 12c), the possessor appears in the possessive structure DE-construction, the expectation of tui (leg) and shenti (body) is realized. These examples show that some words (concepts) have conceptual expectation for some other words (concepts) although the expected words do not necessarily show up in a sentence and the expectation might not be satisfied. In fact, this type of expectation forms part of our knowledge (common sense). One way to represent the knowledge is to encode it with the related word in the lexicon.

Therefore we propose an underlying SYNSEM feature KNOWLEDGE to store some of our common sense knowledge by capturing the internal relation between concepts. KNOWLEDGE parallels to syntactic SUBCAT and semantic RELATION. KNOWLEDGE imposes semantic constraints on their expected arguments no matter what syntactic forms the arguments will take (they may take null form, i.e. the underlying arguments are not realized). In contrast, SUBCAT only defines syntactic requirement for the complements and gets interpreted in RELATION. Following this design, syntactic form and semantic constraints are kept apart. When necessary, the interaction between them can be implemented by lexical rules, or directly coindexed in the lexicon. For example, the following KNOWLEDGE information will be enforced as the necessary semantic constraints when we handle Chinese NP predicates by a lexical rule (see 3.3).

PHON      shenti
SYNSEM | KNOWLEDGE | PRED [1] possess
SYNSEM | KNOWLEDGE | POSSESSOR [2] human
SYNSEM | KNOWLEDGE | POSSESSED [3]
SYNSEM | LOCAL | CONTENT | INDEX [3]
SYNSEM | LOCAL | CONTENT | RESTRICTION { RELATION body }
SYNSEM | LOCAL | CONTENT | RESTRICTION { INSTANCE [3] }

  1. Agreement revisited

This section relates semantic constraints which embody common sense to the conventional linguistic notion of agreement. We will show that they are essentially the same thing from different perspectives. We only need slight expansion for the definition of agreement to accommodate some of our basic knowledge. This is important as it accounts for the feasibility of coding knowledge in linguistic ways. Linguistic lexicon seems to be good enough to house some general knowledge in addition to linguistic knowledge. Some possible problems with this knowledge-based approach are also discussed.

Let's first consider the following two parallel agreement problems in English:

13) *    The boy drink.

14) ?    The air drinks.

13) is ungrammatical because it violates the syntactic agreement between the subject and predicate. 14) is conventionally considered as grammatical although it violates the semantic agreement between the agent and the action. Since the approach taken in this paper is motivated by semantic agreement, some elaboration and comment on agreement seem to be in need.

The agreement in person, gender and number are included in CONTENT | INDEX features (Pollard & Sag 1994, Chapter 2). It follows that any two signs co-indexed naturally agree with each other. That is desirable because co-indexed signs refer to the same entity. However, person, gender and number seem to be only part of the story of agreement. We may expand the INDEX feature to cope with the semantic agreement for handling Chinese and for in-depth semantic analysis for other languages as well.

Note that to accommodate semantic agreement in HPSG, we first need features to represent the result of semantic classification of lexical meanings like HUMAN, FOOD, FURNITURE, etc. We therefore propose a ROGET feature (named after the thesaurus dictionary) and put it into the INDEX feature.

Semantic agreement, termed sometimes as semantic constraint or semantic selection restriction in literature, is not a new conception in natural language processing. Hardly any in-depth language analysis can go smoothly without incorporating it to a certain extent. For languages like Chinese with virtually no inflection, it is more important. We can hardly imagine how the roles can be correctly assigned without the involvement of semantic agreement in the following sentences of the form NP1 NP2 Vt:

15a)     点心我吃了。

dianxin            wo       chi       le.
Dim-Sum         I           eat       LE
The Dim Sum I have eaten.

15b)     我点心吃了。

wo       dianxin            chi       le.
I           Dim-Sum         eat       LE
I have eaten the Dim Sum.

Who eats what?  There is no formal way but to resort to semantic agreement enforced by eat to correctly assign the roles. In HPSG 1994, it was pointed out (Pollard & Sag 1994, p81), "... there is ample independent evidence that verbs specify information about the indices of their subject NPs. Unless verbs 'had their hands on' (so to speak) their subjects' indices, they would be unable to assign semantic roles to their subjects." The Chinese data show that sometimes verbs need to have their hands on the semantic categories (ROGET) of both their external argument (subject) and internal arguments to be able to correctly assign roles. Now we have expanded the INDEX feature to cover both ROGET and the conventional agreement features number, person and gender, the above claim of Pollard and Sag becomes more general.

It is widely agreed that knowledge is bound to play an important role in natural language analysis and disambiguation. The question is how to build a knowledge-based system which is manageable. Knowledge consists of linguistic knowledge (phonology, morphology, syntax, semantics, etc.) and extra-linguistic knowledge (common sense, professional knowledge, etc.). Since semantics is based on lexical meanings, lexical meanings represent concepts and concepts are linked to each other in a way to form knowledge, we can well regard semantics as a link between linguistics and beyond-linguistics in terms of knowledge. In other words, some extra-linguistic knowledge may be represented in linguistic ways. In fact, lexicon, if properly designed, can be a rich source of knowledge, both linguistic and extra-linguistic. A typical example of how concepts are linked in a network (a sophisticated concept lexicon) is seen in the representation of drink ((*ANI SUBJ) (((FLOW STUFF) OBJE) ((SELF IN) (((*ANI (THRU PART)) TO) (BE CAUSE))))) in Wilks 1975b. While for  various reasons we will not go as far as Wilks, we can gain enlightenment from this type of AI approach to knowledge. Lexicon-driven systems like the one in HPSG can, of course, make use of this possibility. Take the Chinese role-assignment problem, for example, the common sense that ANIMATE being eats FOOD can be seamlessly incorporated in the lexical entry chi (eat) as a semantic agreement requirement.

PHON chi
SYNSEM | KNOWLEDGE | PRED [1]  eat
SYNSEM | KNOWLEDGE | AGENT [2] animate
SYNSEM | KNOWLEDGE | PATIENT [3] food
SYNSEM | LOCAL | CATEGORY | SUBCAT | EXTERNAL_ARGUMENT [NP: [4]]
SYNSEM | LOCAL | CATEGORY | SUBCAT | INTERNAL_ARGUMENTS <[NP: [5]]>
SYNSEM | LOCAL | CONTENT | RELATION [1]
SYNSEM | LOCAL | CONTENT | EATER [4] | INDEX | ROGET [2]
SYNSEM | LOCAL | CONTENT | EATEN [5] | INDEX | ROGET [3]

Note:        Following the convention, the part after the colon is SYNSEM | LOCAL | CONTENT information.

One last point we would like to make in this context is that semantic agreement, like syntactic agreement, should be able to loosen its restriction, in other words, agreement is just a canonical, in Wilk's term preference, requirement (Wilks 1975a). In practice of communication, deviation in different degrees is often seen and people often relax the preference restriction in order to understand. With semantic agreement, the deliberate deviation is one of the handy means to help render rhetorical expression. In a certain domain, Chomsky's famous sentence Colorless green ideas sleep furiously is well imaginable. On the other hand, the syntactic agreement deviation will not affect the meaning if no confusion is caused, which may or may not happen depending on context and the structure of the language. In English, lack of syntactic agreement for the present third person singular between subject and predicate usually causes no problem. Sentence 15) The boy drink therefore can be accepted and correctly interpreted. There is much more to say on the interaction of the two types of agreement deviation, how a preference model might be conceived, what computational complexities it may cause and how to handle them effectively. We plan to address it in another paper. The interested reader is referred to one famous approach in this direction. (Wilks 1975a, 1978).

 

  1. Solution

We will set some requirements first and then present a lexical rule to see how well it meets our requirements.

3.1. Based on the discussion in Section 1, the solution to the Chinese predicate NP problem should meet the following 4 requirements:

(1)        It should enforce the syntactic constraints for this pattern: one and only one modifier XP in the form of NP1 XP NP2.

(2)        It should enforce the semantic constraints for this pattern: N2 must expect NP1 as its POSSESSOR with semantic agreement.

(3)        It should correctly assign roles to the constituents of the pattern: NP1 POSSESS NP2 (where NP2 consists of XP N2).

(4)        It should be implementable in HPSG formalism.

 

3.2. What mechanisms can we use to tackle a problem in HPSG formalism?

HPSG grammar consists of two components: a general grammar (ID schemata and principles) and a lexical grammar (in the lexicon). The lexicon houses lexical entries with their linguistic description and knowledge representation in feature structures. The lexicon also contains generalizations captured by inheritance of lexical hierarchy and by a set of lexical rules. Roughly speaking, lexical hierarchy covers static redundancy between related potential structures. Just because the lexicon can reflect different degrees of lexical redundancy in addition to idiosyncrasy, the general grammar can desirably be kept to minimum.

The Chinese NP predicate pattern should be treated in the lexicon. There are two arguments for that. First, this pattern covers only restricted phenomena (see 3.4). Second, it relies heavily on the semantic agreement, which in our model is specified in the lexicon by KNOWLEDGE. We need somehow to link the semantic expectation KNOWLEDGE and the syntactic expectation SUBCAT or MOD. The general mechanism to achieve that is structure sharing by coindexing the features either directly in the lexical entries (see the representation of the entry chi in Section 2) or through lexical rules (see 3.3).

3.3. Lexical Rule

Lexical rules are applied to lexical signs (words, not phrases) which satisfy the condition. The result of the application is an expanded lexicon to be used during parsing. Since the pattern is of the form NP1 XP N2, the only possible target is N2, i.e. shenti (body) or tui (leg). This is due to the fact that among the three necessary signs in this form, the first two are phrases and only the final N2 is a lexical sign. We assume the following structure for our proposed lexical rule:

NP[ta[1]]         [[AP[2] hao] [N<NP[1], XP[2]> shenti]]

NP Predicate Lexical Rule

hpsg1

SYNSEM | KNOWLEDGE | PRED [1] possess
SYNSEM | KNOWLEDGE | POSSESSOR [2]
SYNSEM | LOCAL | CATEGORY | HEAD | MAJ [6] n
SYNSEM | LOCAL | CATEGORY | PREDICATE -
SYNSEM | LOCAL | CONTENT | INDEX [4]
SYNSEM | LOCAL | CONTENT | RESTRICTION {[3]}
...| CATEGORY | PREDICATE +
...| CATEGORY | SUBCAT | EXTERNAL_ARGUMENT [NP: [5]]
...| CATEGORY | SUBCAT | INTERNAL_ARGUMENTS < [...| CATEGORY | HEAD | MOD [6] ] >
...| CATEGORY | SUBCAT | INTERNAL_ARGUMENTS < [...| CONTENT | INDEX [4] ]

==>

...| CATEGORY | SUBCAT | INTERNAL_ARGUMENTS < [...| CONTENT | RESTRICTION {[7]} ] >
...| CATEGORY | SUBCAT | INTERNAL_ARGUMENTS < [...| LEX - ] >
...| CONTENT | RELATION [1] possess
...| CONTENT | POSSESSOR [5] | INDEX | ROGET [2]
...| CONTENT | POSSESSED | INDEX [4]
...| CONTENT | POSSESSED | RESTRICTION {[7] | [3] }

For complicated information flow like this, it is best to explain the indices one by one with regards to the example ta hao shenti (he is of good body) in the form of NP1 XP N2.

The index [1] links the underlying PRED feature of N2 to the semantic RELATION feature; in other words, the predicate in the underlying KNOWLEDGE of shenti (body) now surfaces as the relation for the whole sentence. The index [2] enforces the semantic constraint for this pattern, i.e. shenti (body) expects a human (ROGET) possessor as the subject (EXTERNAL_ARGUMENT) for this sentence. The index [3] is the restriction relation of N2. [4] links the INDEX features of XP and N2, and [6] indicates that the internal argument is a de-facto modifier of N2, i.e. XP mods-for N2. Note that the part of speech of the internal argument (INTERNAL_ARGUMENT | SYNSEM | LOCAL | CATEGORY | HEAD | MAJ) is deliberately not specified in the rule because Chinese modifiers (XP) are not confined to one class, as can be seen in our linguistic data. Finally, [7] defines the restriction relation of the XP to the INDEX of N2.

The indices [4], [7] and [3] all contribute to artificially creating a semantic interpretation for [XP N2]. As is interpreted, XP is, in fact, a modifier of N2 and they would form an NP2, or [XP N2] constituent. In normal circumstances, the building of NP2 interpretation is taken care of by HPSG Semantics Principle. But in this special pattern, we have treated XP as a complement of N2, yet semantically they are still understood as one instance: hao shenti (good body) is an instance of good and body. This interpretation of NP2 serves as POSSESSED of the sentence predicate, indicated by the structure-sharing of [4], [7] and [3]. Finally, [5] is the interpretation of NP1 and is assigned the role of POSSESSOR for the sentence predicate.

Let's see how well this lexical rule meets the 4 requirements set in 3.1.

(1) It enforces the syntactic constraints by treating XP as the internal argument and NP1 as the external argument.

(2) It enforces the semantic constraints through structure sharing by the index [2].

(3) It correctly assigns roles to the constituents of the pattern.

The following interpretation will be established for ta hao shenti (he is of good body) by the parser.

hpsg2

CONTENT | RELATION possess
CONTENT | POSSESSOR | INDEX | PERSON 3
CONTENT | POSSESSOR | INDEX | NUMBER singular
CONTENT | POSSESSOR | INDEX | GENDER male
CONTENT | POSSESSOR | INDEX | ROGET human
CONTENT | POSSESSOR | RESTRICTION { }
CONTENT | POSSESSED | INDEX [1]    | PERSON 3
CONTENT | POSSESSED | INDEX          | NUMBER singular
CONTENT | POSSESSED | INDEX          | GENDER nil
CONTENT | POSSESSED | INDEX          | ROGET organ
CONTENT | POSSESSED | RESTRICTION { [ RELATION good],              [ RELATION body  ] }
CONTENT | POSSESSED | RESTRICTION { [ INSTANCE [1] ],              [ INSTANCE [1]  ] }

In prose, it says roughly that a third person male human he possesses something which is an instance of good body. We believe that this is the adequate interpretation for the original sentence.

(4) Last, this rule has been implemented in our Chinese HPSG-style grammar using ALE and Prolog.  The results meet our objective.

But there is one issue we have not touched yet, word order. At first sight, Chinese seems to have similar LP constraints as those in English. For example, the internal argument(s) of a Chinese transitive verb by default appear on the right side of the head. It seems that our formulation contradicts this constraint in grammar. But in fact, there are many other examples with the internal argument(s), especially PP argument(s), appearing on the left side of the head.

服务 fuwu (serve): <NP, PP(wei)>

16a) 为人民服务

wei      renmin fuwu
for       people  serve
Serve the people.

16b) ? 服务为人民。

fuwu    wei      renmin.
serve    for       people

有益 youyi (of benefit): <NP, PP(dui yu)>

17a) 这对我有益。

zhe       dui       wo       youyi
this      to         I           have-benefit
This is of benefit to me.

17b) * 这有益对我。

zhe       youyi               dui       wo
this      have-benefit    to         I

18a) 这于我有益。

zhe       yu        wo       youyi
this      to         I           have-benefit
This is of benefit to me.

18b) 这有益于我。

zhe       youyi               yu        wo
this      have-benefit    to         I
This is of benefit to me.

Word order and its place in grammar are important issues in formulating Chinese grammar. To play safe and avoid generalization too soon, we assume a lexicalized view on Chinese LP constraint, encoding word order information in LEXICON through SUBCAT and MOD features. This proves to be a realistic and precise approach to Chinese word order phenomena.

3.4. As a final note, we will briefly compare the NP Predicate Pattern with one of the Chinese Topic Constructions:

NP1 NP2 Vi/A
(topic + (subject + predicate))

In Chinese, this is a closely related but much more productive form than this NP Predicate Pattern. And their structures are different.

19)       他身体好。

ta         shenti   hao
he        body    good
He is good in health.

For topic constructions, we propose a new feature CONTEXT | TOPIC, whose index in this case is token identical to the INDEX value of ta. Please be advised that in the above structure, the CONTEXT | TOPIC ta is considered as a sentential adjunct instead of a complement subcated-for by shenti. Why? First, ta is highly optional: topic-less sentence is still a sentence. Second, and more convincingly, ta cannot always be predicted by its following noun. Compare:

20a) 他身体好。

ta         shenti   hao
he        body    good
He is good in health.

20b) 他好身体。

ta         hao      shenti
he        good    body
He is of good health.

21a) 他脾气好。

ta         piqi                  hao
he        disposition       good
He is good in disposition.

21b)  他好脾气。

ta         hao      piqi
he        good    disposition
He is of good disposition.

but:

22a) 她学习好。

ta         xuexi   hao. [3]
he        study   good
He is good in study.

22b) *  他好学习。

ta         hao      xuexi
he        good    study

What this shows is that for topic sentences like ta shenti hao (He is good in health), ta xuexi hao (He is good in study), etc., there is no requirement to regard topic ta (he) as a necessary semantic possessor of shenti / xuexi, the relation is rather "in-aspect": something (NP1) is good (A) in some aspect (NP2), or for something (NP1), some aspect (NP2) is good (A).

Finally, it needs to be mentioned that our proposed lexical rule requires modification to accommodate sentence 6). That is already beyond what we can reach in this paper because it is integrated with the way we handle Chinese classifiers in HPSG framework.

 

References

Pollard, Carl  & Sag, Ivan A. (1994): Head-Driven Phrase Structure Grammar,  Centre for the Study of Language and Information, Stanford University, CA

Pollard, Carl & Sag, Ivan A. (1987): Information‑based Syntax and Semantics Vol. 1: Fundamentals. Centre for the Study of Language and Information, Stanford University, CA

Wilks, Y.A. (1975a): A Preferential Pattern-Seeking Semantics for Natural Language Interference.  Artificial Intelligence, Vol. 6, pp.53-74.

Wilks, Y.A. (1975b): An Intelligent Analyzer and Understander of English, in Communications of the ACM, Vol. 18, No.5, pp.264-274

Wilks, Y.A. (1978): Making Preferences More Active.  Artificial Intelligence, Vol. 11, pp. 197-223

~~~~~~~~~~~~~~~ footnotes ~~~~~~~~~~~~~~~~

[1] This is not absolute, we do have the following examples:

Ia)          约翰是纽约人。

Yuehan shi           Niuyue                   ren
John       be            New-York              person
John is a New Yorker.

Ib)           约翰纽约人。

Yuehan  Niuyue                   ren.
John       New-York              person
John is a New Yorker.

IIa)         今天是星期天。

jintian    shi           xingqi-tian.
today     be            Sun-day
Today is Sunday.

IIb)         今天星期天。

jintian    xingqi-tian.
today     Sun-day
Today is Sunday.

It seems to be that the subject NP stands for some individual element(s), and the predicate NP describes a set (property) where the subject belongs. But it is not clear how to capture Ib) and IIb) while excluding 7b). We leave this question open.

[2] We realize that the syntactic constraint defined here is only a rough approximation to the data from syntactic angle. It seems to match most data, but there are exceptions when yi (one) appears in a numeral-classifier phrase:

IIIa)  他一副好身体。

ta            yi             fu            hao         shenti.
he            one         (cl.)         good       body
He is of good health. (He is of a good body.)

IIIb) * 他三副好身体。

ta            san          fu            hao         shenti
he            three       (cl.)         good       body

IIIc)   他好身体。

ta            hao         shenti.    [same as 1) ]

IVa) 李四一张圆圆的脸。

Lisi          yi             zhang     yuanyuan             de            lian.
Lisi          one         (cl.)         round-round         DE          face
Lisi has a quite round face.

IVb) * 李四两张圆圆的脸。

Lisi          liang       zhang     yuanyuan             de            lian.
Lisi          two         (cl.)         round-round         DE          face

IVc)  李四圆圆的脸。

Lisi          yuanyuan             de            lian.        [ same as 3) ]

[3] Another reading for 22a) is [S [Sta xuexi][AP hao]], where ta xuexi is a subject clause: "That he studies is good". This is another issue.

 

[Related]

Interaction of syntax and semantics in parsing Chinese transitive verb patterns 

Notes for An HPSG-style Chinese Reversible Grammar

Outline of an HPSG-style Chinese reversible grammar

PhD Thesis: Morpho-syntactic Interface in CPSG (cover page)

PhD Thesis: Chapter I Introduction

PhD Thesis: Chapter II Role of Grammar

PhD Thesis: Chapter III Design of CPSG95

PhD Thesis: Chapter IV Defining the Chinese Word

PhD Thesis: Chapter V Chinese Separable Verbs

PhD Thesis: Chapter VI Morpho-syntactic Interface Involving Derivation

PhD Thesis: Chapter VII Concluding Remarks

Overview of Natural Language Processing

Dr. Wei Li’s English Blog on NLP

Notes for An HPSG-style Chinese Reversible Grammar

ABSTRACT

Key words: Chinese parsing, Chinese generation, reversible grammar,  HPSG

This paper presents a reversible Chinese unification grammar named CPSG. The lexicalized and integrated design of CPSG embodies the general spirit of the modern linguistic theory Head-driven Phrase Structure Grammar (HPSG, Pollard & Sag 1987, 1994). Using ALE formalism in Prolog (Carpenter & Penn 1994), we have implemented a prototype of CPSG.

CPSG covers Chinese morphology, Chinese syntax and semantics in a novel integrated language model (Figure 1, for interface between morphology, see Li 1997; for interface between syntax and semantics, see Li 1996). CPSG model is in sharp contrast to the conventional clear-cut successive design of grammar components (Figure 2, see survey in Feng 1996). We will show that our model is much better suited and more efficient for Chinese analysis (or generation).

 

cpsg

Grammar reversibility is a highly desired feature for multi-lingual machine translation application (Hutchins & Somers 1992, Huang 1986, 1987). To test its reversible features, we have applied the CPSG prototype to an experiment of bi-directional machine translation between English and Chinese. The machine translation engine developed in our Natural Language Lab is based on shake-and-bake design, a novel approach to machine translation suited for unification grammars (Whitelock 1992, 1994, Beaven 1992, Brew 1992). The experimental results meet our design objective and verify the feasibility of CPSG approach.

~~~~~~~~~~~~~~~~~~~~~

Notes for NWLC-97, UBC, Vancouver

Outline of An HPSG-style Chinese Reversible Grammar

Wei LI   ([email protected])

Linguistics Department, Simon Fraser University

 

 Key words:          lexicalist approach, integrated language model, HPSG,

                                reversible grammar,  bi-directional machine translation, 

                                Chinese computational grammar,

                                Chinese word identification, Chinese parsing,
Chinese generation

 

  1. background

1.1. design philosophy

Two major obstacles in writing Chinese computational grammar:

lacking in serious study on Chinese lexical base

well designed lexicon is crucial for a successful computational system

theoretical linguists have made fruitful efforts (e.g. Li Linding) but lack formalization

computational linguists require more patience in adapting and formalizing the fruits:

it is huge work, but has to be done if a non-toy system is targeted

lack of effective interaction between morphology, syntax and semantics.

e.g.

ambiguity in word identification makes it hard to interface morphology & syntax:

a theoretical defect of morphology preprocessor (segmenter)

e.g. ABC: ABC or A | BC or AB | C or A | B | C?

active/passive isomorphic phenomena make semantic constraint a desired need in parsing NP Vt: subject NP or object NP?

Solution: the lexicalized and integrated design of Chinese grammar

1.2. major theoretical foundation:

HPSG:       lexicalist theory encouraging integration of different components

a desired framework matching our design philosophy

CPSG: HPSG-style unification grammar

CPSG: reversible grammar suited for both parsing and generation

CPSG: formalized grammar, a description that does not rely on undefined notions

  1. integrated language model

2.1. CPSG versus conventional Chinese grammar

 

 

parse tree embodies both morphological and syntactic structures in CPSG

  1. lexicalized formal grammar

3.1. formalized grammar, as required by a computational grammar: formulation of CPSG

readily implementable (theories, principles, rules, etc.);

precise definition for the very basic notions (e.g. sign, morpheme, word, phrase, sentence, NP, VP, etc.), rules (PS rules and lexical rules), lexical items (lexical hierarchy), typology (hierarchy embodied in feature structures)

(4.)       Definition: sign

A sign is the most fundamental concept of grammar. Formally, a sign is defined by the type [a_sign], which introduces a set of linguistic features for its description, as shown below.

a_sign
INDEX index
KANJI kanji
MORPH1 expected
MORPH2 expected
CATEGORY category
COMP0 expected
COMP1 expected
COMP2 expected
MOD expected
KNOWLEDGE knowledge
CONTENT content
INDEX0 index
INDEX1 index
INDEX2 index
DTR dtr

(5.)       Definition: word

In CPSG, a word is a sign satisfying the following two conditions: (1) its obligatory morphological expectation has all been saturated; (2) it is not a mother of any syntactic structures, hence no syntactic daughters. Formally, a word is defined as shown below.

(6.)       word

a_sign
MORPH1 ~obligatory
MORPH2 ~obligatory
DTR no_syn_dtr

3.2. lexicalized grammar

CPSG consists of two parts:

(1) a minimized general grammar:

only 11 phrase structure rules
(covering complement structure, modifier structure,
conjunctive structure and morphological structure)

(2) a feature enriched lexicon:

lexical entries;
lexical hierarchy and a set of lexical rules
(capturing lexical generalizations).

 

(7.)          comp0 PS rule

MOTHER               a_sign
COMP0 saturated
COMP1 [1]
COMP2 [2]
DTR comp0
MYSISTER [6]
LEFTMOD [7] category
RIGHTMOD [8] category
LEFTCOMP [9] category
RIGHTCOMP [10] category

===>

EXPECTING          a_sign
COMP0 a_expected
DIRECTION left
ROLE [3]
SIGN [4]
COMP1 [1] ~obligatory
COMP2 [2] ~obligatory
INDEX [5]
DTR dtr
LEFTMOD [7]
RIGHTMOD [8]
RIGHTCOMP [10]

EXPECTED            a_sign [4]
CONTENT content
MYHEAD [5]
MYROLE [3] comp_role
INDEX [6]
CATEGORY [9]

PRINCIPLE            #head_feature

(8.)          lexical entry: chi

a_sign
KANJI one_character
H1 chi
CATEGORY v
INDEX0 [1] index
INDEX1 [2] index
COMP0 a_expected
DIRECTION left
SIGN a_sign
CATEGORY n
INDEX [1]
COMP1 a_expected
DIRECTION right
SIGN a_sign
CATEGORY n
INDEX [2]
KNOWLEDGE eat
U_OBJECT food
MALE none
PERSON 3
SINGULAR bin
U_SUBJECT animate
MALE bin
PERSON tri
SINGULAR bin

  1. Implementation and Application of CPSG

CPSG prototype implemented in ALE and Prolog, having parsed a corpus of 200 various types of sentences

ALE and Prolog: suitable for unification grammar
ALE:         mechanism for typed feature structures: type polymorphism
a powerful tool in language modeling

CPSG prototype adapted for application to bi-directional MT, having generated the same corpus of 200 sentences

References

Beaven, John L. (1992): "Shake and Bake Machine Translation", Proceedings of the 15th International Conference on Computational Linguistics, pp. 603-609, Nantes, France.

Brew, Chris (1992): "Letting the Cat out of the Bag: Generation for Shake-and-bake MT", Proceedings of the 15th International Conference on Computational Linguistics, pp. 610-616, Nantes, France.

Carpenter, B. & Penn, G. (1994): ALE, The Attribute Logic Engine, User's Guide

Feng, Z.  (1996): "COLIPS Lecture Series - Chinese Natural Language Processing",  Communications of COLIPS, Vol.6, No.1 1996, Singapore (http://www.iscs.nus.sg/~colips/commcolips/paper/p96.html)

Huang, X-M. (1986): "A Bidirectional Grammar for Parsing and Generating Chinese".  Proceedings of the International Conference on Chinese Computing, Singapore, pp. 46-54

Huang, X-M. (1987): XTRA: The Design and Implementation of A Fully Automatic Machine Translation System, Doctoral dissertation, University of Essex.

Hutchins, W.J. & H.L. Somers (1992): An Introduction to Machine Translation. London, Academic Press.

Li, W. (1996): Interaction of Syntax and Semantics in Parsing Chinese Transitive Patterns. Proceedings of International Conference on Chinese Computing (ICCC'96), Singapore

Li, W. (1997): Chart Parsing Chinese Character Strings. Proceedings of The Ninth North American Conference on Chinese Linguistics (NACCL-9, to be available), Victoria, Canada

Pollard, C.  & I. Sag (1987): Information based Syntax and Semantics Vol. 1: Fundamentals. Centre for the Study of Language  and Information, Stanford University, CA

Pollard, C.  & I. Sag (1994): Head-Driven Phrase Structure Grammar,  Centre for the Study of Language and Information, Stanford University, CA

Whitelock, Pete (1992): "Shake and Bake Translation", Proceedings of the 14th International Conference on Computational Linguistics, pp. 784-790, Nantes, France.

Whitelock, Pete (1994). "Shake and Bake Translation", C.J. Rupp, M.A. Rosner, and R.L. Johnson (eds.), Constraints, Language and Computation, pp. 339-359, London, Academic Press.

 

[Related]

Outline of an HPSG-style Chinese reversible grammar

PhD Thesis: Morpho-syntactic Interface in CPSG (cover page)

PhD Thesis: Chapter I Introduction

PhD Thesis: Chapter II Role of Grammar

PhD Thesis: Chapter III Design of CPSG95

PhD Thesis: Chapter IV Defining the Chinese Word

PhD Thesis: Chapter V Chinese Separable Verbs

PhD Thesis: Chapter VI Morpho-syntactic Interface Involving Derivation

PhD Thesis: Chapter VII Concluding Remarks

Overview of Natural Language Processing

Dr. Wei Li’s English Blog on NLP

【一日一parsing:从“见面”的subcat谈起】

白:
“三两面”和“两三面”很不一样啊……
我借过他三两面。我见过他两三面。

我:
三两面 > 两三面
我见过他三两面

0912a
ditransitive, no problem, but:

0912b

separable verb jian-mian is still not connected

还有:
(0)我见过他两三面。
(1)我见过他。
(2)我与他见过面。
(3)* 我见过面
(4)我们见过面。
(5)我与他,见面过。

“见面” 要求或者主语是复数(4),或者主语是并列结构(5),或者带有介词短语“与(with)”(PP或并列在汉语界限不清,(2)),或者动量词疑似的“两三面”前必须有定语【human】。所有的这些句法subcat要求都是满足语义(或常识)的一个【human】的坑:常识是,“见面“”必须在两个或以上的 human entities 之间进行。

HPSG 这类极端依赖subcat数据结构的词驱动的理论和语言学表达,尽管繁缛,但有一个亮点, 就是把上述的句法要求作为 input 的匹配条件描述,与内在的语义要求(类似于 HowNet 的描述)作为语义的 output,一条一条形式化,细致入微,丝丝入扣。用的是 label 的unification(就是 label 所代表的子结构的 sharing)机制。多数系统对于 subcat 的内部结构,input到output的映射,以及背后的句法与语义的关系(语义是句法的动因,同时也是句法的目标:句法匹配,语义实现),都显得太简陋了。

过犹不及,不及犹过。我们一直在探索在 subcat 的表达和实现中,如何做到中庸而不平庸,简约而不简陋。

白:
他我见过几面

我:
简陋之极的一个例证是给人用的 Oxford 高级词典和朗曼词典的那些 subcat codes,类似 v1,。。。v23 之类。后来纽约大学专门组织CL的研究生做 CompLex 和 NomLex 等 subcat 词典。中文方面,社科院语言所的【现代汉语800词】开 subcat 先河,【动词用法词典】等系列辞典,开始试图把 subcat 用某种编码加例句予以表达。所有这些工作,从数据表达和关系看,都显得有些简陋。其根子是,句法和语义没有厘清。

对于一个 NLP practitioner,拿来这些资源,必须在肚子里做这个句法语义的连接和消化,然后确定数据结构,找寻自己的实现途径。实现的时候,很难达到 unification 文法的漂亮,大多是凑合事儿,为的是避免 HPSG 这类的实现起来的低效率和数据结构的难维护。

董老师的 HowNet 对于汉语和英语的 subcat,语义上登峰造极了,但是句法方面还是显得不够细致周全。譬如“见面”这类的上述6-7种句法规定,好像就没有一一描述(董老师指正:也许我没吃透),也没见哪家描述清楚过。也都需要一个重新咀嚼消化,然后去实现。

0912c

(3)的 generation 不合法(*),但对于 parsing,鲁棒性要求这样parsing,没错。

0912d

没调试,居然出来了,912 的狗屎运吧。(911恐袭,913林跑,都不是好日子。)只剩下 “我见过他两三面” 这个 case 了。这个类似动量补语的东西其实仅限于:“一面”,“几面”,“两三面”,“三两面”,等少数几个。起码,100+ 面 基本不可能 除非是恋人。

张: 崇拜严重中

我:
张老师谬赞。清谈误国,我只要不误“人”子弟就好了,一辈子没当过教授,要误也都是人家子弟,哈。

张: 白求恩

我:
认真说,其实真地涉嫌误人子弟,因为凡事都有一个大环境和背景,我说的这些个多少有些异类,结果是,主流学生雾里看花。雾里看花也算增加视野,最误人的是,看到花,却够不着。这就好比鲁老爷子说的,本来人家黑屋子里面睡得蛮香甜,你非要去【呐喊】,唤醒了,可屋子还是黑屋子,这就不仅仅是残忍了。不残忍的法子就是,等以后退休了,开一个 Deep Parsing 开源公园,每条代码,每个词条,每段规则,全部公开,然后看看能不能靠众人的力量,弄一个无敌系统来。大家一起玩符号逻辑,让两条路线永远。

 

 

【相关】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

【语言学小品:苹果发布 iPhone 7 的“话术”】

我:
前一阵提到汉语 if-then 简约式对parsing的挑战。昨天又遇到一些例子,也是极少显性形式痕迹,可是人就理解为 if-then: “中国出生,美国长大,如何申请回国定居?”

VP1, VP2, how VP3

中国出生,美国长大,如何申请回国定居?
== 【如果】【一个人】【在】中国出生,【并且】【在】美国长大,【那么】【他/她】【将】如何申请【他/她】回国定居【的paperwork】【呢】?

省去了多少玩意儿,简约的中文!

这种句式听起来很顺耳,普罗没感觉有理解或缺省的问题。仔细看,也不能算没有形式痕迹,这样的 pattern 似乎就应该是这样的理解(?):

VP1(, VP2, ...), how VPn?

一旦匹配上,还有其他的语义可能吗?VP1 到 VPn-1 都是 AND 条件, VPn 才是虚拟条件的结果。

白:
不甜不要钱,不甜的不要钱
一个意思,形式上真要拉开那么大差距吗
理解为省略“的”,就是单。理解为省略“如果……则……”就是复句

我:
的字结构,是一个短语与从句的中间怪物,英语的 what-clause 亦然。

白:
如果依照“懒人定律”,无论如何过程简约、结果简约的理解优先。
用最小能量补齐者优先

宋:
不完全一样。瓜主指着一堆瓜说“不甜不要钱”,意思是我保证个个都甜。“不甜的不要钱”口气软一点,是说我不保证每个瓜都甜,如果你买到的瓜不甜,我就不收钱。

白:
您的例子只能区分省略掉的名词加的是存在量词还是全称量词,不能区分省略掉的小词是“的”还是“如果……则”

我:
@宋 好区分。不过,这种口气的软硬真地很 subtle,广告商似乎常常有意利用这种 nuances,来忽悠老百姓。同样的广告词,软的方面理解才是实在的,广告商希望听众往硬的方面理解,来凸显其底气。“不甜不要钱”,就是这样的话术。它的实际意义和法律意义等价于“不甜的不要钱”。但它想传达的却是,我的产品多牛,根本不可能不甜,不信我愿意跟你打赌。

白:
不管软硬,真遇到不甜的(逻辑反例),肯定是哪个瓜不甜哪个瓜不要钱,不会整堆儿不要钱。不信试试。

我:
不用试吧,@白硕

说到“话术”,昨天看苹果发布会,体会才深,从乔布斯时代到现在,苹果最经常用到的忽悠信众和普罗的话术就是:iXyz is the best Xyz ever made by Apple
这种话是宇宙真理,没有丝毫信息量,却听上去似乎是最有力量的广告词。

白:
有sentiment就够了

我:
尼玛做电子产品,不是越做越好,难道越做越坏?新一代比起前面的几代好,不是理所当然吗?这里的 best 不就是这么声称吗?屡试不爽,把全世界当傻瓜,可是全世界还就愿意当傻瓜。没人 question 或反讽。我要是苹果的竞争对手,就专门做一个宣传片,嘲讽这个“话术”。

白:
made和比较范围并没有硬捆绑呀。
不是硬性的

我:
是 iPhone7 与 iPhones 比较;iWatch Series 2 与 iWatch 1 比较

白:
也可以理解为横向比

我:
这是正式新闻发布:
San Francisco — Apple today introduced iPhone 7 and iPhone 7 Plus, the best, most advanced iPhone ever, packed with unique innovations that improve all the ways iPhone is used every day.“the

“the best, most advanced iPhone ever”

白:
又回到限定性非限定性问题上,聪明的一休

我:
逻辑上,剔除定语,就是 iPhone 7 is iPhone

白:
这个跟“媳妇是娘”那种剔除法一样不可取。

我:
苹果就是完全烂了,没有任何创新,也永远可以这样声称:
iPhone 7 is the best iPhone.
(iPhone 8 will be the best iPhone)
In fact, a new iPhone release is always the best iPhone.

白:
问题是,把苹果买在手里的用户,按照另一种理解,会有一种傲视天下的感觉。

宋:
马列主义的顶峰。
新顶峰。

我:
他要是真牛,应该说 iPhone 7 is the best smart phone.
不过他不敢

白:
苹果不蠢,只是蒙不了伟哥而已。

我:
只有谷歌 SyntaxNet 才傻乎乎地敢于不带范围地如此声称世界第一

 

 

【相关】

【汉语句法的挑战之一:if-then的简约式】

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

【语义计算沙龙:三角关系的 chemistry 种种】

白:
朴泰恒小组成绩不好,今天不一定能进决赛
上面例子,“小组”怎么摆,是个考验。
原意是“在小组赛阶段的”

梁:
朴泰恒今天小组成绩不好。
孙杨小组第一。

白:
以人命名的小组也是存在的

梁:
是啊,感觉“小组成绩不好”是谓语。这里小组也不是“朴泰恒的小组“,考验来了。

我:
不是说大数据吗 看 某某某小组 是不是够资格

t08061

t08062

t08063

t08064

t08065

梁:
@wei 很棒! 有个 Topic.

宋:
@wei 确实很好。但是确实能区分两种“小组”,还是只顾一头?

我:
没有大数据,应该是只顾一头吧,可以试试另一头的典型案例

宋:
即使有大数据,还得区分时代、地域、行业等,不好办。
而且,这就成了有监督的学习了,需要做语料标注。

白:
不一定宋老师。可以词典里离线加标签,目标文本在线只需计算标签密度,不涉及监督学习。

宋:
具体解释一下吗?

我:
词典习得本质上是无监督的 ngram 频率做底。假设北京大学不在词典 应该可以学出来,某某某小组 亦然。白老师说的是在线词典化 通过现场计算。

宋:
@wei 就这个例子而言,对比“朴泰恒小组”和“朴泰恒……小组”的频率,是吗?

我:
能不能解决这个问题:北京大学、中学、小学要立刻全部动员起来
xyz 相交切分的通则:xy 强 还是 yz 强,这个道理上可以在线检索计算
“北京大学” 还是 “大学、中学” 强

宋:
如果看作交搭型歧义问题,那么在大数据中,肯定是“小组成绩”频率高过“朴泰恒”的频率,除非朴泰恒这个人太红。因此,以此决定句法结构,似乎理由不足。

我:
人是怎么决策的呢?
这里可能涉及大数据的范围问题。
数据不是越大越好 尤其不能杂 大而杂 就把领域抹平了,而很可能这是领域知识

宋:
对,我糊涂了。

白:
其实,和人名结合是兜底的,要学的只是不和人名结合的高频词串。
向右结合的条件不满足,就默认向左好了。
大数据不是这么用的。

宋:
不过无论如何,一般来说,X小组 比不上 小组成绩。这里是领域知识问题,不大好用词频去处理。

我:
先说一下篇章现象 one sense per discourse.
如果同一篇中 还有 某某某小组 再现。那个原则是过硬的 可以 在篇章内搞定,这时候大数据认输。

宋:
张三小组第一,李四小组第二。

白:
@宋柔 这个是歧义

我:
分为四级
第一级 是词典绑架 北京大学基本如此
第二级 是篇章原则
第三级 是领域数据
第四级 才是大数据 超领域的
涉及到专名 术语的 走不到超领域的大数据,大数据抹平了领域知识 反而不妙

白:
词例级如此,特征级未必
特征级可以把xx小组一起拿上来统计。

我:
明白。不过具体操作起来,还是一笔糊涂账。xxx 小组 与 小组成绩 打架,要赢多少 算赢?在多大的数据里?如果特别悬殊 好说,稍微有些接近 就是烂帐,or 烂仗。

白:
另外,针对篇章可以计算特征密度,如果某种特征密度显著比其他特征高,也可用。比如体育特征显著,“小组”做前缀就优先级较高。

宋:
我在11年人民日报中检索,“小组赛”1013次,“小组成绩”4次,“小组赛成绩”两次,人名+小组3次。对于一个毫无体育比赛知识的人,如果有一般的比赛知识,知道比赛会出成绩,就能推知“小组比赛”是一个短语。首先是从黏着的“赛”黏着到“小组赛”,知道有“小组赛”这个术语,并能理解这是分小组而比赛。由于知道比赛会出成绩,就能推知“小组成绩”是一个短语,指某人在小组赛中的成绩。人名+小组7次,但都与体育无关:赵梦桃小组,郝建秀小组等,都是棉纺厂的。一个人,没有体育比赛知识,但有一般的比赛知识,又有语言知识,就可以有这样的推理

我:
“周恩来思想深刻 谈吐幽默”,vs. “毛泽东思想深刻”
“思想” 与 “小组” 类似

宋:
1940年代以前,汉语中好像没有“人名+思想”作为一个词的。此后,“毛泽东思想”频率越来越高。但其他人名+思想就不能成词。

我:
这个政治有意思:从此 其他 人名+思想 成为禁忌:我花开来百花杀啊。

白:
@宋 “小组循环赛”“小组出线”“小组第一”……等各种组合均以“小组”为前缀,如果只对实例,其实比“朴泰恒小组”好不到哪里去。统计频度多一点少一点都做不得结构优选的依据。但是如果抽象地考察“前缀模式”和“后缀模式”的优先程度受什么影响,必然会追溯到特征以及特征在篇章中的密度分布。如果“体育”或“竞赛”特征及其密度优势显著,“小组”倾向于做前缀,否则倾向于做后缀。如果前缀所带的实例碰巧在大数据里固然好,不在,也可通过特征及特征密度间接获得友军的支持。同样,如果“人名”“任务名”特征或特征密度显著,“小组”倾向于做后缀。

 

【相关】

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

 

【一日一parsing:degraded text and robust parsing】

我:
“i love programming the games are cool its fun to play them don't you think”
@梁 here are parsing results of your casual English:

t0721a

So there is one error in parsing this "degraded text":
our parser links "the games" as Object of "programming" which is locally correct, an understandable mistake. But human knows there is a missing punctuation and will link "the games" as Subject of "are", other aspects of parsing seem alright.  So "degraded text" does pose some challenges, but a robust parser can still handle most of it.

@梁:
Thank you, @wei. It is very well handled. By the way, it is not my casual English. I copied it from Khan Academy.
@wei, ”Opred“ means predicate as objective, what is "infmod"?

白:
不定式作后置修饰语

我:
对。Opred 是谓词性宾语,包括ing和不定式。
其实那个错误 做细活 是可以改正的 因为 are 对主语的强制性力量 远远超越了作为前面动词宾语的力量。这样就达到人的结构分析水平了。

白:
think怎么next了?这个是个反义疑问句啊。

我:
白老师眼毒,不指出我根本就没注意到呢。那显然是一个 bug:助动当成主动词了。
就事论事 那个应该词典化。

白:
are距离又近,不填主语又不饱和。反倒是programming,不是非有坑不可。
词典化赞同。

 

 

 

【相关】

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

 

【一日一parsing:谈parsing是问答系统的核武】

一日一parsing:今天的是。。。

0831d

怎么知道这里的问题和答案可以相配呢?如果有 parsing 和建立其上的知识图谱,那就好办。图谱里面有 professionOf 的 relationship,有了 parsing 抽取这个关系就是小菜(这个例子很简单,就是把同位语关系映射到professionOf关系)。有了 parsing 对于 question 要问的关系,也可以解出来 asking point,子树(S:李娜-从事,O:从事-运动;Mod:什么-关系)就确定了 asking point 是寻求 professionOf(“李娜”)。然后做语义 matching,问答系统的这个环就圆了。This is IE or knowledge-graph supported QA.

具体说,为了让Q和A能match,我们可以对两边做子树规则,填空(抽取)到 professionOf 的关系去,语义一体化,然后就顺风顺水了。第一条子树规则是:

"从事"O: (“职业|运动”)

O: (“职业|运动”)

Mod (“什么|何种”)

S: ^Sombody==>

==> professionOf(^Somebody,?)

professionOf(^Somebody,?)

这是 Question parsing 和 asking point extraction.  在答案源那一边,也有一组规则做 professionOf 的抽取,其中有这样一条规则:[personNE]

[person-NE]:^Person

equiv([profession_token]:^Profession)

==> professionOf(^Person,^Profession)

QA 就这样 match 了。

如果没有专门的知识图谱,没有事先定义好的关系的抽取,怎样做 QA 来应对呢?那就用 SVO parsing 也可以应对相当多的关于事件的问答。但是关系和复杂的事件的问答,简单的 SVO matching 就不行。好在原则上说,复杂的语义大多可以预先定义成 IE (predefined), 专门去做针对性抽取。简单的语义是 open-ended 的,语言学parsing(主谓宾定状补等)就够应付了。

天不我欺也。

IE 对于 SVO,实质就是 (semantic) slot normalization,原来的 slots 是语言学的,叫 S 也好, O 也好,equiv(同位语)也好,mod 也好 。。。。现在的 slots 是 pragmatic 的语义: 譬如 professionOf, locationOf, employeeOf, acquiringCompany, acquiredCompany, priceOfAcqusition, etc.

SVO matching 的 QA 也可以举一个例子, 譬如询问如何做某事:做+某事 就是一个 V+O:

0831a

0831b

0831c

甭管怎样换说法,不变的是 VO (格式化,硬盘)。有了这个 VO matching 做底,离开QA 或人机对话就不远了。譬如,FAQ 档案里很可能就有这样的标题: 格式化硬盘的步骤;关于格式化硬盘;等。于是 Q与A基本就是 SVO 子树 matching:"格式化“ ---O---> “硬盘”。
0901b

接着这个话题再发挥一下。IE 说的是信息抽取,多数时候这个 information 是与 insights (情报,有价值的信息)等价。但其实 IE 可以是抽取有价值的情报,也可以是抽取无价值的情报(噪音)。

为啥要抽取无价值的信息呢?道理很简单,噪音捣乱啊,为了剔除噪音,首先要识别它,或者说抽取它以便扔掉它。所用的方法可以完全一样。搜索界有 stop words ,被当做噪音扔掉了,那是噪音的最简单形式,不需要上下文,纯粹是高频虚词:对于 parsing 这些 stop words 其实很关键,是必要的建立结构的桥梁,但对于关键词搜索,因为里面没有结构,这些词就变成纯粹的噪音了。用 IE 来剔除噪音,实际上是根据上下文结构来断定哪些信息是应该扔掉的,譬如上面的句子里面,在 QA 的语用场景下,就可以剔除诸如:“请告诉我”、“我不知道”等,这样才凸显关键的的VO“格式化-硬盘”。要是做相似度计算,这些个词都是噪音。把“请告诉我”当成一个 4-gram 的 stop word 行不行?可以,但是如果这种东西有很多变式,ngram 就不行了。这时候在子树基础上做 IE 抽取噪音就非常可取了。又因为噪音大多可以用 word-driven 来做,做这件事儿是很靠谱的,基本一抓一准。

小结一下,一般而言,如果 Q 和 A 说法类似,譬如“格式化”+ “硬盘”,那么只要在 SVO 基础上做 matching 就可以把 QA couple 起来。如果 说法很不相同,或者一个关系或事件的变式太多,那么就加一层 IE,matching 在 IE 语义上做。SVO 的 QA matching 是智能搜索的本质,可以对付不可预测的问题。IE 的 QA matching 是预先定义的,针对领域的,不仅精准,而且可以应对变式。两个方案相辅相成。一个善于领域的精准,一个善于open domain 的广度和召回。二者都比 keywords 好出很多,因为有结构。如果从 backoff 来看,那就是 IE 优先, SVO 其次,keywords 楼底。这样精度广度就全照顾到了。

说来归齐,对于QA,对于对话系统,parsing 是核心引擎的关键技术。QA 说到底就是在 Q 与 A 中建立映射,映射的基础是语义匹配。deep parsing 及其 IE 是语义匹配的核武。

 

【相关】

【Bots 的愿景】

立委科普:问答系统的前生今世

泥沙龙笔记:parsing 是引擎的核武器,再论NLP与搜索

泥沙龙笔记:从 sparse data 再论parsing乃是NLP应用的核武器

【立委科普:NLP核武器的奥秘】

问答系统

泥沙龙笔记:搜索和知识图谱的话题

置顶:立委NLP博文一览】

《朝华午拾》总目录

立委NLP频道

Outline of an HPSG-style Chinese reversible grammar

 Outline of an HPSG-style Chinese reversible grammar*

Wei  LI
Simon Fraser University
(NLWC97)

This paper presents the outline and the design philosophy of a lexicalized Chinese unification grammar named W‑CPSG. W‑CPSG covers Chinese morphology, Chinese syntax and semantics in a novel integrated language model. The grammar works reversibly, suited for both parsing and generation. This work is developed in the general spirit of the linguistic theory Head-driven Phrase Structure Grammar (Pollard & Sag 1994). We identify the following two problems as major obstacles in formulating a precise and efficient Chinese grammar. First, we lack in serious study on Chinese lexical base and often jump too soon for linguistic generalization. Second, there is a lack of effective interaction and adequate interface between morphology, syntax and semantics. We address these problems in depth with the lexicalized and integrated design of W‑CPSG. We will also illustrate how W‑CPSG is formalized and how it works.

 

  1. Background

Unification grammars have been extensively studied in the last decade (Shieber 1986). Implementations of such grammars for English are being used in a wide variety of applications. Attempts also have been made to write Chinese unification grammars (Huang 1986, among others). W‑CPSG (for Wei's Chinese Phrase Structure Grammar, Li, W. 1997b) is a new endeavor in this direction, with its unique design and characteristics.

1.1. Design philosophy

We identify the following two problems as major obstacles in formulating a precise and efficient Chinese grammar. First, we lack in serious study on Chinese lexical base and often jump too soon for linguistic generalization. Second, there is a lack of effective interaction and adequate interface between morphology, syntax and semantics. We address these problems in depth with the lexicalized and integrated design of W‑CPSG.

1.1.1. Lexicalized design

It has been widely accepted that a well-designed lexicon is crucial for a successful grammar, especially for a natural language computational system. But Chinese linguistics in general and Chinese computational grammars in particular have generally been lacking in in-depth research on Chinese lexical base. For many years, most dictionaries published in China did not even contain information for grammatical categories in the lexical entries (except for a few dictionaries intended for foreign readers learning Chinese). Compared with the sophisticated design and rich linguistic information embodied in English dictionaries like Oxford Advanced Learners' Dictionary and Longman Dictionary of Contemporary English, Chinese linguistics is hampered by the lack of such reliable lexical resources.

In the last decade, however, Chinese linguists have achieved significant progress in this field. The publication of 800 Words in Contemporary Mandarin (Lü et al., 1980) marked a milestone for Chinese lexical research. This book is full of detailed linguistic description of the most frequently used Chinese words and their collocations. Since then, Chinese linguists have made fruitful efforts, marked by the publication of a series of valency dictionaries (e.g. Meng et al., 1987) and books  (e.g. Li, L. 1986, 1990). But almost all such work was done by linguists with little knowledge of computational linguistics. Their description lacks formalization and consistency. Therefore, Chinese computational linguists require patience in adapting and formalizing these results, making them implementable.

1.1.2. Integrated design

Most conventional grammars assume a successive model of morphology, syntax and semantics. We argue that this design is not adequate for Chinese natural language processing. Instead, an integrated grammar of morphology, syntax and semantics is adopted in W‑CPSG.

Let us first discuss the rationale of integrating morphology and syntax in Chinese grammar. As it stands, a written Chinese sentence is a string of characters (morphemes) with no blanks to mark word boundaries. In conventional systems, there is a procedure-based Chinese morphology preprocessor (so-called segmenter). The major purpose for the segmenter is to identify a string of words to feed syntax. This is not an easy task, due to the possible involvement of the segmentation ambiguity. For example, given a string of 4 Chinese characters da xue sheng huo, the segmentation ambiguity is shown in (1a) and (1b) below.

(1)                    da xue sheng huo

(a)        da-xue                          | sheng-huo
university                    | life

(b)        da-xue-sheng               | huo
university-student       | live

The resolution of the above ambiguity in the morphology preprocessor is a hopeless job because such structural ambiguity is syntactically conditioned. For sentences like da xue sheng huo you qu (university life is interesting), (1a) is the right identification. For sentences like da xue sheng huo bu xia qu le (university students cannot make a living), (1b) is right. So far there are no segmenters which can handle this properly and guarantee correct word segmentation (Feng 1996). In fact, there can never be such segmenters as long as syntax is not brought in. This is a theoretical defect of all Chinese analysis systems in the morphology-before-syntax architecture (Li, W. 1997a). I have solved this problem in our morphology-syntax integrated W‑CPSG (see 2.2. below).

Now we examine the motivation of integrating syntax and semantics in Chinese grammar. It has been observed that, compared with the analysis of Indo-European languages, proper Chinese analysis relies more heavily on semantic information (see, e.g. Chen 1996, Feng 1996). Chinese syntax is not as rigid as languages with inflections. Semantic constraint is called for in both structural and lexical disambiguation as well as in solving the problem of computational complexity.  The integration of syntax and semantics helps establish flexible ways of their interaction in analysis (see 2.3. below).

1.2. Major theoretical foundation: HPSG

The work on W‑CPSG is developed in the spirit of the linguistic theory Head-driven Phrase Structure Grammar (HPSG, proposed by Pollard & Sag, 1987). HPSG is a highly lexicalist theory, which encourages the integration of different components. This matches our design philosophy for implementing our Chinese computational grammar. HPSG serves as a desired framework to start this research with. We benefit most from the general linguistic ideas in HPSG. However, W‑CPSG is not confined to the theory-internal formulations of principles and rules and other details in HPSG versions (e.g. Pollard & Sag 1987, 1994 or later developments). We borrow freely from other theoretical sources or form our own theories in W‑CPSG to meet our goal of Natural Language Processing in general and Chinese computing in particular. For example, treating morphology as an integrated part of parsing and placing it right into grammar is our deliberate choice. In syntax, we formulate our own theory for configuration and word order. Our semantics differs most from any standard version of situation-semantics-based theory in HPSG. It is based on insights from Tesnière's Dependency Grammar (Tesnière 1959), Fillmore's Case Grammar (Fillmore 1968) and  Wilks' Preference Semantics (Wilks 1975, 1978) as well as our own semantic view for knowledge representation and better coordination of syntax-semantics interaction (Li, W. 1996). For these differences and other modifications, it is more accurate to regard W‑CPSG as an HPSG-style Chinese grammar, rather than an (adapted) version of Chinese HPSG.

  1. Integrated language model

2.1. W‑CPSG versus conventional Chinese grammar

The lexicalized design sets the common basis for the organization of the grammar in W‑CPSG. This involves the interfaces of morphology, syntax and semantics.[1]   W‑CPSG assumes an integrated language model of its components (see Figure 1).  The W‑CPSG model is in sharp contrast to the conventional clear-cut successive design of grammar components (see Figure 2).

 

 lw1

Figure 2.  conventional language model (non-reversible)

2.2. Interfacing morphology and syntax

As shown in Figure 2 above, conventional  systems take a two-step approach: a procedure-based preprocessor for word identification (without discovering the internal structure) and a grammar for word-based parsing. W‑CPSG takes an alternative one-step approach and the parsing is character- (i.e. morpheme-) based. A morphological PS (phrase structure) rule is designed not only to identify candidate words but to build word‑internal structures as well. In other words, W‑CPSG is a self-contained model, directly accepting the input of a character string for parsing. The parse tree embodies both the morphological analysis and the syntactic analysis, as illustrated by the following sample parsing chart.

lw6

Note:    DET for determiner; CLA for classifier; N for noun; DE for particle de;
AF for affix; V for verb; A for adjective; CLAP for classifier phrase;
NP for noun phrase; DEP for DE-phrase

This is so-called bottom-up parsing. It starts with lexicon look-up. Simple edges 1 through 7 are lexical edges. Combined edges are phrasal edges. Each edge represents a sign, i.e. a character (morpheme), a word, a phrase or a sentence. Lexical edges result from a successful match between the signs in the input string and the entries in the lexicon during lexicon look-up. After looking up the lexicon, the lexical information for the signs are made available to the parser. For the sake of concise illustration, we only show two crucial pieces of information for each edge in the chart, namely category and interpretation with a delimiting colon (some function words are only labeled for category). The parser attempts to combine the edges according to PS rules in the grammar until a parse is found. A parse is an edge which ranges over the whole string. The parse ((((1+2)+3)+4)+((5+6)+7)) represents the following binary structural tree embodying both the morphological and syntactic analysis of this NP phrase.

lw5

As seen, word identification is no longer a pre-condition for parsing. It becomes a natural by-product of parsing in this integrated grammar of morphology and syntax: a successful parse always embodies the right word identification. For example, the parse ((((1+2)+3)+4)+((5+6)+7)) includes the identification of a word-string zhe (DET) ben (CLA) shu (N) de (DE) ke-du-xing (N). An argument against the conventional separation model is that there exists in the two-step approach a theoretical threshold beyond which the precision for the correct word identification is not possible. This is because proper word identification in Chinese is to a considerable extent syntactically conditioned due to  possible structural ambiguity involved. Our strategy has advantages over the conventional approach  in  resolving word identification ambiguities and in handling the productive word formation. It has solved the problems inherent in the morphology-before-syntax architecture (for detailed argumentation, see Li, W. 1997a).

2.3. Interaction of syntax and semantics

The interface and interaction of syntax and semantics are of vital importance in a Chinese grammar. We are of the same opinion as Chen (1996) and many others that it is more effective to analyze Chinese in an environment where semantic constraints are enforced during the parsing, not after. The argument is based on the linguistic characteristics of Chinese. Chinese has no inflection (like English ‑'s, ‑s, ‑ing, ‑ed, etc.), no such formatives as article (like English a, the), infinitivizer (like English to) and complementizer (like English that). Instead, function words and word order are used as major syntactic devices. But Chinese function words (prepositions, aspect particles, passive particle, plural suffix, conjunctions, etc.) can often be omitted (Lü et al. 1980, p.2). Moreover, fixed word order in order to mark syntactic functions which is usually assumed for isolating languages, is to a considerable extent untrue for Chinese. In fact, there is remarkable freedom or flexibility in Chinese word order. One typical example is demonstrated in the numerous word order variations (although the default order is S‑V‑O subject-verb-object) for the Chinese transitive patterns  (Li, W. 1996).  All these added up project a picture of Chinese as a language of loose syntactic constraint. A weak syntax requires some support beyond syntax to enhance grammaticality. Semantic constraints are therefore called for. I believe that an effective way to model this interaction between syntax and semantics is to integrate the two in one grammar.

One strong piece of evidence for this syntax-semantics integration argument is that Chinese has what I call syntactically crippled structures. These are structures which can hardly be understood on purely formal grounds and are usually judged as ungrammatical unless accompanied with the support from the semantic constraints (i.e. the match of semantic selection restrictions). Some Chinese NP predicate (Li, W. & McFetridge 1995) and transitive patterns like S‑O‑V (Li, W. 1996), among others, are such structures. The NP Predicate is a typical instance of semantic dependence. It is highly undesirable if we assume a general rule like S --> NP1 NP2 in a Chinese grammar to capture such phenomena. This is because there is a semantic condition for NP2 to function as predicate, which makes the Chinese NP predicate a very restricted pattern. For example, in the sentence This table is three-legged: zhe (this) zhang (classifier) zhuo-zi (desk) san (three) tiao (classifier) tui (leg), the subject must be of the semantic type animate or furniture (which can have legs). The general rule with no recourse to semantic constraints is simply too productive and may cause severe computational complexity. In the case of Chinese transitive patterns, formal means are decisive for some variations in their interpretation (i.e. role assignment) process. But others are heavily dependent on semantic constraint. Take chi (eat) as an example. There is no difference in syntactic form in sentences like wo (I) chi (eat) dianxin (Dim-Sum) le (perfect-aspect) and dianxin (Dim-Sum) wo (I) chi (eat) le (perfect-aspect). Who eats what? To properly assign roles to NP1 NP2 V as S-O-V versus O-S-V, the semantic constraint animate eats food needs to be enforced.

The conventional syntax-before-semantics model has now received less popularity in Chinese computing community. Researchers have been exploring various ways of integrating syntax and semantics in Chinese grammar (Chen 1996). In W‑CPSG, the Chinese syntax was enhanced by the incorporation of a semantic constraint mechanism. This mechanism embodies a lexicalized knowledge representation, which parallels to the syntactic representation in the lexicon. I have developed a way to dynamically coordinate the syntactic constraint and semantic constraint in one model. This technique proves to be effective in handling rhetorical expressions and in making the grammar both precise and robust (Li, W 1996).

 

  1. Lexicalized formal grammar

3.1. Formalized grammar

The application nature of this research requires that we pay equal attention to practical issues of computational systems as well as to a sound theoretical design. All theories and rule formulations in W‑CPSG are implementable. In fact. most of them have been implemented in our prototype W‑CPSG. W‑CPSG is a strictly formalized grammar that does not rely on undefined notions. The whole grammar is represented by typed feature structures (TFS), as defined below based on Carpenter & Penn (1994).

(3)        Definition: typed feature structure 

A typed feature structure is a data structure adopted to model a certain object of a grammar. The necessary part for a typed feature structure is type. Type represents the classification of the feature structure. A simple feature structure contains only the type information, but a complex feature structure can introduce a set of feature-value pairs in addition to the type. A feature-value pair consists of a feature and a value. A feature reflects one aspect of an object. The value describes that aspect. A value is itself a feature structure (simple or complex). A feature determines which type of feature structures it takes as its value. Typed feature structures are finite in a grammar. Their definition constitutes the typology of the grammar.

With this formal device of typed feature structures, we formulate W‑CPSG by defining from the very basic notions (e.g. sign, morpheme, word, phrase, S, NP, VP, etc.) to rules (PS rules and lexical rules), lexical items, lexical hierarchy and typology (hierarchy embodied in feature structures) (Li, W. 1997b). The following sample definitions of some basic notions illustrate the formal nature of W‑CPSG. Please note that they are system-internal definitions and are used in W‑CPSG to serve the purpose of configurational constraints (see Chapter VI of Li, W. 1997b).

(4)        Definition: sign [2]

a_sign
KANJI kanji
MORPH expected
CATEGORY category
COMP0 expected
COMP1 expected
COMP2 expected
MOD expected
KNOWLEDGE knowledge
CONTENT content
DTR dtr

A sign is the most fundamental concept of grammar. A sign is a dynamic unit of grammatical analysis. It can be a morpheme, a word, a phrase or a sentence. Formally, a sign is defined by the TFS a_sign, which introduces a set of linguistic features for its description, as shown above. These features include the orthographic feature KANJI; morphological feature MORPH; syntactic features CATEGORY, COMP0, COMP1, COMP2, and MOD; structural feature (for both morphology and syntax) DTR; semantic features KNOWLEDGE and CONTENT.

(5)        Definition: morpheme

a_sign
MORPH ~saturated

A morpheme is a sign whose morphological expectation has not been saturated. In W‑CPSG, ~saturated is equivalent to obligatory/optional/null. For example, the suffix ‑xing (‑ness) is such a morpheme whose morphological expectation for a preceding adjective is obligatory.  In W‑CPSG, a morpheme like ‑xing (‑ness) ceases to be a morpheme when its obligatory expectation, say the adjective ke-du (readable), is saturated. Therefore, the sign ke-du-xing (readability) is not a morpheme, but becomes a word per se.

(6)        Definition: word

a_sign
MORPH ~obligatory
DTR no_syn_dtr

In W‑CPSG, ~obligatory is equivalent to saturated/optional/null. The specification [MORPH ~obligatory] defines a syntactic sign, i.e. a sign whose obligatory morphological expectation has been saturated. A word is a syntactic sign with no syntactic daughters, i.e. [DTR no_syn_dtr]. Obviously, word with [MORPH saturated/optional/null] overlaps morpheme with [MORPH obligatory/optional/null] in cases when the morphological expectation is optional or null.

Just like the overlapping of morpheme and word, there is also an intersection between word and phrase. Compare the following definition of phrase with the above definition of word.

(7)        Definition: phrase

a_sign
MORPH ~obligatory
COMP0 ~obligatory
COMP1 ~obligatory
COMP2 ~obligatory 

A phrase is a syntactic sign whose obligatory complement expectation has all been saturated, i.e. [COMP0 ~obligatory, COMP1 ~obligatory, COMP2 ~obligatory]. When a word has only optional complement expectation or no complement expectation, it is also a phrase. The overlapping relationship among morpheme, word and phrase can be shown by the following illustration of the three sets.

lw4 

S is a syntactic sign satisfying the following 3 conditions: (1) its category is pred (which includes V and A); (2) its comp0 is saturated; (3) its obligatory comp1 and comp2  are saturated.

3.2. Lexicalized grammar

W‑CPSG takes a radical lexicalist approach. We started with individual words in the lexicon and have gradually built up a lexical hierarchy and the grammar prototype.

W‑CPSG consists of two parts: a minimized general grammar and a information-enriched lexicon. The general grammar contains only 11 PS rules, covering complement structure, modifier structure, conjunctive structure and morphological structure. We formulate a PS rule for illustration.

lw3

This comp0 PS rule is similar to the rule S ==> NP VP in the conventional phrase structure grammar. The feature COMP0 represents the expectation of the head daughter for its external complement (subject or specifier) on its left side, i.e. [DIRECTION left]. The nature of its expected comp0, NP or other types of sign, is lexically decided by the individual head (hence head-driven or lexicon-driven). It will always be warranted by the general grammar, here via the index [3]. This is the nature of lexicalized grammars. PS rules in such grammars are very abstract. Essentially, they say one thing, namely, 2 signs can combine so long as the lexicon so indicates. The indices [1] and [2] represent configurational constraint. They ensure that internal obligatory complements COMP1 and COMP2 must be saturated before this rule can be applied. Finally, Head Feature Principle (defined elsewhere in the grammar based on the adaptation of the Head Feature Principle in HPSG, Pollard & Sag, 1994) ensures that head features are percolated up from the head daughter to the mother sign.

The lexicon houses lexical entries with their linguistic description and knowledge representation. Potential morphological structures, as well as potential syntactic structures, are lexically encoded (in the feature MORPH for the former and in the features COMP0, COMP1, COMP2, MOD for the latter). Our knowledge representation is also embodied in the lexicon (in the feature KNOWLEDGE). I believe that this is an effective and realistic way of handling natural language phenomena and their disambiguation without having to resort to an encyclopedia-like knowledge base. The following sample formulation of the lexical entry chi (eat) projects a rough picture of what the W‑CPSG lexicon looks like.

lw2

The lexicon also contains lexical generalizations. The  generalizations are captured by the inheritance of the lexical hierarchy and by a set of lexical rules. Due to space limitations, I will not show them in this paper.

  1. Implementation and application of W‑CPSG

A substantial Chinese computational grammar has been implemented in the W‑CPSG prototype.  It covers all basic Chinese constructions. Particular attention is paid to the handling of function words and verb patterns.  On the basis of the information- enriched lexicon and the general grammar, the system adequately handles the relationship between linguistic individuality and generality. The grammar formalism which I use to code W‑CPSG is ALE, a grammar compiler on top of Prolog, developed by Carpenter & Penn (1994). ALE  is equipped with an inheritance mechanism on typed feature structures, a powerful tool in grammar modeling. I have made extensive use of the mechanism in the description of lexical categories as well as in knowledge representation. This seems to be an adequate way of capturing the inherent relationship between features in a grammar. Prolog is a programming environment particularly suitable for the development of unification and reversible grammars (Huang 1986, 1987). ALE compiles W‑CPSG into a Chinese parser, a Prolog program ready to accept a string of characters for analysis. In the first experiment, W‑CPSG has parsed a corpus of 200 Chinese sentences of various types.

An important benefit of a unification-based grammar is that the same grammar can be used both for parsing and generation. Grammar reversibility is a highly desired feature for multi-lingual machine translation application. Following this line, I have successfully applied W‑CPSG to the experiment of bi-directional machine translation between English and Chinese. The machine translation system developed in our Natural Language Lab is based on the shake-and-bake design (Whitelock 1992, 1994). I used the same three grammar modules (W‑CPSG, an English grammar and a bilingual transfer lexicon) and the same corpus for the experiment. As part of machine translation output, W‑CPSG has successfully generated the 200 Chinese sentences. The experimental results meet our design objective and verify the feasibility of our approach.

 

References

 

Carpenter, B. & Penn, G. (1994): ALE, The Attribute Logic Engine, User's Guide

Chen, K-J.  (1996): "Chinese sentence parsing" Tutorial Notes for International Conference on Chinese Computing ICCC'96, Singapore

Feng, Z-W.  (1996): "COLIPS lecture series - Chinese natural language processing",  Communications of COLIPS, Vol. 6, No. 1 1996, Singapore

Fillmore, C. J. (1968): "The case for case". Bach and Harms (eds.), Universals in Linguistic Theory. Holt, Reinhart and Winston, pp. 1-88.

Huang, X-M. (1986): "A bidirectional grammar for parsing and generating Chinese".  Proceedings of the International Conference on Chinese Computing, Singapore, pp. 46-54

Huang, X-M. (1987): XTRA: The Design and Implementation of A Fully Automatic Machine Translation System, Doctoral dissertation, University of Essex.

Li, L-D. (1986): Xiandai Hanyu Juxing (Sentence Patterns in Contemporary Mandarin), Shangwu Yinshuguan, Beijing

Li, L-D. (1990): Xiandai Hanyu Dongci (Verbs in Contemporary Mandarin), Zhongguo Shehui Kexue Chubanshe, Beijing

Li, W. & P. McFetridge (1995): "Handling Chinese NP predicate in HPSG", Proceedings of PACLING-II, Brisbane, Australia

Li, W. (1996): "Interaction of syntax and semantics in parsing Chinese transitive patterns", Proceedings of International Conference on Chinese Computing (ICCC'96), Singapore

Li, W. (1997a): "Chart parsing Chinese character strings", Proceedings of The Ninth North American Conference on Chinese Linguistics (NACCL-9, to be available), Victoria, Canada

Li, W. (1997b): W‑CPSG: A Lexicalized Chinese Unification Grammar, Doctoral dissertation, Simon Fraser University (on-going)

Lü, S-X. et al. (ed.) (1980): Xiandai Hanyu Babai Ci (800 Words in Contemporary Mandarin), Shangwu Yinshuguan, Beijing

Meng, Z., H-D. Zheng, Q-H. Meng, & W-L. Cai (1987): Dongci Yongfa Cidian (Dictionary of Verb Usages), Shanghai Cishu Chubanshe, Shanghai

Pollard, C.  & I. Sag (1987): Information based Syntax and Semantics Vol. 1: Fundamentals. Centre for the Study of Language  and Information, Stanford University, CA

Pollard, C.  & I. Sag (1994): Head-Driven Phrase Structure Grammar,  Centre for the Study of Language and Information, Stanford University, CA

Shieber, S. (1986): An Introduction to Unification-Based Approaches to Grammar. Centre for the Study of Language  and Information, Stanford University, CA

Tesnière, L. (1959): Éléments de Syntaxe Structurale, Paris: Klincksieck

Whitelock, Pete (1992): "Shake and bake translation", Proceedings of the 14th International Conference on Computational Linguistics, pp. 784-790, Nantes, France.

Whitelock, Pete (1994). "Shake and bake translation", C.J. Rupp, M.A. Rosner, and R.L. Johnson (eds.), Constraints, Language and Computation, pp. 339-359, London, Academic Press.

Wilks, Y.A. (1975). "A preferential pattern-seeking semantics for natural language interference".  Artificial Intelligence, Vol. 6, pp. 53-74.

Wilks, Y.A. (1978). "Making preferences more active".  Artificial Intelligence, Vol. 11,  pp. 197-223

 

-------------------------------------

* This project was supported by the Science Council of British Columbia, Canada under G.R.E.A.T. Award (code: 61) and by my industry partner TCC Communications Corporation, British Columbia, Canada. I thank my academic advisors Paul McFetridge and Fred Popowich and my industry advisor John Grayson for their supervision and encouragement. Thanks also go to my colleagues Davide Turcato, James Devlan Nicholson and Olivier Laurens for their help during the implementation of this grammar in our Natural Language Lab. I am also grateful to the editors of the NWLC'97 Proceedings for their comments and corrections.

[1] We leave aside the other components such as discourse, pragmatics, etc. They are an important part of a grammar for a full analysis of language phenomena, but they are beyond what can be addressed in this research.

[2] In formulating W‑CPSG, we use uppercase for feature and lowercase for type; ~ for logical not and / for logical or; number in square brackets for unification.

 

[Related]

Outline of An HPSG-style Chinese Reversible Grammar ABSTRACT

PhD Thesis: Morpho-syntactic Interface in CPSG (cover page)

Overview of Natural Language Processing

Dr. Wei Li’s English Blog on NLP

PhD Thesis: Chapter VII Concluding Remarks

This chapter summarizes the research conducted in this dissertation, including its contributions as well as limitation.

7.0. Summary

The goal of this dissertation is to explore effective ways of formally approaching Chinese morpho-syntactic interface in a phrase structure grammar.  This research has led to the following results:  (i) the design of a Chinese grammar, namely CPSG95, which enables flexible coordination and interaction of morphology and syntax;  (ii) the solutions proposed in CPSG95 to a series of long-standing problems at the Chinese morpho-syntactic interface.

CPSG95 was designed in the general framework of HPSG (Pollard and Sag 1987, 1994).  The sign-based mono-stratal design from HPSG demonstrates the advantage in being capable of accommodating and accessing information of different components of a grammar.  One crucial feature of CPSG95 is its introduction of morphology expectation feature structures and the corresponding morphological PS rules into HPSG.  As a result, CPSG95 has been demonstrated to provide a favorable environment for solving morpho-syntactic interface problems.

Three types of morpho-syntactic interface problems have been studied extensively: (i) the segmentation ambiguity in Chinese word identification;  (ii) Chinese separable verbs, a borderline problem between compounding and syntax; and (iii) borderline phenomena between derivation morphology and syntax.

In the context of the CPSG95 design, the segmentation ambiguity is no longer a problem as morphology and syntax are designed system internally in the grammar to support morpho-syntactic parsing based on non-deterministic tokenization (W. Li 1997, 2000).  In other words, the design of CPSG95 itself entails an adequate solution to this long-standing problem, a problem which has been a central topic in Chinese NLP for the last two decades.  This is made possible because the access to a full grammar including both morphology and syntax is available in the integrated process of Chinese parsing and word identification while traditional word segmenters can at best access partial grammar knowledge.[1]

The second problem involves an interesting case between compounding and syntax:  different types of Chinese separable verbs demonstrate various degrees of separability in syntax while all these verbs, when used contiguously, are part of Chinese verb vocabulary.  For each type of separable verbs, arguments were presented for the proposed linguistic analysis and a solution to the problem was then formulated in CPSG95 based on the analysis.  All the proposed solutions provide a way of capturing the link between the separated use and the contiguous use of the separable verb phenomena.  They are shown to be better solutions than previous approaches in the literature which either cannot link the separated use and the contiguous use in the analysis or suffer from being not formal.

The third problem at the interface of derivation and syntax involves two issues: (i) a considerable amount of ‘quasi-affix’ data, and (ii) the intriguing case of zhe-suffixation which demonstrates an unusual combination of a phrase with a bound morpheme.  A generic analysis of Chinese derivation has been proposed in CPSG95.  This analysis has been demonstrated to be also effective in handling both quasi-affixation and zhe-affixation.

7.1. Contributions

The specific contributions are reflected in the study of the following five topics, each constituting a chapter.

On the topic of the Role of Grammar, the investigation leads to the central argument that knowledge from both morphology and syntax is required to properly handle the major types of morpho-syntactic interface problems.  This establishes the foundation for the general design of CPSG95 as consisting of morphology and syntax in one grammar formalism.

An in-depth study has been conducted in the area of the segmentation ambiguity in Chinese word identification.  The most important discovery from the study is that the disambiguation involves the analysis of the entire input string.  This means that the availability of a grammar is key to the solution of this problem.  A natural solution to this problem is the use of grammatical analysis to resolve, and/or prepare the basis for resolving, the segmentation ambiguity.

On the topic of the Design of CPSG95, a mono-stratal Chinese phrase structure grammar has been established in the spirit of the HPSG theory.  Components of a grammar such as morphology, syntax and semantics are all accommodated in distinct features of a sign.  CPSG95 is designed to provide a framework and means for formalizing the analysis of the linguistic problems at the morpho-syntactic interface.

The essential part of this work is the design of expectation feature structures.  Expectation feature structures are generalized from the HPSG feature structures for syntactic subcategorization and modification.  One characteristic of the CPSG95 structural expectation is the design of morphological expectation features to incorporate Chinese productive derivation, which covers a wide range of linguistic phenomena in Chinese word formation.

In order to meet the requirements induced by introducing morphology into the general grammar and by accommodating linguistic characteristics of Chinese, modifications from the standard HPSG are proposed in CPSG95.  The rationale and arguments for these modifications have been presented.  The design of CPSG95 is demonstrated to be a successful application of HPSG in the study of Chinese morpho-syntactic phenomena.

On the topic of Defining the Chinese Word, efforts have been made to reach a better understanding of Chinese wordhood in theory, methodology and formalization.

The theoretical inquiry follows the insight from Di Sciullo and Williams (1987) and Lü (1989).  Two notions of word, namely grammar word and vocabulary word, have been examined and distinguished.  While vocabulary word is easy to define once a lexicon is given, the object for linguistic study and generalization is actually grammar word.  Unfortunately, as there is a considerable amount of borderline phenomena between Chinese morphology and syntax, no precise definition of Chinese grammar word has been available across systems.  Therefore, an argument in favor of the system-internal wordhood definition and interface coordination within a grammar has been made.  This leads to a case-by-case approach to the analysis of specific Chinese morpho-syntactic interface problems.

On the other hand, three useful wordhood judgment methods have also been proposed as a complementary means to the case-by-case analysis.  These methods are (i) syntactic process test involving passivization and topicalization; (ii) keyword based judgment patterns for verbs, and (iii) a general expansion test named X-insertion.  These methods are demonstrated to be fairly operational and easy to apply.

In terms of formalization, a system-internal representation of word has been defined in CPSG95 feature structures.  This definition distinguishes a grammar word from both bound morphemes and syntactic constructions.  The formalization effort is necessary for the rigid study of Chinese morpho-syntactic problems and ensures the implementability of the solutions to these problems as proposed in the dissertation.

On the topic of Chinese Separable Verbs, the task is to coordinate the idiomatic nature of separable verbs and their separated uses in various syntactic patterns.

Since there are different degrees of ‘separability’ for different types of Chinese separable verbs, there is no uniform analysis which can handle all separable verbs properly.  A case-by-case study for each type of separable verbs has been conducted.  An essential part of this study is the arguments for the wordhood judgment for each type.  In the light of this judgment, CPSG95 provides formalized analyses of separable verbs which satisfy two criteria:  (i)  they all capture both structural and semantic aspects of the constructions at issue; (ii) they all provide a way of capturing the link between the separated use and contiguous use.

Finally, on the topic of Morpho-syntactic Interface Involving Derivation, a general approach to Chinese derivation has been proposed.  This approach not only enables us to handle quasi-affix phenomena, but is also flexible enough to provide an adequate treatment of the special problem in zhe-suffixation.

In the CPSG95 analysis, the affix serves as head of a derivative and can impose various constraints in the lexicon on its expected stem sign for the morphological expectation.  Coupled with only two PS rules formulated in the general grammar (Prefix PS Rule and Suffix PS Rule), it has been shown that various Chinese affixation phenomena can be captured equally well.  The PS rules ensure that all the lexical constraints be observed before the affix and the stem combine and that the output of derivation be a word.

As for the quasi-affixation problem, based on the observation that there is no fundamental structural difference between quasi-affixation and other affixation, a proper treatment of 'quasi-affixes' can be established in the same way as other affixes are handled in CPSG95; the individual difference in semantics is shown to be capturable in the lexicon.

The study of zhe-suffixation started with arguments for its analysis of VP+-zhe.  This is an unsolvable problem in any system which enforces sequential processing of morphology before syntax.  The solution which CPSG95 offers demonstrates the power of designing derivation morphology and syntax in a mono-stratal grammar.   With this novel design in modeling Chinese grammar, the CPSG95 general approach to derivation readily applies to the tough case of zhe-suffixation.  This is possible because of the ability of an affix in placing any lexicalized constraints, VP in this case, on the expected stem for morphological expectation.  In addition, the proposed lexicalized solution also captures the building of the semantic content for this morpho-syntactic borderline phenomenon.

7.2. Limitation

The major limitation of the work reported in this thesis lies in the following two aspects.

Limited by space, the thesis has only presented some sample formulation of typical affixes and quasi-affixes to demonstrate the proposed general approach to Chinese derivation morphology.  As many affixes/quasi-affixes have their distinctive semantic property, a reader who likes to experiment with this proposal in implementation still has to work out the technical details for each affix.  However, it is believed that the general strategy has been presented in sufficient details to allow for easy accommodation of individual aspects of an affix which have not been specifically addressed in the thesis.

Limited by the focus on a handful of major morpho-syntactic interface problems, the treatment of reduplication and unlisted proper names have not been listed as special topics for in-depth exploration.  They are only briefly discussed in Chapter II (Section 2.2) as cases of productive word formation for the need to involve syntax when they involve segmentation ambiguity at the boundaries.  However, they are also long-standing word identification problems which affect morpho-syntactic interface when the segmentation ambiguity is involved.  In particular, it is felt that the treatment of transliterated foreign names requires further research before a satisfactory solution can be found in the framework of CPSG95.[2]

7.3. Final Notes

This last section is used to place the research reported in this thesis in a larger context.

Chinese NLP has reached a new stage marked by the publication of Guo’s series of papers on Chinese tokenization (Guo 1997a,b,c,d, Guo 1998).  There are signs that the major research focus is being shifted from word segmentation to the grammar design and development.  In this process,  the morph-syntactic interface will remain a hot topic for quite some time to come.  The work on CPSG95 can be seen as one of the efforts in this direction.

The design of CPSG95, a formal grammar capable of representing both morphology and syntax in a uniform formalism, is one successful application of the modern linguistic theory HPSG in the area of Chinese  morpho-syntactic interface research.  However, this is by no means to claim that CPSG95 is the only or best framework to capture the morpho-syntactic problems.   This is only one approach which has been shown to be feasible and effective.  Other equally good or better approaches may exist.

In terms of future directions, constraints from semantics and discourse should be made available in the grammatical analysis.  In Chapter II (Section 2.4), we have seen problems whose ultimate solutions depend on the access to the semantic or discourse constraints.  It is believed that the sign-based mono-stratal design of CPSG95 will be extensible to accommodate these constraints.  However, this will require years of future research before they can be formally modeled and properly introduced into the grammar.

 

--------------------------

[1] As a matter of fact, the CPSG95 experiment shows that most segmentation ambiguity is resolved automatically as a by-product of morpho-syntactic parsing and the remaining ambiguity is embodied in the multiple syntactic trees as the results of the analysis.

[2] However, in the CPSG95 implementation, the problem of handling the Chinese person names, a special case of compounding, has been solved fairly satisfactorily.  The proposal is to use the surname as the head sign to expect the given name (of one or two characters) on its right to form potential full names.  As the right boundary of a person name is difficult to define without the support of sentential analysis, the conventional word segmenter frequently makes wrong segmentation in such cases.  In contrast, the approach implemented in CPSG95 is free from this problem because whether a potential name proposed by the surname ultimately survive as a proper name is decided by whether it contributes to a valid parse for the processed sentence.  In last few years, there has been rapid progress on proper name identification in the area of information extraction, called named entity tagging (MUC7 1998; Chen et al 1997).

 

BIBLIOGRAPHY

Bauer, Laurie (1988).  Introducing Linguistic Morphology.  Edinburgh:  Edinburgh University Press.

Bloomfield, Leonard (1933). Language, New York: Henry Holt & Co.

Borsley, Robert (1987).  Subjects and Complements in HPSG.   Technical report no. CSLI-107-87.  Stanford:  Center for the Study of Language and Information.

Carpenter, B. and G. Penn (1994).  ALE, The Attribute Logic Engine, User's Guide.  From http://www.sfs.nphil.uni-tuebingen.de/~gpenn/ale.html (accessed January 30, 2001).

Chao, Yuen-Ren (1968).  A Grammar of Spoken Chinese.  Berkeley:  University of California Press.

Chen, H.-H et al (1997).  Description of the NTU System used for MET-2.  Proceedings of MUC-7.  From http://perso.enst.fr/~monnier/lectures/IE/MUC7/muc_7_toc.html (accessed January 30, 2001).

Chen, K. and S. Liu (1992).  Word Identification for Mandarin Chinese Sentences.  Proceedings of 14th International Conference on Computational Linguistics (COLING’92). Nantes, France, 101-107.

Chen, M.Y. and W. S-Y. Wang (1975).  Sound Change:  Actuation and Implementation.  Language 51:2, 255-281.

Chen, Ping (1994).  “Shilun Hanyu zhong San Zhong Juzi Chengfen yu Yuyi Cheng Fen de Peiwei Yuanze” (On Mapping Principles of Relationship between Chinese Three Syntactic Constituents and Semantic Roles). Zhongguo Yuwen (Chinese Linguistics), No.3.

Chomsky, Noam (1970).  Remarks on Nominalization.  Readings in English Transformational Grammar, eds. by R. Jacobs and P. Rosenbaum, Waltham, Massachasetts:  Ginn and Company, 184-221.

Dai, John Xiang-ling (1993).  Chinese Morphology and its Interface with Syntax.  Ph.D. Dissertation, Ohio State University.

DeFrancis, John (1984).  The ChineseLanguage: Fact and Fantasy.  Honolulu:  University of Hawaii Press.

Di Sciullo, A.M. and E. Williams (1987).  On The Definition of Word.  The MIT Press, Cambridge, Massachusetts.

Ding, Shengshu (1953). “Hanyu Yufa Jianghua” (Lectures of Chinese Grammar), Zhongguo Yuwen (Chinese Linguistics), No. 3 and No. 4.

Dowty, D. (1982).  More on the Categorial Analysis of Grammatical Relations.  In A. Zaenen (Ed.), Subjects and Other Subjects:  Proceedings of the Harvard Conference on Grammatical Relations.  Bloomington:  Indiana University Linguistics Club.

Feng, Zhiwei (1996).  COLIPS Lecture Series - Chinese Natural Language Processing,  Communications of COLIPS, Vol.6, No.1, Singapore.

Gan, Kok Wee (1995).  Integrating Word Boundary Disambiguation with Sentence Understanding, Ph.D. Dissertation, National University of Singapore.

Gazdar, G., E. Klein, G.K. Pullum, and I.A. Sag (1985).  Generalized Phrase Structure Grammar.  Cambridge: Blackwell, and Cambridge, Mass.:  Harvard University Press.

Guo, Jin (1997a).  Critical tokenization and its properties.  Computational Linguistics, Vo. 23, No.4, 569-596.

Guo, Jin (1997b).  Chinese Language Modeling for Speech Recognition.  Ph.D. dissertation, Institute of Systems Science, National University of Singapore.

Guo, Jin (1997c).  A Comparative Study on Sentence Tokenization Generation Schemes.  In review for journal publication from http://sunzi.iss.nus.sg:1996/guojin/papers/ (accessed March 25, 1999).

Guo, Jin (1998).  One tokenization per source.  Proceedings of the 17th International Conference on Computational Linguistics and 36th Annual Meeting of the Association for Computational Linguistics (COLING-ACL ’98),  Montreal, Canada, 457-463.

He, K., H. Xu and B. Sun (1991).  Design Principles of an Expert System for Automatic Word Segmentation of Written Chinese Texts, Journal of Chinese Information Processing, Vol. 5, No. 2, 1-14.

Hockett, C.F. (1958).  A Course in Modern Linguistics.  New York:  Macmillan.

Hu, F. and L. Wen (1954).  “Ci de fanwei, xingtai, gongneng” (Scope, form and function of word). Zhongguo Yuwen (Chinese Linguistics), August issue.

Jackendoff, Ray (1972). Semantic Interpretation In Generative Grammar, Cambridge, Massachusetts:  MIT Press.

Jensen, John T. (1990).  Morphology:  Word Structure in Generative Grammar.  Amsterdam/Philadephia:  John Benjamins Publishing Company.

Kathol, Andreas (1999).  Agreement and the Syntax-Morphology Interface in HPSG. In Robert Levine and Georgia Green (eds.) Studies in Current Phrase Structure Grammar. Cambridge University Press, 223-274.

Kolman, B. and R.C. Busby (1987). Discrete Mathematical Structures for Computer Science, 2nd edition. Prentice-Hall, Inc.

Krieger, Hans-Ulrich (1994). Derivation without Lexical Rules,  in C.J Rupp, M. Rosner and R. Johnson (eds), Constraints, Language, and Computation.  Academic Press, 277-313.

Li, C.N. and  S.A. Thompson (1981).  Mandarin Chinese:  A Functional Grammar.  Berkeley:  University of California Press.

Li, Linding (1986).  Xiandai Hanyu Juxing (Sentence Patterns in Contemporary Mandarin), Shangwu Yinshuguan (Commercial Press), Beijing.

Li, Linding (1990).  Xiandai Hanyu Dongci (Verbs in Contemporary Mandarin), Zhongguo Shehui Kexue Chubanshe, Beijing.

Li, Qinghua (1983).  “Tan liheci de tedian he yongfa” (On the characteristics and usages of separable words).  Yuyan Jiaoxue He Yan Jiu (Language Instruction and Research), No.3.

Li, Wei (1996).  Interaction of Syntax and Semantics in Parsing Chinese Transitive Patterns.  Proceedings of International Conference on Chinese Computing (ICCC'96), Singapore.

Li, Wei (1997).  Chart Parsing Chinese Character Strings.  Proceedings of the Ninth North American Conference on Chinese Linguistics (NACCL-9), Victoria, Canada.

Li, Wei (2000). On Chinese parsing without using a separate word segmenter.  Communication of COLIPS 10 (1): 19-68.

Liang, Nanyuan (1987).  CDWS -- A Written Chinese Automatic Word Segmentation System.  Journal of Chinese Information Processing, 1(2): 44-52.

Lieber, R. (1992).  Deconstructing Morphology. Chicago: University of Chicago Press.

Lin, Handa (1983).  “Shime shi ci – xiaoyu ci de bu shi ci” (What is a word – a unit smaller than a word is not a word). Zhongguo Yuwen (Chinese Linguistics), No.34.

Lu, Jianming (1988).  “Mingci-xing ‘laixin’ shi ci haishi cizu” (Nominal laixin: word or word group).  Zhongguo Yuwen (Chinese Linguistics), No. 5.

Lu, Zhiwei (1957).  Hanyu de Goucifa (Chinese Word Formation), Kexue Chubanshe (Science Publishing House)..

Lü, Shuxiang. (1946). “Cong Zhuyu, Binyu de Fenbie Tan Guoyu Juzi de Fenxi” (On Sentence Analysis of Mandarin Chinese from the Angle of the Distinction between Subject and Object),  Kaiming Shudian Er Shi Zhounian Jiannian Wenji (Selected Works to Celebrate the 20th Anniversary of Kaiming Bookstore).

Lü, Shuxinag et al (ed.) (1980).  Xiandai Hanyu Babai Ci (800 Words in Contemporary Mandarin), Shangwu Yinshuguan (Commercial Press), Beijing.

Lü, Shuxiang (1989). “Hanyu Yufa Fenxi Wenti” (Issues on Chinese grammatical analysis),  Lü Shuxiang Zixuanji (Self-selected Works of Shuxiang Lü), Shang Hai Jiaoyu Chubanshe (Shanghai Education Publishing House), Shanghai, 93-180.

Lua, Kim Teng (1994).  Application of Information Theory Binding in Word Segmentation. Computer Processing of Chinese and Oriental Languages 8(1): 115-124.

Lyons, John (1968).  Introduction to Theoretical Linguistics.  Cambridge:  Cambridge University Press.

MUC-7 (1998).  Proceedings of the Seventh Message Understanding Conference (MUC-7).  From http://perso.enst.fr/~monnier/lectures/IE/MUC7/muc_7_toc.html (accessed January 30, 2001).

Pollard, C. and I. Sag (1987).  Information based Syntax and Semantics Vol. 1: Fundamentals.  Centre for the Study of Language  and Information, Stanford University, CA.

Pollard, C. and I. Sag (1994).  Head-Driven Phrase Structure Grammar.  The University of Chicago Press.

Riehemann, Susanne (1993). Word Formation in Lexical Type Hierarchies – A Case Study of bar-Adjectives in German. SfS-Report-02-93, University of Tübingen.

Riehemann, Susanne (1998). Type-based derivational morphology.  Journal of Comparative Germanic Linguistics 2. 49-77.

Sapir, Edward (1921).  Language:  Introduction to the Study of Speech.  NewYork:  Harcourt, Brace, and World.

Selkirk, E. (1982).  The Syntax of Words.  Cambridge:  MIT Press.

Shi, Youwei (1992).  Huhuan Rouxing – Hanyu Yufa Tanyi (A Call for Flexibility – Peculiarities of Chinese Grammar), Hunan Publishing House.

Shieber, S. (1986).  An Introduction to Unification-Based Approaches to Grammar.  Centre for the Study of Language  and Information, Stanford University, CA.

Sproat, R., C. Shih, V. Gale, and N. Chang (1996).  A Stochastic Finite-State Word-Segmentation Algorithm for Chinese.  Computational Linguistics. Vol. 22, No. 3.

Sun, L. and P. Cole (1991).  The effect of morphology on long-distance reflexives.  Journal of Chinese Linguistics 19:1, 42-62.

Sun, M. and B. T’sou (1995).  Ambiguity resolution in Chinese word segmentation.  Proceedings of the 10th Pacific Asia Conference on Language, Information and Computation (PACLIC-95), Hong Kong, 121-126.

Sun, M. and C. Huang (1996).  Word Segmentation and Part-of-Speech Tagging for Unrestricted Chinese Texts, A Tutorial at the 1996 International Conference on Chinese Computing (ICCC96), Singapore.

Thompson, S.A. (1973).  Resultative Verb Compounds in Mandarin Chinese:  A Case of Lexical Rules. Language 49:2, 361-379.

Wang, Li (1955).  ZhongguoYufa Lilun (Chinese Grammatical Theory), Zhonghua Shuju, Shanghai.

Wang, Xiaolong (1989).  Automatic Chinese Word Segmentation, in Word Separating and Mutual Translation of Syllable and Character Strings, Ph.D. Dissertation, Dept. of Computer Science and Engineering, Harbin Institute of Technology.

Webster, J. J. and C-Y Kit. (1992).  Tokenization as the Initial Phase in NLP.  Proceedings of the 14th International Conference on Computational Linguistics (COLING-92).  Nantes, France, 1106-1110.

Wu, A. and Z. Jiang (1998).  Word Segmentation in Sentence Analysis.  Proceedings of the 1998 International Conference on Chinese Information Processing.  Beijing, China, 169-180.

Wu, Dekai (1998).  A Position Statement on Chinese Segmentation.  Presented at the Chinese Language Processing Workshop, University of Pennsylvania. (Current draft at http://www.cs.ust.hk/~dekai/papers/segmentation.html, accessed January 30, 2001).

Wu, M. and K. Su (1993).  Corpus-Based Automatic Compound Extraction with Mutual Information and Relative Frequency Count.  Proceedings of R.O.C. Computational Linguistics Conference (ROCLING) VI, Taiwan, 207-216.

Xue, Ping (1991).  Syntactic Dependencies in Chinese and their Theoretical Implications.  Ph.D. dissertation, University of Victoria, Canada.

Yao, T., G. Zhang, and Y. Wu (1990).  A Rule-Based Chinese Automatic Segmentation System.  Journal of Chinese Information Processing 4(1): 37-43.

Yeh, C-L. and H-J. Lee (1991).  Rule-Based Word Identification For Mandarin Chinese Sentences -- A Unification Approach.  Computer Processing of Chinese and Oriental Languages. Vol. 5, No. 2, 97-118.

Yu, Shihong et al (1997).  Description of the Kent Ridge Digital Labs System Used for MUC-7.  Proceedings of MUC-7.  From http://perso.enst.fr/~monnier/lectures/IE/MUC7/muc_7_toc.html (accessed January 30, 2001).

Zhang, J., Z. Chen and S. Chen (1991).  A Method of Word Identification for Chinese by Constraint Satisfaction and Statistical Optimization Techniques.  Proceedings of R.O.C. Computational Linguistics Conference (ROCLING) IV, Taiwan, 147-165.

Zhang, Shoukang (1957).  “Lüetan hanyu goucifa” (A brief discussion on Chinese word formation)  Xiandai Hanyu Cankao Ziliao (Reference for Comtemporary Chinese),  ed. by Yushu Hu (1981),  Shanghai:  Shanghai Jiaoyu Chubanshe (Shanghai Education Publishing Company), 241-256.

Zhao, S. and B. Zhang (1996).  “Liheci de queding yu liheci de xingzhi” (Determination and characteristics of separable words).  Yuyan Jiaoxue he Yanjiu (Language Instruction and Research), No.1, 40-51.

Zhu, Dexi (1985).  Yufa Wenda (Questions and Answers on Chinese Grammar).  Shangwu Yinshuguan (Commercial Press), Beijing.

Zwicky, A.M. (1987). Slashes in the Passive.  Linguistics 25, 639-669.

Zwicky, A.M. (1989).  Idioms and Constructions.  Eastern States Conference on Linguistics 5, 547-558.

 

[Related]

PhD Thesis: Morpho-syntactic Interface in CPSG (cover page)

PhD Thesis: Chapter I Introduction

PhD Thesis: Chapter II Role of Grammar

PhD Thesis: Chapter III Design of CPSG95

PhD Thesis: Chapter IV Defining the Chinese Word

PhD Thesis: Chapter V Chinese Separable Verbs

PhD Thesis: Chapter VI Morpho-syntactic Interface Involving Derivation

PhD Thesis: Chapter VII Concluding Remarks

Overview of Natural Language Processing

Dr. Wei Li’s English Blog on NLP

PhD Thesis: Chapter VI Morpho-syntactic Interface Involving Derivation

6.0. Introduction

This chapter studies some challenging problems of Chinese derivation and its interface with syntax.  These problems have been a challenge to existing word segmenters; they are also long-standing problems for Chinese grammar research.

It is observed that a good number of signs have become more and more like affixes as the Chinese language develops.  Typical, indisputable examples include signs like the nominalizer 性 ‑xing (-ness) and the prefix 第 di- (-th).  While few people doubt the existence of affixes in Contemporary Chinese, there is no general agreement on the exact number of Chinese affixes, due to a considerable number of borderline cases often referred to as ‘quasi-affixes’ (类语缀 lei yu-zhui).[1]  It will be argued that the quasi-affixes belong to morphology and are structurally not different from other affixes.  The major difference between ‘quasi-affixes’ and the few generally honored (‘genuine’) affixes lies mainly in the following aspect.  The former retain some ‘solid’ meaning while the latter are more functionalized.  However, this does not prevent CPSG95 from providing a proper treatment of quasi-affixes in the same way as it handles other affixes.  It will be shown that the difference in semantics between affixes or quasi-affixes can be accommodated fairly easily in the CPSG95 lexicon.

Based on the examination of the common property of Chinese affixes and quasi-affixes, a general approach to Chinese derivation is proposed.  This approach not only enables us to handle quasi-affix phenomena, but is also flexible enough to provide an adequate treatment of a special problem in Chinese derivation, namely zhe-suffixation.  The affix status of 者 -zhe (-er) is generally acknowledged (classified as suffix in the authoritative books like Lü et al 1980):  it attaches to a verb sign and produces a word.  The peculiar aspect of this suffix is that the verb stem which it attaches to can be syntactically expanded.  In fact, there is significant amount of evidence for the argument that this suffix expects a VP as its stem (see 6.5 for evidence).   Since a VP is only formed in syntax and derivation is within the domain of morphology, this phenomenon presents a highly challenging case on how morphology should be interfaced properly to syntax.  The solution which is offered in CPSG95 demonstrates the power of designing morphology and syntax in an integrated grammar formalism.  In contrast, in any system which enforces sequential processing of derivation morphology before syntax - most traditional systems assume this, this is an unsolvable problem.  There does not seem to be a way of enabling partial output of syntactic analysis (i.e. VP) to feed back to some derivation rule in the preprocessing stage.

In Section 6.1, the general approach to Chinese derivation is proposed first.  Following this proposal, prefixation is illustrated in 6.2 and suffixation in 6.3.  Section 6.4 shows that this general approach to derivation applies equally well to the 'quasi-affix' phenomena.  Section 6.5 investigates the suffixation of -zhe (-er).  The analysis is based on the argument that this suffixation involves the combination VP+-zhe.  The specific solution following the CPSG95 general approach will be presented based on this analysis.

6.1. General Approach to Derivation

This section examines the property of Chinese affixes and proposes a corresponding general approach to Chinese derivation.  This serves as the basis for the specific solutions to be presented in the remaining sections to various problems in Chinese derivation.

It is fairly easy to observe that in Chinese derivation it is the affix which selects the stem, not the other way round.  For example, the suffix 性 -xing (‑ness) expects an adjective to produce an (abstract) noun.   Based on the examination of the behavior of a variety of Chinese affixes or quasi-affixes, the following generalization has been reached.  That is, an affix lexically expects a sign of category x, with possible additional constraints, to form a derived word of category y.   This generalization is believed to capture the common property shared by Chinese affixes/quasi-affixes.  It seems to account for all Chinese derivational data, including typical affixation, quasi-affixation (see 6.4) and the special case of zhe-suffixation (see 6.5).  So far no counter evidence has been found to challenge this generalization.

The observation and the generalization above support the argument that in a grammar which relies on lexicalized expectation feature structures to drive the building of structures, affixes, not the stems, should be selecting heads of the morphological structures.[2]   Leaving aside the non-productive affixation,[3] the general strategy to Chinese productive derivation is proposed as follows.  In the lexicon, the affix as head of derivative is encoded with the following derivation information:  (i) what type of stem (constraints) it expects;  (ii) where to look for the expected stem, on its right or left;  (iii) what type of (derived) word it leads to (category, semantics, etc.).  Based on this lexical information, CPSG95 has two PS rules in the general grammar for derivation:  one for prefixation, one for suffixation.[4]  These rules ensure that all the constraints be observed before an affix and a stem are combined.  They also determine that the output of derivation, i.e. the mother sign, be a word.

Along this line, the key to a lexicalized treatment of Chinese derivation is to determine the structural and semantic property of the derivative and to impose proper constraints on the expected stem.  The constraints on the expected stem can be lexically specified in the morphological expectation feature [PREFIXING] or [SUFFIXING] of the affix.  The property (category, syntactic expectation, semantics, etc.) of the derivative can also be encoded directly in the lexical entry of the affix, seen as the head of a derivational structure in the CPSG95 analysis.  This property information, as part of head features, will be percolated up when the derivation rules are applied.

In the remaining part of this chapter, it will be demonstrated how this proposed general approach is applied to each specific derivation problem.

6.2. Prefixation

The purpose of this section is to present the CPSG95 solution to Chinese prefixation.  This is done by formulating a sample lexical entry for the ordinal prefix 第 di- (-th) in CPSG95.  It will be shown how the lexical information drives the prefix rule in the general grammar for the derivational combination.

Thanks to the productivity of the prefix 第 di- (-th), the ordinal numeral is always a derived word from the cardinal numeral via the following rule, informally formulated in (6-1).

(6-1.) 第 di- + cardinal numeral --> ordinal numeral

第22条军规
di-      22      tiao    jun-gui
-th     22      CLA   military-rule
the 22-nd military rule (Catch-22)

第八个是铜像
di-      ba      ge      shi     tong-xiang
-th     eight  CLA   be      bronze-statue
The eighth is the bronze statue.

The basic function of the Chinese numeral, whether cardinal or ordinal,  is to combine with a classifier, as shown in the sample sentences above.

To capture this phenomenon, CPSG95 defines two subtypes for the category numeral [num], namely the [cardinal_num] and [ordinal_num].   The lexical entries of the prefix 第 di‑ (‑th) and the cardinal numeral 五 wu (five) are formulated in (6-2) and (6-3).  The prefix encodes the lexical expectation for the derivation 第 di- + [cardinal_num] ‑‑> [ordinal_num] plus the semantic composition of the combination.  Note that the constraint @numeral inherits all common property specified for the numeral macro.

th6263

As indicated before, prefixation in CPSG95 is handled by the Prefix PS Rule based on the lexical specification.  More specifically, it is driven by the lexical expectation encoded in [PREFIXING].  The prefix rule is formulated in (6-4).

th64

Like all PS rules in CPSG95, whenever two adjacent signs satisfy all the constraints, this rule takes effect in combining them into a higher level sign in parsing.  For example, the prefix 第 di- (-th) and the sign 五 wu (five) will be combined into the sign as shown in (6-5).

th65

The combination of 第五 di+wu in (6-5) demonstrates how the morphological structure is built in the CPSG95 approach to Chinese prefixation.

6.3. Suffixation

Like prefixation, the Suffix PS Rule for suffixation is driven by the lexically encoded expectation in [SUFFIXING].  Parallel to the Prefix PS Rule, the suffix rule is formulated in (6-6).

th66

With this PS rule in hand, all that is needed is to capture the individual derivational constraint in the lexical entries of the suffixes at issue.  For example, the suffix 性 -xing (-ness) changes an adjective or verb into an abstract noun:  A/V + ‑xing  ‑‑> N.  This information is contained in the formulation of the suffix 性 –xing (-ness) in the CPSG95 lexicon, as shown in (6-7).

th67

Note that abstract nouns are uncountable, hence the call to the uncountable_noun macro to inherit the common property of uncountable nouns.[5]

Suppose the suffix 性 -xing (-ness) appears immediately after the adjective 实用 shi-yong (practical) formulated in (6-8), the suffix PS rule will combine them into a noun, as  shown in (6-9).

th6869

The combination of 实用性 shi-yong+xing in (6-9) demonstrates how the morphological structure is built in the CPSG95 approach to Chinese suffixation.

6.4. Quasi-affixes

The purpose of this section is to propose an adequate treatment of the quasi-affix phenomena in Chinese.  This is an area which has not received enough investigation in the field of Chinese NLP.  Few Chinese NLP systems demonstrate where and how to handle these quasi-affixes.

To achieve the purpose, typical examples of ‘quasi-affixes’ are presented and compared with some ‘genuine’ affixes.  The comparison highlights the general property shared by both 'quasi-affixes' and other affixes and also shows their differences.  Based on this study, it is found to be a feasible proposal to treat quasi-affixes within the derivation morphology of CPSG95.  The proposed solution will be presented by demonstrating how a typical quasi-affix is represented in CPSG95 and how the general affix rules can work with the lexical entries of 'quasi-affixes' as well.

The tables in (6-10) and (6-11) list some representative quasi-affixes in Chinese.

(6-10.)         Table for sample quasi-prefixes

prefixation examples
lei (quasi-)+N --> N 类前缀 lei-[qian-zhui]: quasi-[pre-fix]
前缀 qian (before, pre-, former-) zhui (...)
ban (semi-)+N --> N 半文盲 ban-[wen-mang]: semi-illiterate
文盲 wen (written-language), mang (blind)
dan (mono-)+N --> N 单音节 dan-[yin-jie]: mono-syllable
音节 yin (sound), jie (segment)
shuang (bi-)+N --> N 双音节 shuang-[yin-jie]: bi-syllable
duo (multi-)+N --> N 多音节 duo-[yin-jie]: multi-syllable
fei (non-)+N/A --> A 非谓 fei-wei: non-predicate
非正式 fei-[zheng-shi]: non-official
xiang (each other)+Vt (mono-syllabic) --> Vi 相爱 xiang-ai: love each other
zi (self-)+Vt --> Vi 自爱 zi-ai: self-love zi-xue-xi: self-learning
qian (former, ex-) + N
--> N
前夫人 qian-[fu-ren]: ex-wife
前总统 qian-[zong-tong]: former president

(6-11.)         Table for sample quasi-suffixes

suffixation Examples
N + shi (style) --> N 美国式 [mei-guo]-shi: American-style
NUM/N + xing (model)
--> N
1980型 1980-xing: 1980 model;
IV型 IV-xing: Model IV
A/V + (rate) --> N 准确率 [zhun-que]-lü: (percentage of) precision
NUM + liu (class) --> A 一流 yi-liu: first class
三流 san-liu: third class
N + mang ('blind', person who has little knowledge of) --> N 法盲 fa-mang:
person who has no knowledge of law
计算机盲 [ji-suan-ji]-mang: computer-layman

Compare the above quasi-affixes with the few widely acknowledged affixes like 性 -xing (-ness) and 第 di- (-th), it is fairly easy to observe that the property as generalized in Section 6.1 is shared by both affixes and quasi-affixes.  That is, in all cases of the combination, the affix or quasi-affix expects a sign of category x, with possible additional constraints, either on the right or on the left to form a derived word of category y (y may be equal to x).  For example, the quasi-prefix 自 zi- (self-) expects a transitive verb to produce an intransitive verb, etc.  This property supports the following two points of view:  (i) the affix or quasi-affix is the selecting head of the combination;  (ii) both types of combination (affixation) should be properly contained in morphology since the output is always a word (derivative).

In terms of difference, it is observed that there are different degrees of the functionalization of the meaning between quasi-affixes and other affixes.  For example, the nominalizer 性 -xing (‑ness) seems to be semantically more functionalized than the quasi-suffix 盲 -mang (blind-man, person who has little knowledge of).  In the case of 性 -xing (-ness), there is believed to be little semantic contribution from the affix.  But in cases of affixation by quasi-affixes, the semantic contribution of the affixes is non-trivial, and it must be ensured that proper semantics be built based on semantic compositionality of both the stem and the affix.

Except for the different degrees of semantic abstractness, there is no essential grammatical difference observed between quasi-affixes and the few widely accepted affixes.  As the semantic variation can be easily accommodated in the lexicon, nothing needs to be changed in the  general approach to Chinese derivation as described before.  The text below demonstrates how the quasi-affix phenomena are handled in CPSG95, using a sample quasi-affix to show the derivation.

The quasi-prefix to examine is 相 xiang- (each other).  It is used before a mono-syllabic transitive verb, making it an intransitive verb: 相 xiang- + Vt (monosyllabic) ‑‑> Vi.  More precisely, the syntactic object of the transitive verb is morphologically satisfied so that the derivative becomes an intransitive verb.

Unlike the original verb, the verb derived via xiang-prefixation requires a plural subject, as shown in (6-12).  This is a linguistically interesting phenomenon.  In a sense, it is a version of subject-predicate agreement in Chinese.

(6-12.) (a)    他们相爱过。
ta-men         xiang-         ai       guo
they            each-other   love    GUO
They used to love each other.

(b)      他爱过。
ta       ai       guo
he      love    GUO.
He used to love (someone).

(b) *   他相爱过。
ta       xiang-         ai       guo
he      each-other   love    GUO.

This number agreement can help decode the plural semantics of the subject noun as shown in the first sentence (6-13a) in the following group.  Sentence (6-13a) illustrates a common, number-underspecified case where the NP has no plural marker.  This contrasts with (6-13b) which includes a plural marker 们 men (-s), and with (6-13c) which resorts to the use of a numeral-classifier construction.

(6-13.) (a)     孩子相爱了。
hai-zi           xiang-         ai       le
child           each-other   love    LE
The children have fallen in love with each other.

(b)      孩子们相爱了。
hai-zi men   xiang-         ai       le
child  PLU   each-other   love    LE
The children have fallen in love with each other.

(c)      两个孩子相爱了。
liang ge      hai-zi           xiang-         ai       le
two    CLA   child           each-other   love    LE
The two children have fallen in love with each other.

Following the practice for number agreement in HPSG, the agreement can be captured by enforcing an additional plural constraint on the subject expectation [SUBJ | SIGN | CONTENT | INDEX | NUMBER plural], as shown in the formulation of the lexical entry for 相 xiang- (each other) in (6-14) below.

th614

As shown above, the affixation also necessitates corresponding modification of the semantics in the argument structure:  the first argument is equal to the second via index [2].[6]  Note that the notation [ ], or more accurately, the most general feature structure, is used as a place holder.  For example, HANZI <[ ]> stands for the constraint of a mono-hanzi sign.  Another thing worth noticing is that the derivative requires that a subject must appear before it.  In other words, the subject expectation becomes obligatory.  This is based on the fact that this derived verb cannot stand by itself in syntax, unlike most original verbs in Chinese, say 爱 ai (love), whose subject expectation is optional.

With the lexical entries for the quasi-affixes taking care of the differences in the building of semantics, there is no need for any modification of the CPSG95 PS rules.  For example, the prefix 相 xiang- (each other) and the verb 爱 ai (love) formulated in (6-15) will be combined into the derivative 相爱 xiang-ai (love each other) shown in (6-16) via the Prefix PS Rule.

th615616

In summary, the proposed approach to Chinese derivation is effective in handling quasi-affixes as well.  The general grammar rules for derivation remain unchanged while lexical constraints are accommodated in the lexicon.  This demonstrates the advantages of the lexicalized design for grammar development.

6.5. Suffix 者 zhe (-er)

This section analyzes zhe-suffixation, a highly challenging  case at the interface between morphology and syntax.  This is believed to be an unsolvable problem as long as a system is based on the sequential processing of derivation morphology and syntax.  The solution to be proposed in this section is based on the argument that this suffixation is a combination of VP+zhe.

The suffix 者 zhe (-er, person) is a very productive bound morpheme.   It is often compared to the English suffix ‑er or ‑or, as seen in the pairs in (6-17).

(6-17.)
工作 gong-zuo (work)      工作者 [gong-zuo]-zhe (work‑er)
劳动 lao-dong (labor)       劳动者 [lao-dong]-zhe (labor-er)
学习 xue-xi (learn)           学习者 [xue-xi]-zhe (learn-er);.

But 者 ‑zhe is not an ordinary suffix;  it belongs to the category of so-called ‘phrasal affix’,[7] with very different characteristics than the English counterpart.  Although the output of the zhe-suffixation is a word, the input is a VP, not a lexical V.  In other words, it combines with a VP and produces a lexical N:  VP+zhe --> N.   The arguments to be presented below support this analysis.

The first thing is to demonstrate the word status of zhe‑suffixation.  This is fairly straightforward:  there are no observed facts to show that the zhe-derivative is different from other lexical nouns in the syntactic distribution.  For example, like other lexical nouns, the derivative can combine with an optional classifier construction to form a noun phrase.   Compare the following pairs of examples in (6-18) and (6-19).

(6-18.) (a)    两名违反这项规定者
liang  ming [[wei-fan      zhe    xiang gui-ding]     -zhe]
two    CLA   violate         this    CLA   regulation   -er
two persons who have violated this regulation

(b)    两名学生
liang  ming xue-sheng
two    CLA   student
two students

(6-19.) (a)    他是一位优秀工作者
ta       shi     yi       wei    you-xiu        [[gong-zuo]   -zhe]
he      be      one    CLA   excellent      work           -er
He is an excellent worker.

(b)    他是一位优秀工人。
ta       shi     yi       wei    you-xiu        gong-ren
he      be      one    CLA   excellent      worker
He is an excellent worker.

The next thing is to demonstrate the phrasal nature of the ‘stem’.[8]   The stem is judged as a VP because it can be freely expanded by syntactical complements or modifiers without changing the morphological relationship between the stem and the suffix, as shown in (6‑20) below.  (6-20a) involves a modifier (努力 nu-li) before the head verb.  The verb stem in (6-20b) and (6-20c) is a transitive VP consisting of a verb and an NP object.

(6-20.) (a)    努力工作者
[nu-li  gong-zuo]     -zhe
hard  work           ‑er
hard-worker, person who works hard

(b)      学习鲁迅者
[xue-xi         Lu Xun]       -zhe
learn           Lu Xun       -er
person who is learning from Lu Xun

(c)      违反这项规定者
[wei-fan       zhe    xiang           gui-ding]      -zhe
violate         this    CLA   regulation   -er
person who violates this rule

More examples with the head verb 雇 gu (employ) are given in (6-21), with the last two expressions involving passivized VP.

(6-21.)(a)    雇者
gu-zhe
employ-er

(b)      雇人者
[gu               ren]             -zhe
employ        person         -er
those who employ people, employer/recruiter

(c)      被雇者
[bei gu]                  -zhe
[be-employed]       -er
employee

(d)      被人雇者
[bei    ren              gu]               -zhe
by      person         employ        -er
those who are employed by (other) people

In fact, the stem VP is semantically equivalent to a relative clause.   A Chinese relative clause is normally expressed in the form of a DE-phrase: VP+de+N (Xue 1991).  In other words, 者 ‑zhe embodies functions of two signs, an N (‘person’, by default) and a relative clause introducer de, something like English one that + VP (or person who + VP).[9]  Compare the two examples in (6-22) and (6-23) with the same meaning - the expression in (6-23) is more colloquial than the first in (6-22) which uses the suffix 者‑zhe.

(6-22.) 违反规定者,处以罚款。
wei-fan        gui-ding       zhe,            chu-yi                   fa-kuan
violate         regulation   one that      punish-by   fine

Those who violate the regulations will be punished by fines.

(6-23.) 违反规定的人,处以罚款。
wei-fan        gui-ding       de      ren,             chu-yi          fa-kuan
violate         regulation   DE     person         punish-by   fine
Those who violate the regulations will be punished by fines.

On further examination, it is found that VPs with attached aspect markers combine with the suffix 者 -zhe with difficulty, as seen in the following examples.

(6-24.) (a)    违反规定者
wei-fan        gui-ding       zhe
violate         regulation   -er
Those who violate the regulations

(b) ?  违反了规定者
wei-fan        le       gui-ding       zhe
violate         LE     regulation   one that

This means that some further constraint may be necessary in order to prevent the grammar from producing strings like (6-24b).  If CPSG95 is only used for parsing, such a constraint is not absolutely necessary because, in normal Chinese text, such input is almost never seen.  Since CPSG95 is intended to be procedure-neutral, for use in both parsing and generation, the further constraint is desirable.

This constraint is in fact not an isolated phenomenon in Chinese grammar.  In syntax, the constraint is commonly required when the VP is not in the predicate position.[10]  For example, when a verb, say 喜欢 xi-huan (like), or a preposition, say 为了 wei-le (in order to), subcategorizes for a VP as a complement, it actually expects a VP with no aspect markers attached.   The following pair of sentences demonstrates this point.

(6-25.) (a)    我喜欢打篮球。
wo     xi-huan       da      lan-qiu.
I         like              play   basket-ball
I like playing basket-ball.

(b) * 我喜欢打了篮球。
wo     xi-huan       da      le       lan-qiu
I         like              play   LE     basket-ball

To accommodate such common constraint requirement in both Chinese morphology and syntax, a binary feature [FINITE] is designed for Chinese verbs in CPSG95.  In the lexicon, this feature is under-specified for each Chinese verb, i.e. [FINITE bin].  When an aspect marker 了着过 le/zhe/guo combines with the verb, this feature is unified to be [FINITE plus].  We can then enforce the required constraint [FINITE minus] in the morphological expectation or syntactic expectation to prevent aspected VP from appearing in a position expecting a non-predicate un-aspected  VP.

Based on the above analysis, the lexical entry of the suffix 者 –zhe is formulated in (6-26).  Note the notation for the macro with parameter (placed in parentheses) @common_noun(名|位|个).  This macro represents the following information.  The derivative is like any other common noun, it inherits the common property;  it can combine with an optional classifier construction using the classifier 名 ming or 位  wei or 个 ge.[11]

th626

As seen, the VP expectation is realized by using the macro constraint @vp.  The semantics of the derivative is [np_semantics], an instance of -er with restriction from the event of VP, represented by [2].  The index [1] ensures that whatever is expected as a subject by the VP, which has no chances to be satisfied syntactically in this case, is semantically identical to this noun.[12]  In other words, this derived noun semantically fills an argument slot held by the subject in the VP semantics [v_content].  In the active case, say, 雇人者 [gu ren]–zhe (‘person who employs people’), the subject is the first argument, i.e. the index of this noun is the logical subject of employ.  However, when the VP is in passive, say, 被人雇者 [bei ren gu]‑zhe (‘person who is employed by other people’), the subject expected by the VP fills the second argument, i.e. the noun in this case is the logical object of the VP.  It is believed that this is the desired result for the semantic composition of zhe-derivation.

With the lexical expectation of the suffix as the basis, the general Suffix PS Rule is ready to work.  Remember that there is nothing restricting the input stem to the derivation in either of the derivation rules, formulated in (6-4) and (6-6) before.  In CPSG95, this is not considered part of the general grammar but rather a lexical property of the head affix.  It is up to the affix to decide what constraints such as category, wordhood status, semantic constraint, etc., to impose on the expected stem to produce a derivative.  In most cases of derivation, the input status of the stem is a word, but now we have an intricate case where the suffix zhe (-er) expects a verb phrase for derivation.  The general property for all cases of derivation is that regardless of the input, the output of derivation (as well as any other types of morphology) is always a word.

Before demonstrating by examples how zhe-derivation is implemented, there is a need to address the configurational constraints of CPSG95.  This is an important factor in realizing the flexible interaction between morphology and syntax as required in this case.

In all HPSG-style grammars, some type of configurational constraint is in place to ensure the proper order of rule application.  A typical constraint is that the subject rule should apply after the object rule.  This is implemented in CPSG95 by imposing the constraint in the subject PS rule that the head daughter must be a phrase and by imposing the constraint in the object PS rule that the subject of the head daughter may not be satisfied.[13]

Since derivation morphology and syntax are designed in the same framework in CPSG95, constraints are called for to ensure the ordering of rule application between morphological PS rules and syntactic PS rules as well.  In general, morphological rules apply before syntactic rules.  However, if this constraint is made absolute, to the extent that that all morphological rules must apply before all syntactic rules, we in effect make morphology and syntax two independent, successive modules, just like the case for traditional systems.  The grammar will then lose the power of flexible interaction between morphology and syntax and cannot handle cases like zhe-derivation.  However, this is not a problem in CPSG95.

The proposed constraint regulating the rule application order between morphological PS rules and syntactic PS rules is as follows.  Only when a sign has both obligatory morphological expectation and syntactic expectation will CPSG95 have constraints ensuring that the morphological rule apply first.  For example, as formulated in (6-14) before, the sign 相 xiang- (each other) has both morphological expectation in [PREFIXING] as a bound morpheme and syntactic expectation for the subject in [SUBJ] as (head of) derivative.  If the input string is 他们相爱  ta-men (they) xiang- (each other) ai (love), the prefix rule will first combine 相 xiang- (each other) and the stem 爱 ai (love) before the subject rule can apply.  The result is the expected structure embodying the results of both morphological analysis and syntactic analysis, [ta-men [xiang- ai]].  This constraint is implemented by specifying in all syntactic PS rules that the head daughter cannot have obligatory morphological expectation yet to be satisfied.  It effectively prevents a bound morpheme from being used as a constituent in syntax.   It should be emphasized that this constraint in the general grammar does not prohibit a bound morpheme from combining with any types of sign;  such constraints are only lexically decided in the expectation feature of the affix.

The following text shows step by step the CPSG95 solution to the problem of zhe-derivation.  The chosen example is the derivation for the derived noun 违法规定者 [[wei-fan gui-ding]-zhe]  ‘persons violating (the) regulation’.  The lexical sign of the suffix 者 -zhe (-er) has already been formulated in (6-26) before.  The words 违反 wei-fan (violate) and 规定 gui-ding (regulation) in the CPSG95 lexicon are shown in (6-27) and (6-28) respectively.

th627628

Note that all common nouns, specified as @common_noun, in the lexicon have the following INDEX features [PERSON 3, NUMBER number], i.e. third person with unspecified number.  As for the feature [GENDER], it is encoded in the noun itself with one of the following [male], [female], [have_gender], [no_gender] or unspecified as [gender].   The corresponding sort hierarchy is: [gender] consists of sub-sorts [no_gender] and [have_gender];  and [have_gender] is sub-typed into [male] and [female].  Of course, 规定 gui-ding (regulation) is lexically specified as [GENDER no_gender].

The following is the VP built by the object PS rule in the CPSG95 syntax.  As seen, the building of the semantics follows the practice in HPSG, with the argument slots filled by the [INDEX] feature of the subject and object.  In this VP case, [ARG2] has been realized.

th629
The VP result in (6-29) and the suffix 者 –zhe will combine into the expected derived noun via the Suffix PS Rule, as shown in (6-30).

th630

To summarize, it is the integrated model of derivational morphology and syntax in CPSG95 that makes the above analysis implementable.  Without the integration, there is no way that a suffix is allowed to expect a phrasal stem.[14]  The lexicalist approach adopted in CPSG95 facilitates the capturing of the individual feature of the phrase expectation for the few individual affixes like 者 -zhe. This enables the general PS rules for derivation in CPSG95 to be applicable to both typical cases of affixation and special cases of affixation.

6.6. Summary

This chapter has investigated some representative phenomena of Chinese derivation and their interface to syntax.  The solutions to these problems have been presented based on the arguments for the analysis.

The key to a lexicalized treatment of Chinese derivation is to determine the structural and semantic property of the derivative and to impose proper constraints on the expected stem.  The constraints on the expected stem are lexically specified in the corresponding morphological expectation feature structure of the affix.  The property of the derivative is also lexically encoded in the affix, seen as head of derivational structure in the CPSG95 analysis.  This property information will be percolated up when the derivation rules are applied.  These rules ensure that the output of derivation is a word.  It has been shown that this approach applies equally well to derivation via ‘quasi-affixes’ and the tough case of zhe-suffixation as well.

 

------------------------------------

[1] Some linguists (e.g. Li and Thompson 1981) hold the view that Chinese has only a few affixes;  others (e.g. Chao 1968) believe that the inventory of Chinese affixes should be extended to include quasi-affixes.  Interestingly, the sign lei (quasi-, original sense ‘class’) itself is a quasi-prefix in Chinese.  Phenomena similar to Chinese quasi-affixes, called ‘semi-affixes’ or ‘Affixoide’, also exist in German morphology (Riehemann 1998).

[2] This is similar to the practice in many grammars, including HPSG, that a functional sign preposition is the selecting head of the corresponding syntactic structure, namely Prepositional Phrase.

[3] Those affixes which are not or no longer productive, e.g. lao‑ (original meaning ‘old’) in lao‑hu (tiger) and lao‑shu (mouse),  are not a problem.  The corresponding derived words are simply listed in the CPSG95 lexicon.

[4] The CPSG95 phrase-structural approach to Chinese productive derivation was inspired by the implementation in HPSG of a word-syntactic approach in Krieger (1994).  Similar practice is also seen in Selkirk (1982), Riehemann (1993) and Kathol (1999) in an effort to explore alternative approaches than the lexical rule approach to morphology.

[5] The major common property is reflected in two aspects, formulated in the macro definition of uncountable_noun in CPSG95.  First, there is value setting for the [NUMBER] feature, i.e. [CONTENT|INDEX|NUMBER no_number].  The CPSG95 sort hierarchy for the type [number] is defined as {a_number, no_number} where [a_number] is further sub-typed into {singular, plural}.  [NUMBER no_number] applies to uncountable nouns while [NUMBER a_number] is used for countable noun where the plurality is yet to be decided (i.e. under-specified for plurality).  Second, based on the syntactic difference between Chinese countable nouns and uncountable nouns, the classifier expected by uncountable nouns is exclusively zhong (kind/sort of).  That is, uncountable nouns may only combine with a preceding classifier construction using the classifier zhong.

[6] For time being, the subtle difference in semantics between pairs like We love ourselves and We love each other is not represented in the content.  It requires a more elaborate system of semantics to reflect the nuance.  The elaboration of semantics is left for future research.

[7] Some linguists (e.g. Z. Lu 1957; Lü et al 1980; Lü 1989; Dai 1993) have briefly introduced the notion of ‘phrasal affix’ in Chinese.  Lü further indicates that these ‘phrasal affixes’ are a distinctive characteristic of the Chinese grammar.

[8] The English possessive morpheme ‘s is arguably a suffix which expects an NP instead of a lexical noun as its stem:  NP + -’s.  Unlike VP + -zhe, the result of this NP + -‘s combination is generally regarded as a phrase, not a word.  In this sense, ‘s seems to be closer to a functional word, similar to a preposition or postposition, than to a suffix.

[9] Chinese zhe-suffixation is somewhat like the English phenomenon of what-clause (in ‘what he likes is not what interests her’). ‘What’ in this use also embodies functions of two signs that which. But the English what-clause functions as an NP, but VP+zhe forms a lexical N.

[10] It is generally agreed in the circle of Chinese grammar research that Chinese predicate (or finite) verbs have aspect distinction, using or not using aspect markers.  This is in contrast to English where both finite and non-finite verbs have aspect distinction but only finite verbs are tensed.

[11] It is generally agreed that each Chinese common noun may only combine with a classifier construction using a specific set of classifiers.  This classifier specification is generally regarded as lexical, idiosyncratic information of nouns (Lü et al 1980).  Using the macro with the classifier parameter follows this general idea.  It is worth noticing that the lexical formulation for -zhe (-er) in CPSG95 does not rely on any specific NP analysis chosen in syntax, except that the classifier specification should be placed under the entry for nouns (or derived nouns).

[12] The proposal in building the semantics for the zhe-derivative is based on ideas similar to the assumption adopted for the complement control in HPSG that ‘the fundamental mechanism of control was coindexing between the unexpressed subject of an unsaturated complement and its controler’ (Pollard and Sag 1994:282).

[13] If the object expectation is obligatory, this constraint ensures the priority of the object rule over the subject rule in application, building the desirable structure [S [V O]] instead of [[S V] O].  This is because, a verb with obligatory object yet to be satisfied is by definition not a phrase.  If the object expectation is optional, the order of rule application is still in effect although the lexical V in this scenario does not violate the phrase definition.  There are two cases for this situation.  In case one, the object O happens to occur in the input string.  The subject PS rule will tentatively combine S and V via the subject rule, but it can go no further.  This is because the object rule cannot apply after the subject rule, due to the constraint in the object rule that the head cannot have a satisfied subject.  The successful parse will only build the expected structure [S [V O]].  In case two, the object O does not appear in the input string.  Then the tentative combination [S V] built by the subject rule becomes the final parse.

[14] For example, if the lexical rule approach were adopted for derivation, this problem could not be solved.

 

[Related]

PhD Thesis: Morpho-syntactic Interface in CPSG (cover page)

PhD Thesis: Chapter I Introduction

PhD Thesis: Chapter II Role of Grammar

PhD Thesis: Chapter III Design of CPSG95

PhD Thesis: Chapter IV Defining the Chinese Word

PhD Thesis: Chapter V Chinese Separable Verbs

PhD Thesis: Chapter VI Morpho-syntactic Interface Involving Derivation

PhD Thesis: Chapter VII Concluding Remarks

Overview of Natural Language Processing

Dr. Wei Li’s English Blog on NLP

 

PhD Thesis: Chapter V Chinese Separable Verbs

 

5.0. Introduction

This chapter investigates the phenomena usually referred to as separable verbs (离合动词 lihe dongci) in the form V+X.  Separable verbs constitute a significant portion of Chinese verb vocabulary.[1]  These idiomatic combinations seem to show dual status (Z. Lu 1957; L. Li 1990).  When V+X is not separated, it is like an ordinary verb.   When V is separated from X, it seems to be more like a phrasal combination.  The co-existence of both the separated use and contiguous use for these constructions is recognized as a long-standing problem at the interface of Chinese morphology and syntax (L. Wang 1955;  Z. Lu 1957; Chao 1968; Lü 1989; Lin 1983;  Q. Li 1983; L. Li 1990; Shi 1992; Dai 1993; Zhao and Zhang 1996).

Some linguists (e.g. L. Li 1990; Zhao and Zhang 1996) have made efforts to classify different types of separable verbs and demonstrated different linguistic facts about these types.  There are two major types of separable verbs:  V+N idioms with the verb-object relation and V+A/V idioms with the verb-modifier relation - when X is A or non-conjunctive V.[2]

The V+N idiom is a typical case which demonstrates the mismatch between a vocabulary word and grammar word.  There have been three different views on whether V+N idioms are words or phrases in Chinese grammar.

Given the fact that the V and the N can be separated in usage, the most popular view (e.g. Z. Lu 1957; L. Li 1990; Shi 1992) is that they are words when V+N are contiguous and they are phrases otherwise.  This analysis fails to account for the link between the separated use and the contiguous use of the idioms.  In terms of the type of V+N idioms like 洗澡 xi zao (wash-bath: take a bath), this analysis also fails to explain why a different structural analysis should be given to this type of contiguous V+N idioms listed in the lexicon than the analysis to the also contiguous but non-listable combination of V and N (e.g. 洗碗 xi wan 'wash dishes').[3]  As will be shown in Section 5.1, the structural distribution for this type of V+N idioms and the distribution for the corresponding non-listable combinations are identical.

Other grammarians argue that V+N idioms are not phrases (Lin 1983;  Q. Li 1983; Zhao and Zhang 1996).  They insist that they are words, or a special type of words.  This argument cannot explain the demonstrated variety of separated uses.

There are scholars (e.g. Lü 1989; Dai 1993) who indicate that idioms like 洗澡 xi zao are phrases.  Their judgment is based on their observation of the linguistic variations demonstrated by such idioms.  But they have not given detailed formal analyses which account for the difference between these V+N idioms and the non-listable V+NP constructions in the semantic compositionality.  That seems to be the major reason why this insightful argument has not convinced people with different views.

As for V+A/V idioms, Lü (1989) offers a theory that these idioms are words and the insertable signs between V and A/V are Chinese infixes.  This is an insightful hypothesis.  But as in the case of the analyses proposed for V+N idioms, no formal solutions have been proposed based on the analyses in the context of phrase structure grammars.  As a general goal, a good solution should not only be implementable, but also offer an analysis which captures the linguistic link, both structural and semantic, between the separated use and the contiguous use of separable verbs.  It is felt that there is still a distance between the proposed analyses reported in literature and achieving this goal of formally capturing the linguistic generality.

Three types of V+X idioms can be classified based on their different degrees of 'separability' between V and X, to be explored in three major sections of this chapter.  Section 5.1 studies the first type of V+N idioms like 洗澡 xi zao (wash-bath: take a bath).  These idioms are freely separable.  It is a relatively easy case.  Section 5.2 investigates the second type of the V+N idioms represented by 伤心 shang xin (hurt-heart: sad or heartbroken).  These idioms are less separable.  This category constitutes the largest part of the V+N phenomena.  It is a more difficult borderline case.  Section 5.3 studies the V+A/V idioms.  These idioms are least separable:  only the two modal signs 得 de3 (can) and 不 bu (cannot) can be inserted inside them, and nothing else.  For all these problems, arguments for the wordhood judgment will be presented first.  A corresponding morphological or syntactic analysis will be proposed, together with the formulation of the solution in CPSG95 based on the given analysis.

5.1. Verb-object Idioms: V+N I

The purpose of this section is to analyze the first type of V+N idioms, represented by 洗澡 xi zao (wash‑bath: take a bath).  The basic arguments to be presented are that they are verb phrases in Chinese syntax and the relationship between the V and the N is syntactic.  Based on these arguments, formal solutions to the problems involved in this construction will be presented.

The idioms like 洗澡 xi zao are classified as V+N I, to be distinguished from another type of idioms V+N II (see 5.2).  The following is a sample list of this type of idioms.

(5-1.) V+N I: xi zao type

洗澡 xi (wash) zao (bath #)              take a bath
擦澡 ca (scrub) zao (bath #)             clean one's body by scrubbing
吃亏 chi (eat) kui (loss #)                   get the worst
走路 zou (go) lu (way $)                      walk
吃饭 chi (eat) fan (rice $)                    have a meal
睡觉 shui (V:sleep) jiao (N:sleep #)   sleep
做梦 zuo (make) meng (N:dream)     dream (a dream)
吵架  chao (quarrel) jia (N:fight #)    quarrel (or have a row)
打仗 da (beat) zhang (battle)              fight a battle
上当 shang (get) dang (cheating #)                be taken in
拆台 chai (pull down) tai (platform #)          pull away a prop
见面 jian (see) mian (face #)                            meet (face to face)
磕头 ke (knock) tou (head)                              kowtow
带头 dai (lead) tou (head $)                            take the lead
帮忙 bang (help) mang (business #)              give a hand
告状 gao (sue) zhuang (complaint #)            lodge a complaint

Note: Many nouns (marked with # or $) in this type of constructions cannot be used independently of the corresponding V.[4]  But those with the mark $ have no such restriction in their literal sense.  For example, when the sign fan  means 'meal', as it does in the idiom, it cannot be used in a context other than the idiom chi-fan (have a meal).  Only when it stands for the literal meaning ‘rice’, it does not have to co-occur with  chi.

There is ample evidence for the phrasal status of the combinations like 洗澡 xi zao.  The evidence is of three types.  The first comes from the free insertion of some syntactic constituent X between the idioms in the form V+X+N: this involves keyword-based judgment patterns and other X‑insertion tests proposed in Chapter IV.  The second type of evidence resorts to some syntactic processes for the transitive VP, namely passivization and long-distance topicalization.  The V+N I idioms can be topicalized and passivized in the same way as ordinary transitive VP structures do.  The last piece of evidence comes from the reduplication process associated with this type of idiom.   All the evidence leads to the conclusion that V+N I idioms are syntactic in nature.

The first evidence comes from using the wordhood judgment pattern: V(X)+zhe/guo à word(X).  It is a well observed syntactic fact that Chinese aspectual markers appear right after a lexical verb (and before the direct object).  If 洗澡 xi zao were a lexical verb, the aspectual markers would appear after the combinations, not inside them.  But that is not the case, shown by the ungrammaticality of the example in (5-2b).  A productive transitive VP example is given in (5-3) to show its syntactic similarity (parallelness) with V+N I idioms.

(5-2.) (a)      他正在洗着澡
ta       zheng-zai    xi      zhe    zao.
he      right-now    wash ZHE   bath
He is taking a bath right now.

(b) *   他正在洗澡着。
ta       zheng-zai    xi-zao         zhe.
he      right-now    wash-bath   ZHE

(5-3.) (a)      他正在洗着衣服。
ta       zheng-zai    xi      zhe    yi-fu.
he      right-now    wash ZHE   clothes
He is washing the clothes right now.

(b) *   他正在洗衣服着。
ta       zheng-zai    xi      yi-fu           zhe.
he      right-now    wash clothes        ZHE

The above examples show that the aspectual marker 着 zhe (ZHE) should be inserted in the V+N idiom, just as it does in an ordinary transitive VP structure.

Further evidence for X-insertion is given below.   This comes from the post-verbal modifier of ‘action-times’ (动量补语 dongliang buyu) like 'once', 'twice', etc.  In Chinese, action-times modifiers appear after the lexical verb and aspectual marker (but before the object), as shown in (5-4a) and (5-5a).

(5-4.) (a)      他洗了两次澡。
ta       xi      le       liang  ci       zao.
he      wash LE     two    time   bath
He has taken a bath twice.

(b) *   他洗澡了两次。
ta       xi-zao         le       liang  ci.
he      wash-bath   LE     two    time

(5-5.) (a)      他洗了两次衣服。
ta       xi      le       liang  ci       yi-fu.
he      wash LE     two    time   clothes
He has washed the clothes twice.

(b) *   他洗衣服了两次。
ta       xi      yi-fu           le       liang  ci.
he      wash clothes        LE     two    time

So far, evidence has been provided of syntactic constituents which are attached to the verb in the V+N I idioms.  To further argue for the VP status of the whole idiom, it will be demonstrated that the N in the V+N I idioms in fact fills the syntactic NP position in the same way as all other objects do in Chinese transitive VP structures.  In fact, N in the V+N I does not have to be a bare N:  it can be legitimately expanded to a full-fledged NP (although it does not normally do so).  A full-fledged NP in Chinese typically consists of a classifier phrase (and modifiers like de-construction) before the noun.  Compare the following pair of examples.  Just like an ordinary NP 一件崭新的衣服 yi jian zan-xin de yi-fu (one piece of brand-new clothes), 一个痛快的澡 yi ge tong-kuai de zao (a comfortable bath) is a full-fledged NP.

(5-6.)           他洗了一个痛快的澡。
ta       xi      le       yi       ge      tong-kuai     de      zao.
he      wash LE     one    CLA   comfortable DE     bath
He has taken a comfortable bath.

(5-7.)           他洗了一件崭新的衣服。
ta       xi      le       yi       jian    zan-xin        de      yi-fu.
he      wash LE     one    CLA   brand-new  DE     clothes
He has washed one piece of brand-new clothes.

It requires attention that the above evidence is directly against the following widespread view, i.e. signs like 澡 zao, marked with # in (5-1), are 'bound morphemes' or ‘bound stems’ (e.g. L. Li 1990; Zhao and Zhang 1996).  As shown, like every other free morpheme noun (e.g. yi-fu), zao holds a lexical position in the typical Chinese NP sequence 'determiner + classifier + (de-construction) + N', e.g. 一个澡 yi ge zao (a bath), 一个痛快的澡 yi ge tong-kuai de zao (a comfortable bath).[5]  In fact, as long as the ‘V+N I phrase’ arguments are accepted (further evidence to come), by definition ‘bound morpheme’ is a misnomer for 澡 zao.  As a part of morphology, a bound morpheme cannot play a syntactic role:  it is inside a word and cannot be seen in syntax.  The analysis of 洗xi (...) zao as a phrase entails the syntactic roles played by 澡 zao:  (i) 澡 zao is a free morpheme noun which fills the lexical position as the final N inside the possibly full-fledged NP;  (ii) 澡zao plays the object role in the syntactic transitive structure 洗澡xi zao.

This bound morpheme view is an argument used for demonstrating  the relevant V+N idioms to be words rather than phrases (e.g. L. Li 1990).  Further examination of this widely accepted view will help to strengthen the counter-arguments that all V+N I idioms are phrases.

Labeling signs like 澡zao (bath) as bound morphemes seem to come from an inappropriate interpretation of the statement that bound morphemes cannot be ‘freely’, or ‘independently’, used in syntax.[6]  This interpretation places an equal sign between the idiomatic co-occurrence constraint and ‘not being freely used’.  It is true that 澡zao is not an ordinary noun to be used in isolation.  There is a co-occurrence constraint in effect:  澡zao cannot be used without the appearance of 洗xi (or 擦ca).  However, the syntactic role played by 澡zao, the object in the syntactic VP structure, has full potential of being ‘freely’ used as any other Chinese NP object:   it can even be placed before the verb in long-distance constructions as shall be shown shortly.  A more proper interpretation of ‘not being freely used’ in terms of defining bound morphemes should be that a genuine bound morpheme, e.g. the suffix 性 -xing ‘-ness’, has to attach to another sign contiguously to form a word.

A comparison with similar phenomena in English may be helpful.  English also has similar idiomatic VPs, such as kick the bucket.[7]  For the same reason, it cannot be concluded that bucket (or the bucket) is a bound morpheme only because it demonstrates necessary co-occurrence with the verb literal kick.  Signs like bucket, zao (bath) are not of the same nature as bound morphemes like –less, -ly, un-, ‑xing (-ness), etc

The second type of evidence shows some pattern variations for the V+N I idioms.  These variations are typical syntactic patterns for the transitive V+NP structure in Chinese.  One of most frequently used patterns for transitive structures is the topical pattern of long distance dependency.  This provides strong evidence for judging the V+N I idioms as syntactic rather than morphological.  For, with the exception of clitics, morphological theories in general conceive of the parts of a word as being contiguous.[8]  Both the V+N I idiom and the normal V+NP structure can be topicalized, as shown in (5-8b) and (5-9b) below.

(5-8.) (a)      我认为他应该洗澡。
wo     ren-wei        ta       ying-gai       xi zao.
I         think           he      should        wash-bath
I think that he should take a bath.

(b)      澡我认为他应该洗
zao    wo     ren-wei        ta       ying-gai       xi.
bath  I         think           he      should        wash
The bath I think that he should take.

(5-9.) (a)       我认为他应该洗衣服。
wo     ren-wei        ta       ying-gai       xi      yi-fu.
I         think           he      should        wash clothes
I think that he should wash the clothes.

(b)      衣服我认为他应该洗。
yi-fu           wo     ren-wei        ta       ying-gai       xi.
clothes        I         think           he      should        wash
The clothes I think that he should wash.

The minimal pair of passive sentences in (5-10) and (5‑11) further demonstrates the syntactic nature of the V+N I structure.

(5-10.)         澡洗得很干净。
zao             xi      de3    hen    gan-jing.
bath            wash DE3   very   clean
A good bath was taken so that one was very clean.

(5-11.)         衣服洗得很干净。
yi-fu           xi      de3    hen    gan-jing.
clothes        wash DE3   very   clean
The clothes were washed clean.

The third type of evidence involves the nature of reduplication associated with such idioms.  For idioms like 洗澡 xi zao (take a bath), the first sign can be reduplicated to denote the shortness of the action:  洗澡 xi zao (take a bath) --> 洗洗澡 xi xi zao (take a short bath).  If 洗澡 xi zao is a word, by definition, 洗xi is a morpheme inside the word and 洗洗澡 xi-xi-zao belongs to morphological reduplication (AB-->AAB type).  However, this analysis fails to account for the generality of such reduplication:  it is a general rule in Chinese grammar that a verb reduplicates itself contiguously to denote the shortness of the action.  For example, 听音乐 ting (listen to) yin-yue (music) --> 听听音乐 ting ting yin-yue (listen to music for a while); 休息 xiu-xi (rest) --> 休息休息 xiu-xi xiu-xi (have a short rest), etc.  On the other hand, when we accept that 洗澡 xi zao is a verb-object phrase in syntax and the nature of this reduplication is accordingly judged as syntactic,[9] we come to a satisfactory and unified account for all the related data.  As a result, only one reduplication rule is required in CPSG95 to capture the general phenomena;[10]  there is no need to do anything special for V+N  idioms.

This AB ‑‑> AAB type reduplication problem for the V+N idioms poses a big challenge to traditional word segmenters (Sun and Huang 1996).  Moreover, even when a word segmenter successfully incorporates some procedure to cope with this problem, the essentially same rule has to be repeated in the grammar for the general VV reduplication.  This is not desirable in terms of capturing the linguistic generality.

All the evidence presented above indicates that idioms like 洗澡xi zao, no matter whether V and N are used contiguously or not, are not words, but phrases.  The idiomatic nature of such combinations seems to be the reason why most native speakers, including some linguists, regard them as words.  Lü (1989: 113-114) suggests that vocabulary words  like 洗澡 xi zao should be distinguished from grammar words.  He was one of the first Chinese grammarians who found that the V+N relation in the idioms like 洗澡 xi zao is a syntactic verb object relation.  But he did not provide full arguments for his view, neither did he offer a precise formalized analysis of this problem.[11]

As shown in the previous examples, the V+N I idioms do not differ from other transitive verb phrases in all major syntactic behaviors.   However, due to their idiomatic nature, the V+N I idioms are different from ordinary transitive VPs in the following two major aspects.  These differences need to be kept in mind when formulating the grammar to capture the phenomena.

  • Semantics:  the semantics of the idiom should be given directly in the lexicon, not as a result of the computation of the semantics of the parts based on some general principle of compositionality.
  • Co-occurrence requirement:  洗 xi (or 擦 ca) and 澡 zao must co-occur with each other;  走 zou (go) and 路 lu (way) must co-occur; etc.  This is a requirement specific to the idioms at issue.  For example, 洗 xi and 澡 zao must co-occur in order to stand as an idiom to mean ‘take a bath’.

Based on the study above, the CPSG95 solution to this problem is described below.  In order to enforce the co-occurrence of the V+N I idioms, it is specified in the CPSG95 lexicon that the head V obligatorily expects as its object an NP headed by a specific literal.  This treatment originates from the practice of handling collocations in HPSG.  In HPSG, there are features designed to enable the subcategorization for particular words, or phrases headed by particular words.  For example, the feature [NFORM there] and [NFORM it] refer to the expletive there and it respectively for the special treatment of existential constructions, cleft constructions, etc. (Pollard and Sag 1987:62).  The values of the feature PFORM distinguish individual prepositions like for, on, etc.  They are used in phrasal verbs like rely on NP, look for NP, etc.  In CPSG95, this approach is being generalized, as described below.

As presented before, the feature for orthography [HANZI] records the Chinese character string for each lexical sign.  When a specific lexical literal is required in an idiomatic expectation, the constraint is directly placed on the value of the feature [HANZI] of the expected sign, in addition to possible other constraints.  It is standard practice in a lexicalized grammar that the expected complement (object) for the transitive structure be coded directly in the entry of the head V in the lexicon.  Usually, the expected sign is just an ordinary NP.  In the idiomatic VP like 洗 xi (...) 澡 zao, one further constraint is placed:  the expected NP must be headed by the literal character 澡zao.  This treatment ensures that all pattern variations for transitive VP such as passive constructions, topicalized constructions, etc. in Chinese syntax will equally apply to the V+N I idioms.[12]

The difference in semantics is accommodated in the feature [CONTENT] of the head V with proper co-indexing.  In ordinary cases like 洗衣服 xi yi-fu (wash clothes), the argument structure is [vt_semantics] which requires two arguments, with the role [ARG2] filled by the semantics of the object NP.  In the idiomatic case 洗澡 xi zao (take a bath), the V and N form a semantic whole, coded as [RELN take_bath].[13]  The V+N I idioms are formulated like intransitive verbs in terms of composing the semantics - hence coded as [vi_semantics], with only one argument to be co-indexed with the subject NP.  Note that there are two lexical entries in the lexicon for the verb 洗 xi (wash), one for the ordinary use and the other for the idiom, shown in (5-12) and (5-13).

th000

The above solution takes care of the syntactic similarity of the
V+N I idioms and ordinary V+NP structures.  It is also detailed enough to address their major differences.  In addition, the associated reduplication process (i.e. V+N --> V+V+N) is no longer a problem once this solution is adopted.  As the V in the V+N idioms is judged and coded as a lexical V (word) in this proposal, the reduplication rule which handles V --> VV will equally apply here.

5.2. Verb-object Idioms: V+N II

The purpose of this section is to provide an analysis of another type of V+N idiom and present the solution implemented in CPSG95 based on the analysis.

Examples like 洗澡 xi zao (take a bath) are in fact easy cases to judge.   There are more marginal cases.  When discussing Chinese verb-object idioms, L. Li (1990) and Shi (1992) indicate that the boundary between a word and a phrase in Chinese is far from clear-cut.  There is a remarkable “gray area” in between.  Examples in (5-14) are V+N II idioms, in contrast to the V+N I type, classified by L. Li (1990).

(5-14.) V+N II: 伤心 shang xin type

伤心 shang (hurt) xin (heart)             sad or break one's heart
担心 dan (carry) xin (heart)               worry
留神 liu (pay) shen (attention)           pay attention to
冒险 mao (take) xian (risk)                 take the risk
借光 jie (borrow) guang (light)           benefit from
劳驾 lao (bother) jia (vehicle)             beg the pardon
革命 ge (change) ming (life)                 make revolution
落后 luo (lag) hou (back)                      lag behind
放手 fang (release) shou (hand)          release one's hold

Compared with V+N I (洗澡xi zao type), V+N II has more characteristics of a word.  The lists below given by L. Li (1990) contrast their respective characteristics.[14]

(5-15.) V+N I (based on L. Li 1990:115-116)

as a word

V-N

(a1) corresponds to one generalized sense (concept)

(a2) usually contains ‘bound morpheme(s)’

as a phrase

V X N

 

(b1) may insert an aspectual particle (X=le/zhe/guo)

(b2) may insert all types of post-verbal modifiers (X=BUYU)

(b3) may insert a pre-nominal modifier de-construction (X=DEP)

(5-16.) V+N II (based on L. Li 1990:115)

as a word

 

V-N X

(a1) corresponds to one generalized sense (concept)

(a2) usually contains ‘bound morpheme(s)’

(a3) (some) may be followed by an aspectual particle (X=le/zhe/guo)

(a4) (some) may be followed by a post-verbal modifier
of duration or number of times (X=BUYU)

(a5) (some) may take an object (X=BINYU)

as a phrase

 

V X N

(b1) may insert an aspectual particle (X=le/zhe/guo)

(b2) may insert all types of post-verbal modifiers (X=BUYU)

(b3) may insert a pre-nominal modifier de-construction (X=DEP)

For V+N I, the previous text has already given detailed analysis and evidence and decided that such idioms are phrases, not words.  This position is not affected by the demonstrated features (a1) and (a2) in (5‑15);  as argued before,  (a1) and (a2) do not contribute to the definition of a grammar word.

However, (a3), (a4) and (a5) are all syntactic evidence showing that V+N II idioms can be inserted in lexical positions.   On the other hand, these idioms also show the similarity with V+N I idioms in the features (b1), (b2) and (b3) as a phrase.  In particular, (a3) versus (b1) and (a4) versus (b2) demonstrate a 'minimal pair' of phrase features and word features.  The following is such a minimal pair example (with the same meaning as well) based on the feature pairs (a3) versus (b1), with a post-verbal modifier 透tou (thorough) and aspectual particle 了le (LE).  It demonstrates the borderline status of such idioms.  As before, a similar example of an ordinary transitive VP is also given below for comparison.

(5-17.)         V+N II: word or phrase?

伤心:sad; heart-broken
shang          xin
hurt            heart

(a)      我伤心透了
wo     shang-xin  tou              le.
I         sad              thorough     LE
I was extremely sad.

(b)      我伤透了心
wo     shang         tou              le       xin.
I         break          thorough     LE     heart
I was extremely sad.

(5-18.)         Ordinary V+NP phrase: 恨hen (hate) 他ta (he)

(a) *   我恨他透了
wo     hen   ta      tou              le.
I         hate   he      thorough     LE

(b)      我恨透了他
wo     hen   tou              le       ta.
I         hate   thorough     LE     he
I thoroughly hate him.

As shown in (5-18), in the common V+NP structure, the post-verbal modifier 透 tou (thorough) and the aspectual particle 了 le (perfect aspect) can only occur between the lexical V and NP.  But in many V+N II idioms, they may occur either after the V+N combination or in between.  In (5‑17a), 伤心 shang xin is in the lexical position because Chinese syntax requires that the post-verbal modifier attach to the lexical V, not to a VP as indicated in (5-18a).  Following the same argument, 伤 shang (hurt) alone in (5-17b) must be a lexical V as well.  The sign 心 xin (heart) in (5‑17b) establishes itself in syntax as object of the V, playing the same role as 他ta (he) in (5-18b).  These facts show clearly that V+N II idioms can be used both as lexical verbs and as transitive verb phrases.   In other words, before entering a context, while still in the lexicon, one can not rule out either possibility.

However, there is a clear cut condition for distinguishing its use as a word and its use as a phrase once a V+N II idiom is placed in a context.   It is observed that the only time a V+N II idiom assumes the lexical status is when V and N are contiguous.  In all other cases, i.e. when V and N are not contiguous, they behave essentially similar to the V+N I type.

In addition to the examples in (5-17) above, two more examples are given below to demonstrate the separated phrasal use of V+N II.  The first is the case V+X+N where X is a possessive modifier attached to the head N.  Note also the post-verbal position of 透 tou (thorough) and 了le (LE).  The second is an example of passivization when N occurs before V.  These examples provide strong evidence for the syntactic nature of V+N II idioms when V and N are not used contiguously.

(5-19.) (a) *   你伤他的心透了
ni       shang         ta       de      xin    tou              le.
you    hurt            she    DE     heart thorough     LE

(b)      你伤透了他的心
ni       shang         tou              le       ta       de      xin.
you    hurt            thorough     LE     she    DE     heart
You broke her heart.

(5-20.)         V+N II: instance of passive with or without 被 bei (BEI)

心(被)伤透了
xin    (bei)   shang         tou              le.
heart BEI    break          thorough     LE
The heart was completely broken.
or: (Someone) was extremely sad.

Based on the above investigation, it is proposed in CPSG95 that two distinct entries be constructed for each such idiom, one as an inseparable lexical V, and the other as a transitive VP just like that of V+N I.  Each entry covers its own part of the phenomena.  In order to capture the semantic link between the two entries, a lexical rule called V_N_II Rule is formulated in CPSG95, shown in (5-21).

th001

The input to the V_N_II Lexical Rule is an entry with [CATEGORY v_n_ii] where [v_n_ii] is a given sub-category in the lexicon for V+N II type verbs.  The output is another entry with the same information except for three features [HANZI], [CATEGROY] and [COMP1_RIGHT].  The new value for [HANZI] is a list concatenating the old [HANZI] and the [HANZI] for the expected [COMP1_RIGHT].  The new [CATEGORY] value is simply [v].  The value for [COMP1_RIGHT] becomes [null].  The outline of the two entries captured by this lexical rule are shown in (5-22) and (5-23).

th002

It needs to be pointed out that the definition of [CATEGORY v_n_ii] in CPSG95 is narrower than L. Li’s definition of V+N II type idioms.  As indicated by L. Li (1990), not all V+N II idioms share the same set of lexical features (a3), (a4) and (a5) as a word.  The definition in CPSG95 does not include the idioms which share the lexical feature (a5), i.e. taking a syntactic object.  These are idioms like 担心dan-xin (carry-heart: worry about).  For such idioms, when they are used as inseparable compound words, they can take a syntactic object.  This is not possible for all other V+N idioms, as shown below.

(5-24.) (a)     她很担心你
ta       hen    dan-xin                ni.
he      very   worry (about)        you
He is very concerned about you.

(b) *   他很伤心你
ta       hen    shang-xin            ni.
he      very   sad                       you

In addition, these idioms do not demonstrate the full distributional potential of transitive VP constructions.  The separated uses of these idioms are far more limited than other V+N idioms.  For example, they can hardly be passivized or topicalized as other V+N idioms can, as shown by the following minimal pair of passive constructions.

(5-25.)(a) *   心(被)担透了
xin    (bei)   dan             tou              le.
heart BEI    carry           thorough     LE

(b)      心(被)伤透了
xin    (bei)   shang         tou              le.
heart BEI    break          thorough     LE
The heart was completely broken.
or: (Someone) was extremely sad.

In fact, the separated use ('phrasal use') for such V+N idioms seems only limited to some type of X-insertion, typically the appearance of aspect signs between V and N.[15]  Such separated use is the only thing shared by all V+N idioms, as shown below.

(5-26.)(a)     他担过心
ta       dan             guo    xin
he      carry           GUO  heart
He (once) was worried.

(b)      他伤过心
ta       shang         guo    xin
he      break          GUO  heart
He (once) was heart-broken.

To summarize,  the V+N idioms like 担心 dan-xin which can take a syntactic object do not share sufficient generality with other V+N II idioms for a lexical rule to capture.  Therefore, such idioms are excluded from the [CATEGORY v_n_ii] type.  This makes these idioms not subject to the lexical rule proposed above.  It is left for future research to answer the question whether there is enough generality among this set of idioms to justify some general approach to this problem, say, another lexical rule or some other ways of generalization of the phenomena.  For time being, CPSG95 simply lists both the contiguous and separated uses of these idioms in the lexicon.[16]

It is worth noticing that leaving such idioms aside, this lexical rule still covers large parts of V+N II phenomena.  The idioms like 担心dan-xin only form a very small set which are in the state of transition to words per se (from the angle of language development) but which still retain some (but not complete) characteristics of a phrase.[17]

5.3. Verb-modifier Idioms: V+A/V

This section investigates the V+X idioms in the form of V+A/V.  The data for the interaction of V+A/V idioms and the modal insertion are presented first.  The subsequent text will argue for Lü's infix hypothesis for the modal insertion and accordingly propose a lexical rule to capture the idioms with or without modal insertion.

The following is a sample list of V+A/V idioms, represented by kan jian (look-see: have seen).

(5-27.) V+A/V: kan jian type

看见 kan (look) jian (see)                    have seen
看穿 kan (look) chuan (through)        see through
离开 li (leave) kai (off)                         leave
打倒 da (beat) dao (fall)                      down with
打败 da (beat) bai (fail)                       defeat
打赢 da (beat) ying (win)                    fight and win
睡着 shui (sleep) zhao (asleep)            fall asleep
进来 jin (enter) lai (come)                             enter
走开 zou (go) kai (off)                         go away
关上  guan (close) shang (up)             close

In the V+A/V idiom kan jian (have-seen), the first sign kan (look) is the head of the combination while the second jian (see) denotes the result.  So when we say, wo (I) kan-jian (see) ta (he), even without the aspectual marker le (LE) or guo (GUO), we know that it is a completed action:  'I have seen him' or 'I saw him'.[18]

Idioms like kan-jian (have-seen) function just as a lexical whole (transitive verb).  When there is an aspect marker, it is attached immediately after the idioms as shown in (5‑28).  This is strong evidence for judging V+A/V idioms as words, not as syntactic constructions.

(5-28.)         我看见了他
wo     kan jian     le       ta.
I         look-see       LE     he                   I have seen him.

The only observed separated use is that such idioms allow for two modal signs 得 de3 (can) and 不 bu (cannot) in between, shown by (5-29a) and (5-29b).  But no other signs, operations or processes can enter the internal structure of these idioms.

(5-29.) (a)     我看不见他
wo     kan bu jian         ta.
I         look cannot see     he
I cannot see him.

(c)      你看得见他吗?
ni       kan de3 jian       ta       me?
you    look can see          he      ME
Can you see him?

Note that English modal verbs ‘can’ and ‘cannot’ are used to translate these two modal signs.  In fact, Contemporary Mandarin also has corresponding modal verbs (能愿动词 neng-yuan dong-ci):  能 neng (can) and 不能 bu neng (cannot).  The major difference between Chinese modal verbs 能 neng / 不能 bu neng and the modal signs 得 de3 / 不 bu lies in their different distribution in syntax.  The use of modal signs 得 de3 (can) and 不 bu (cannot) is extremely restrictive:  they have to be inserted into V+BUYU combinations.  But Chinese modal verbs can be used before any VP structures.  It is interesting to see the cases when they are used together in one sentence, as shown in (5-30 a+b) below.  Note that the meaning difference between the two types of modal signs is subtle, as shown in the examples.

(5-30.)(a)     你看得见他吗?
ni       kan de3 jian         ta       me?
you    look can see          he      ME
Can you see him? (Is your eye-sight good enough?)

(b)      你能看见他吗?
ni       neng kan jian      ta       me?
you    can    see              he      ME
Can you see him?
(Note: This is used in more general sense. It covers (a) and more.)

(a+b)  你能看得见他吗?
ni       neng kan de3 jian         ta       me?
you    can    look can see          he      ME
Can you see him? (Is your eye-sight good enough?)

(5-31.)(a)     我看不见他
wo     kan bu jian           ta
I         look cannot see     he
I cannot see him. (My eye-sight is too poor.)

(b)      我不能看见他
wo     bu     neng kan jian      ta
I         not    can    see              he
I cannot see him. (Otherwise, I will go crazy.)

(a+b) 我不能看不见他
wo     bu     neng kan bu jian           ta.
I         not    can    look cannot see     he
I cannot stand not being able to see him.
(I have to keep him always within the reach of my sight.)

Lü (1989:127) indicates that the modal signs are in fact the only two infixes in Contemporary Chinese.  Following this infix hypothesis, there is a good account for all the data above.  In other words, the V+A/V idioms are V+BUYU compound words subject to the modal infixation.  The phenomena of 看得见 kan-de3-jian (can see) and 看不见 kan-bu-jian (cannot see) are therefore morphological by nature.  But Lü did not offer formal analysis for these idioms.

Thompson (1973) first proposed a lexical rule to derive the potential forms V+de3/bu+A/V from the V+A/V idioms.  The lexical rule approach seems to be most suitable for capturing the regularity of the V+A/V idioms and their infixation variants V+de3/bu+A/V.  The  approach taken in CPSG95 is similar to Thompson’s proposal.  More precisely, two lexical rules are formulated in CPSG95 to handle the infixation in V+A/V idioms.  This way, CPSG95 simply lists all V+A/V idioms in the lexicon as V+A/V type compound words, coded as [CATEGORY v_buyu].[19]  Such entries cover all the contiguous uses of the idioms.  It is up to the two lexical rules to produce two infixed entries to cover the separated uses of the idioms.

The change of the infixed entries from the original entry lies in the semantic contribution of the modal signs.  This is captured in the lexical rules in (5-32) and (5-33).  In case of V+de3+A/V, the Modal Infixation Lexical Rule I in (5-32) assigns the value [can] to the feature [MODAL] in the semantics.  As for V+bu+A/V, there is a setting  [POLARITY minus] used to represent the negation in the semantics, shown in (5-33).[20]

th003

The following lexical entry shows the idiomatic compound 看见 kan-jian as coded in the CPSG95 lexicon (leaving some irrelevant details aside).   This entry satisfies the necessary condition for the proposed infixation lexical rules.

th004

The modal infixation lexical rules will take this [v_buyu] type compound as input and produce two V+MODAL+BUYU entries.  As a result, new entries 看得见 kan-de3-jian (can see) and 看不见 kan-bu-jian (cannot see) as shown below are added to the lexicon.[21]

th005

th006

The above proposal offers a simple, effective way of capturing the linguistic data of the interaction of V+A/V idioms and the modal insertion, since it eliminates the need for any change of the general grammar in order to accommodate this type of separable verbs interacting with 得 de3 / 不 bu, the only two infixes in Chinese.

5.4. Summary

This chapter has conducted an inquiry into the linguistic phenomena of Chinese separable verbs, a long-standing difficult problem at the interface of Chinese compounding and syntax.   For each type of separable verb, arguments for the wordhood judgment have been presented.  Based on this judgment, CPSG95 provides analyses which capture both structural and semantic aspects of the constructions at issue.  The proposed solutions are formal and implementable.  All the solutions provide a way of capturing the link between the separated use and contiguous use of the V+X idioms.  The proposals presented in this chapter cover the vast majority of separable verbs.  Some unsolved rare cases or potential problems are also identified for further research.

 

----------------------------------------------------------------------

[1] They are also called phrasal verbs (duanyu dongci) or compound verbs (fuhe dongci) among Chinese grammarians.  For linguists who believe that they are compounds, the V+N separable verbs are often called verb object compounds and the V+A/V separable verbs resultative compounds.  The want of a uniform term for such phenomena reflects the borderline nature of these cases.  According to Zhao and Zhang (1996), out of the 3590 entries in the frequently used verb vocabulary, there are 355 separable V+N idioms.

[2] As the term 'separable verbs' gives people an impression that these verbs are words (which is not necessarily true), they are better called V+X (or V+N or V+A/V) idioms.

[3] There is no disagreement among Chinese grammarians for the verb-object combinations like xi wan:  they are analyzed as transitive verb phrases in all analyses, no matter whether the head V and the N is contiguous (e.g. xi wan 'wash dishes') or not (e.g. xi san ge wan 'wash three dishes').

[4] Such signs as zao (bath), which are marked with # in (5-1), are often labeled as 'bound morphemes' among Chinese grammarians, appearing only in idiomatic combinations like xi zao (take a bath), ca zao (clean one's body by scrubbing).  As will be shown shortly, bound morpheme is an inappropriate classification for these signs.

[5] It is widely acknowledged that the sequence num+classifier+noun is one typical form of Chinese NP in syntax.  The argument that zao is not a bound morpheme does not rely on any particular analysis of such Chinese NPs.  The fact that such a combination is generally regarded as syntactic ensures the validity of this argument.

[6] The notion ‘free’ or ‘freely’ is linked to the generally accepted view of regarding word as a minimal ‘free’ form, which can be traced back to classical linguistics works such as Bloomfield (1933).

[7] It is generally agreed that idioms like kick the bucket are not compounds but phrases (Zwicky 1989).

[8] That is the rationale behind the proposal of inseparability as important criterion for wordhood judgment in Lü (1989).

[9] In Chinese, reduplication is a general mechanism used both in morphology and syntax.  This thesis only addresses certain reduplication issues when they are linked to the morpho-syntactic problems under examination, but cannot elaborate on the Chinese reduplication phenomena in general.  The topic of Chinese reduplication deserves the study of a full-length dissertation.     

[10] In the ALE implementation of CPSG95, there is a VV Diminutive Reduplication Lexical Rule in place for phenomena like xi zao (take a bath) à xi xi zao (take a short bath);  ting yin-yue (listen to music) à ting ting yin-yue (listen to music for a while);  xiu-xi (rest) à xiu-xi xiu-xi (have a short rest).

[11] He observes that there are two distinct principles on wordhood.  The vocabulary principle requires that a word represent an integrated concept, not the simple composition of its parts.  Associated with the above is a tendency to regard as a word a relatively short string.  The grammatical principle, however, emphasizes the inseparability of the internal parts of a combination.  Based on the grammatical principle, xi zao is not a word, but a phrase.  This view is very insightful.

[12] The pattern variations are captured in CPSG95 by lexical rules following the HPSG tradition.  It is out of the scope of this thesis to present these rules in the CPSG95 syntax.  See W. Li (1996) for details.

[13] In the rare cases when the noun zao is realized in a full-fledged phrase like yi ge tong-kuai de zao (a comfortable bath), we may need some complicated special treatment in the building of the semantics.  Semantically, xi (wash) yi (one) ge (CLA) tong‑kuai (comfortable) de (DE) zao (bath): ‘take a comfortable bath’ actually means tong‑kuai (comfortable) de2 (DE2) xi (wash) yi (one) ci (time) zao (bath): ‘comfortably take a bath once’.  The syntactic modifier of the N zao is semantically a modifier attached to the whole idiom.  The classifier phrase of the N becomes the semantic 'action-times' modifier of the idiom.  The elaboration of semantics in such cases is left for future research.

[14] The two groups classified by L. Li (1990) are not restricted to the V+N combinations.  In order not to complicate the case,  only the comparison of the two groups of V+N idioms are discussed here.  Note also that in the tables, he used the term ‘bound morpheme’ (inappropriately) to refer to the co-occurrence constraint of the idioms.

[15] Another type of X-insertion is that N can occasionally be expanded by adding a de‑phrase modifier.  However, this use is really rare.

[16] Since they are only a small, easily listable set of verbs, and they only demonstrate limited separated uses (instead of full pattern variations of a transitive VP construction), to list these words and all their separated uses in the lexicon seems to be a better way than, say, trying to come up with another lexical rule just for this small set.  Listing such idiosyncratic use of language in the lexicon is common practice in NLP.

[17] In fact, this set has been becoming smaller because some idioms, say zhu-yi 'focus-attention: pay attention to', which used to be in this set, have already lost all separated phrasal uses and have become words per se.  Other idioms including dan-xin (worry about) are in the process of transition (called ionization by Chao 1968) with their increasing frequency of being used as words.   There is a fairly obvious tendency that they combine more and more closely as words, and become transparent to syntax.  It is expected that some, or all, of them will ultimately become words proper in future, just as zhu-yi did.

[18] In general, one cannot use kan-jian to translate English future tense 'will see', instead one should use the single-morpheme word kan:  I will see him --> wo (I) jiang (will) kan (see) ta (he).

[19] Of course, [v_buyu] is a sub-type of verb [v].

[20] The use of this feature for representing negation was suggested in  Footnote 18 in Pollard and Sag (1994:25)

[21] This is the procedural perspective of viewing the lexical rules.  As pointed out by Pollard and Sag (1987:209), “Lexical rules can be viewed from either a declarative or a procedural perspective: on the former view, they capture generalizations about static relationships between members of two or more word classes; on the latter view, they describe processes which produce the output from the input form.”

 

[Related]

PhD Thesis: Morpho-syntactic Interface in CPSG (cover page)

PhD Thesis: Chapter I Introduction

PhD Thesis: Chapter II Role of Grammar

PhD Thesis: Chapter III Design of CPSG95

PhD Thesis: Chapter IV Defining the Chinese Word

PhD Thesis: Chapter V Chinese Separable Verbs

PhD Thesis: Chapter VI Morpho-syntactic Interface Involving Derivation

PhD Thesis: Chapter VII Concluding Remarks

Overview of Natural Language Processing

Dr. Wei Li’s English Blog on NLP

PhD Thesis: Chapter IV Defining the Chinese Word

 

4.0. Introduction

This chapter examines the linguistic definition of the Chinese word and establishes its formal representation in CPSG95.  This lays a foundation for the treatment of Chinese morpho-syntactic interface problems in later chapters.

To address issues on interfacing morphology and syntax in Chinese NLP, the fundamental question is:  what is a Chinese word?  A proper answer to this question defines the boundaries between morphology, the study of how morphemes combine into words, and syntax, the study of how words combine into phrases.  However, there is no easy answer to this question.

In fact, how to define Chinese words has been a central topic among Chinese grammarians for decades (Hu and Wen 1954; L. Wang 1955;  Z. Lu 1957; Lin 1983; Lü 1989; Shi 1992; Dai 1993; Zhao and Zhang 1996).  In late 50's, there was a heated discussion on the definition of Chinese word in China.  This discussion was induced by the campaign for the Chinese writing system reform (文字改革运动).  At that time, the government policy was to ultimately replace the Chinese characters (hanzi) by a Romanized writing system.  The system of pinyin, based on the Latin alphabet, was designed to represent the pronunciation of the characters in the Contemporary Mandarin.  The simplest way is to use pinyin as a writing system and simply translate Chinese characters into syllables in pinyin.  But it was soon found impractical due to the many-to-one correspondence from hanzi to syllable.  Text in pinyin with no  explicit word boundary delimiters is hardly comprehensible.   Linguists agree that the key issue for the feasibility of a pinyin-based writing system is to establish a standard or definition for Chinese words (Z. Lu 1957).  Once words can be identified by a common standard, the pinyin system can in principle be adopted for recording the Chinese language by using space and punctuation marks to separate words.  This is because the number of homophones at the word level is dramatically reduced when compared to the number of homophones at the hanzi (morpheme or monosyllabic) level.

But the definition of a Chinese word is a very complicated issue due to the existence of a considerable amount of borderline cases.  It has never been possible to reach a precise definition which can be applied to all circumstances and which can be accepted by linguists from different schools.

There have been many papers addressing the Chinese wordhood issue (e.g. Z. Lu 1957; Lin 1983; Lü 1989; Dai 1993).  Although there are still many problems in defining Chinese words for borderline cases and more debate will continue for many years to come, the understanding of Chinese wordhood has been deepened in the general acknowledgement of the following key aspects:  (i) the distinct status of Chinese morphology;  (ii) the distinction of different notions of word;  and (iii) the lack of absolute definition across systems or theories.

Almost all Chinese grammarians agree that unlike Classical Chinese, Contemporary Chinese is not based on single-morpheme words.   In other words, the word and the morpheme are no longer coextensive in Contemporary Chinese.[1]  In fact, that is the reason why we need to define Chinese morphology.  If the word and the morpheme stand for the same linguistic object in a language, like Classical Chinese, the definition of  morpheme will entail the definition of word and there is no role of morphology.

As it stands, there is little debate on the definition of morpheme in Chinese.  It is generally acknowledged that each syllable (or its corresponding written form hanzi) corresponds to (at least) one morpheme.  In a characteristic ‘isolating language’ - Classical Chinese is close to this, there is no or very poor morphology.[2]  However, Contemporary Chinese contains a significant number of bound morphemes in word formation (Dai 1993).  In particular, it is observed that many affixes are highly productive (Lü et al 1980).

It is widely acknowledged that the grammar of Contemporary Chinese is not complete without the component of morphology (Z. Lu 1957; Chao 1968; Li and Thompson 1981; Dai 1993; etc.).   Based on this widely accepted assumption, one major task for this thesis is to argue for the proper place to cut the line between morphology and syntax, and to explore effective ways of interleaving the two for analysis.

A significant development concerning the Chinese wordhood study is the  distinction between two different notions of word:  grammar word versus vocabulary word.  It is now clear that in terms of grammar analysis, a vocabulary word is not an appropriate notion (Lü 1989; more discussion to come in 4.1).

Decades of debate and discussion on the definition of a Chinese word have also shown that an operational definition for a grammar word precise enough to apply to all cases can hardly be established across systems or theories.  But a computational grammar of Chinese cannot be developed without precise definitions.  This leads to an argument in favor of the system internal wordhood definition and the interface coordination within a grammar.

The remaining sections of this chapter are organized like this.  Section 4.1 examines two notions of word.  Making sure that we use the right notion based on some appropriate guideline, some operational methods for judging a Chinese grammar word will be developed in 4.2.  Section 4.3 demonstrates the formal representation of a word in CPSG95.  This formalization is based on the design of expectation feature structures and the structural feature structure  presented in Chapter III.

4.1. Two Notions of Word

This section examines the two notions of word which have caused confusion.  The first notion, namely vocabulary word, is easy to define.  However, for the second notion, namely, grammar word, unfortunately,  no operational definition has been available.  It will be argued that a feasible alternative is to system internally define a grammar word and the labor division between Chinese morphology and syntax.

A grammar word stands for the grammatical unit which fits in the hierarchy of morpheme, word and phrase in linguistic analysis.  This gives the general concept of this notion but it is by no means an operational definition.  Vocabulary word, on the other hand, refers to the listed entry in the lexicon.  This definition is simple and unambiguous once a lexicon is given.  The lexical lookup will generate vocabulary words as potential building blocks for analysis.

On one hand, vocabulary words come from the lexicon;  they are basic building blocks for linguistic analysis.  On the other hand, as the ‘resulting’ unit for morphological analysis as well as the ‘starting’ or ‘atomic’ unit for syntactic analysis, the grammar word is the notion for linguistic generalization.  But it is observed that a vocabulary word is not necessarily a grammar word and vice versa.  It is this possible mismatch between vocabulary word and grammar word that has caused a problem in both Chinese grammar research and Chinese NLP system development.

Lü (1989) indicates that not making a distinction between these two notions of word has caused considerable confusion on the definition of Chinese word in the literature.  He further points out that only the former notion should be used in the grammar research.

Di Sciullo and Williams (1987) have similar ideas on these two notions of word.  They indicate that a sign listable in the lexicon corresponds to no certain grammatical unit.[3]   It can be a morpheme, a (grammar) word, or a phrase including sentence.  Some examples of different kinds of Chinese vocabulary words are given below to demonstrate this insight.

(4-1.) sample Chinese vocabulary words

(a) 性           bound morpheme, noun suffix, ‘-ness’
(b) 洗           free morpheme or word, V: ‘wash’
(c) 澡           word (only used in idioms), N: ‘bath’
(d) 澡盆        compound word, N: ‘bath-tub’
(e) 洗澡        idiom phrase, VP: ‘take a bath’
(f) 他们         pronoun as noun phrase, NP: ‘they’
(g) 城门失火,殃及池鱼

idiomatic sentence, S:
‘When the gate of a city is on fire, the fish in the
canal around the gate is also endangered.’

The above signs are all Chinese vocabulary words.  But grammatically, they do not necessarily function as a grammar word.  For example, (4-1a) functions as a suffix, smaller than a word.  (4-1e) behaves like a transitive VP (see 5.1 for more evidence), and (4-1g) acts as a sentence, both larger than a word.  The consequence of mixing up these different units in a grammar is the loss of power for a grammar to capture the linguistic generality for each level of grammatical unit.

The definition of grammar word has been a contentious issue in general linguistics (Di Sciullo and Williams 1987).  Its precise definition is particularly difficult in Chinese linguistics as there is a considerable amount of phenomena marginal between Chinese morphology and syntax (Zhu 1985; L. Li 1990; Sun and Huang 1996).  The morpheme-word-phrase transition is a continuous band in the linguistic reality.  Different grammars may well cut the division differently.  As long as there is no contradiction in coordinating these objects within the grammar, there does not seem to exist absolute judgment on which definition is right and which is wrong.

It is generally agreed that a grammar word is the smallest unit in syntax (Lü 1989), as also emphasized by Di Sciullo and Williams (1987) on the 'syntactic atomicity' of word.[4]  But this statement only serves as a guideline in theory, it is not an operational definition for the following reason.  It is logically circular to define word, smallest unit in syntax, and syntax, study of how words combine into phrases, one upon the other.

To avoid this 'circular definition' problem, a feasible alternative is to system internally define grammar word and the labor division between Chinese morphology and syntax, as in the case of CPSG95.  Of course, the system internal definition still needs to be justified based on the proposed morphological or syntactic analysis of borderline phenomena in terms of capturing the linguistic generality.  More specifically, three things need to be done:  (i) argue for the analysis case by case, e.g. why a certain construction should be treated as a morphological or syntactic phenomenon, what linguistic generality is captured by such a treatment, etc.;  (ii) establish some operational methods for wordhood judgment to cover similar cases;  (iii) use formalized data structures to represent the linguistic units after the wordhood judgment is made.  Section 4.2 will handle task (ii) and Section 4.3 is devoted to the formal definition of word required by task (iii).   The task in (i) will be pursued in the remaining chapters.

Another important notion related to grammar word is unlisted word.  Conceptually, an unlisted word is a novel construction formed via morphological rules, e.g. a derived word like 可读性 ke-du-xing (-able-read-ness: readability), foolish-ness, a compound person name (given name + family name) such as John Smith, 毛泽东 mao-ze-dong (Mao Zedong).  Unlisted words are often rule-based.  This is where productive word formation sets in.

However, unlisted word is not a crystal clear notion, just like the underlying concept grammar word.  Many grammarians have observed that phrases and unlisted words in Chinese are formed under similar rules (e.g. Zhu 1985; J. Lu 1988).  As both syntactic constructions and unlisted words are rule based, it can be difficult to judge a significant amount of borderline constructions as morphological or syntactic.

There are fuzzy cases where a construction is regarded as a grammar word by one and judged as a syntactic construction by another.  For example, while san (three) ge (CLA) is regarded as a syntactic construction, namely numeral-classifier phrase, in many grammars including CPSG95, such constructions are treated as compound words by others (e.g. Chen and Liu 1992).  ‘Quasi-affixation’ presents another outstanding ‘gray area’ (see 6.2).

The difficulty in handling the borderline phenomena leads back to the argument that the labor division between Chinese morphology and syntax should be pursued system internally and argued case by case in terms of capturing the linguistic generality.  To implement the required system internal definition, it is desirable to investigate practical wordhood judgment methods in addition to case-by-case arguments.  Some judgment methods will be developed in 4.2.  Case-by-case arguments and analysis for specific phenomena will be presented in later chapters.  After the wordhood judgment is made, there is a need for the formal representation.  Section 4.3 defines the formal representation of word with illustrations.

4.2. Judgment Methods

This section proposes some operational wordhood judgment methods based on the notion of ‘syntactic atomicity’ (Di Sciullo and Williams 1987).  These methods should be applied in combination with arguments of the associated grammatical analysis.  In fact, whether a sign is judged as a morpheme, a grammar word or a phrase ultimately depends on the related grammatical analysis.  However, the operationality of these methods will help facilitate the later analysis for some individual problems and avoid unnecessary repetition of similar arguments.

Most methods proposed for Chinese wordhood judgment in the literature are not fully operational.  For example, Chao (1968) agrees with Z. Lu (1957) that a word can fill the functional frame of a typical syntactic structure.  Dai (1993) points out that this method may effectively separate bound morphemes from free words, it cannot differentiate between words and phrases, as phrases may also be positioned in a syntactic frame.  In fact, whether this method can indeed separate bound morphemes from free words is still a problem.  This method cannot be made operational unless the definition of ‘frame of a typical syntactic structure’ is given.  The judgment methods proposed in this section try to avoid this ‘lack of operationality’ problem.

Dai (1993) made a serious effort in proposing a series of methods for cutting the line between morphemes and syntactic units in Chinese.  These methods have significantly advanced the study of this topic.  However, Dai admits that there is limitation associated with these proposals.  While each proposed method provides a sufficient (but not necessary) condition for judging whether a unit is a morpheme,  none of the methods can further determine whether this unit is a word or a phrase.  For example, the method of syntactic independence tests whether a unit in a question can be used as a short answer to the question.  If yes, the syntactic independence is confirmed and this unit is not a morpheme inside a word.  Obviously, such a method tells nothing about the syntactic rank of the tested unit because a word, a phrase or clause can all serve as an answer to a question.  In order to achieve that, other methods and/or analyses need to be brought in.

The first judgment method proposed below involves passivization and topicalization tests.  In essence, this is to see whether a string involves syntactic processes.  As an atomic unit, the internal structure of a word is transparent to syntax.  It follows that no syntactic processes are allowed to exert effects on the internal structure of a word.[5]  As  passivization and topicalization are generally acknowledged to be typical syntactic processes, if a potential combination A+B is subject to passivization B+bei+A and topicalization B+…+NP+A, it can be concluded that A+B is not a word:   the relation between A and B must be syntactic.

The second method is to define an unambiguous pattern for the wordhood judgment, namely, judgment patterns.  Judgment patterns are by no means a new concept.  In particular, keyword based judgment patterns have been frequently used in the literature of Chinese linguistics as a handy way for deterministic word category detection (e.g. L. Wang 1955;  Zhu 1985; Lü 1989).

The following keyword (i.e. aspect markers) based patterns are proposed for  judging a verb sign.

(4-2.)
(a) V(X)+着/过 --> word(X)
(b) V(X)+着/过/了+NP --> word(X)

The pattern (4-2a) states that if X is a sign of verb, no matter transitive or intransitive, appearing immediately before zhe/guo, then X is a word.  This proposal is backed by the following argument.  It is an important and widely acknowledged grammatical generalization in Chinese syntax that the aspect markers appear immediately after lexical verbs (Lü et al 1980).

Note that the aspect marker le (LE) is excluded from the pattern in (4-2a) because the same keyword le corresponds to two distinctive morphemes in Chinese:  the aspect le (LE) attaches to a lexical V while the sentence-final le (LEs) attaches to a VP (Lü et al 1980).  Therefore, judgment cannot be reliably made when a sentence ends in X+le, for example, when X is an intransitive verb or a transitive verb with the optional object omitted.  However, le in pattern (4-2b) has no problem since le is not in the ambiguous sentence final position.  This pattern says that if any of the three aspect markers appears between a sign X of verb and NP, X must be a word:  in fact, it is a lexical transitive verb.

There are two ways to use the judgment patterns.  If a sub-string of the input sentence matches a judgment pattern, one reaches the conclusion promptly.  If the input string does not match a pattern directly, one can still make indirect use of the patterns for judgment.  The idiomatic combination xi (wash) zao (bath) is a representative example.   Assume that the vocabulary word xi zao is a grammar word.  It follows that it should be able to fill in the lexical verb position in the judgment pattern (4-2a).  We then make a sentence which contains a substring matching the pattern to see whether it is grammatical.  The result is ungrammatical:  * 他洗澡着 ta (he) xi-zao (V) zhe (ZHE);  * 他洗澡过 ta (he) xi-zao (V) guo (GUO).  Therefore, our assumption must be wrong:  洗澡 xi zao is not a grammar word.  We then change the assumption and try to insert aspect markers inside them (it is in fact an expansion test, to be discussed shortly).  The new assumption is that the verb xi alone is a grammar word.  What we get are perfectly grammatical sentences and they match the pattern (4-2b):  他洗着澡 ta (he) xi (V) zhe (ZHE) zao (bath): ‘He is taking a bath’;  他洗过澡 ta (he) xi (V) guo (GUO) zao (bath): ‘He has taken the bath’.  Therefore the assumption is proven to be correct.  This way, all V+X combinations can be judged based on the judgment patterns (4-2a) or (4-2b).

The third method proposed below involves a more general expansion test.  As an atomic unit in syntax, the internal parts of a word are in principle not separable.[6]  Lü (1989) emphasized inseparability as a criterion for judging grammar words.  But he did not give instructions how this criterion should be applied.  Nevertheless, many linguists (e.g. Bloomfield 1933; Z. Lu 1957;  Lyons 1968; Dai 1993) have discussed expansion tests one way or another in assisting the wordhood judgment.

The method of expansion to be presented below for wordhood judgment is called X-insertion.  X-insertion is based on Di Sciullo and Williams’ thesis of the syntactic atomicity of word.  The rationale is that the internal parts of a word cannot be separated by syntactic constituents.

As a method, how to perform X-insertion is defined as follows.   Suppose that one needs to judge whether the combination A+B is a word.   If a sign X can be found to satisfy the following condition, then A+B is not a word, but a syntactic combination:  (i) A+X+B is a grammatical string,  (ii) X is not a bound morpheme, and (iii) the sub-structure [A+X] is headed by A or the sub-string [X+B] is headed by B.

The first constraint is self-evident:  a syntactic combination is necessarily a grammatical string.  The second constraint aims at  eliminating the danger of wrongly applying an infix here.  In fact, if X is a morphological infix, the conclusion would be just opposite:  A+B is a word.  The last constraint states that X must be a dependant of the head A (or B).  Otherwise, it results in a different structure.  There is no direct structural relation between A and B when A (or B) is a dependant of the head X in the structure.  Therefore, the question of whether A+B is a phrase or a word does not apply in the first place.

After the wordhood judgment is made on strings of signs based on the above judgment methods and/or the arguments for the analysis involved, the next step is to have them properly represented (coded) in the grammar formalism used.  This is the topic to be presented in 4.3 below.

4.3. Formal Representation of Word

The expectation feature structure and structural phrase structure in the mono-stratal design of CPSG95 presented in Chapter III provide means for the formal definition of the basic unit word in CPSG95.  Once the wordhood judgment for a unit is made based on arguments for a structural analysis and/or using the methods presented in Section 4.2., the formal representation is required for coding it in CPSG95.

This type of formalization is required to ensure its implementability in enforcing a required configurational constraint.  For example, the suffix 性 -xing expects an adjective word to form an abstract noun, such constraints [CATEGORY a] and @word can be placed in the morphological expectation feature [SUFFIXING].  These constraints will permit, for example, the legitimately derived word 严肃性 [yan-su]-xing] (serious-ness), but will block the following combination * 非常严肃性 [[fei-chang yan-su]-xing] (very-serious-ness).  This is because 非常严肃 [fei-chang yan-su] violates the formal constraint as given in the word definition:  it is not an atomic unit in syntax.

In CPSG95, word is defined as a syntactically atomic unit without obligatory morphological expectations, formally represented in the following macro.

word macro
a_sign
PREFIXING saturated | optional
SUFFIXING saturated | optional
STRUCT no_syn_dtr

Note that the above formal definition uses the sorted hierarchy [struct] for the structural feature structure and the sorted hierarchy [expected] for the expectation feature structure.  The definitions of these feature structures have been given in the preceding Chapter III.

Based on the sorted hierarchy struct: {syn_dtr, no_syn_dtr}, the constraint [no_syn_dtr] ensures that the word sign do not contain any syntactic daughter.[7]  This prevents syntactic constructions from being treated as words.  On the other hand, since [saturated], [obligatory] and [optional] are three subtypes of [expected], the constraint [saturated|optional] prevents a bound morpheme, say a prefix or suffix which has obligatory expectation in [PREFIXING] or [SUFFIXING], from being treated as a word.

This macro definition covers the representation of mono-morpheme words, e.g. 鹅 e ‘goose’, 读 du ‘read’, etc., or multi-morpheme words, e.g. 小看 xiao-kan ‘look down upon’, 天鹅 tian-e ‘swan’, etc., as well as unlisted words such as derived words whose internal morphological structures have already been formed.  Some typical examples of word are shown below.

th11

th12

For a derived word, note that the specification of [PREFIXING satisfied] and [STRUCT prefix], or [SUFFIXING satisfied] and [STRUCT suffix], assigned by the corresponding PS rule is compatible with the macro word definition.

The above word definition is an extension of the corresponding representation features from HPSG (Pollard and Sag 1987).  HPSG uses a binary structural feature [LEX] to distinguish lexical signs, [LEX +], and non-lexical signs, [LEX -].  In addition, [sign] is divided into [lexical_sign] and [phrasal_sign].[8]  Except for the one-to-one correspondence between [phrasal_sign] and [syn_dtr] in terms of rank (which stands for non-atomic syntactic constructs including phrases), neither of these HPSG binary divisions account for the distinction between a bound morpheme and a free morpheme.  Such a distinction is not necessary in HPSG because bound morphemes are assumed to be processed in the preprocessing stage (e.g. lexical rules for English inflection, Pollard and Sag 1987) and do not show themselves as independent input to the parser.  As CPSG95 involves both derivation morphology and syntax in an integrated general grammar, the HPSG binary divisions are no longer sufficient for formalizing the word definition.  ‘Word’ in CPSG95 needs to be distinguished with proper constraints from not only syntactic constructs, but also from affixes (bound morphemes).

In CPSG95, as productive derivation is designed to be an integrated component of the grammar, the word definition is both specified in the lexicon for some free morpheme words and assigned by the rules in morphological analysis.  This practice in essence follows one  suggestion in the original HPSG book:  "we might divide rules of grammar into two classes: rules of word formation, including compounding rules, which introduce the specification [LEX +] on the mother, and other rules, which introduce [LEX -] on the mother." (Pollard and Sag 1987:73).

It is worth noticing that words thus defined can fill either a morphological position or a syntactic position.  This reflects the interface nature of word:  word is an eligible unit in both morphology and syntax.  This is in contrast to bound morphemes which can only be internal parts of morphology.

In morphology, derivation combines a word and an affix into a derived word.  These derivatives are eligible to feed morphology again.   This is shown above by the examples in (4-5) and (4-6).  The adjective word 可读 ke-du (read-able) is derived from the prefix morpheme 可 ke- (-able) and the word 读 du (read).  Like other adjective words, this derived word can further combine with the suffix 性
–xing (-ness) in morphology.  It can also directly enter syntax, as all words do.

To syntax, all words are atomic units.  If a lexical position is specified, via the macro constraint @word in CPSG95, in a syntactic pattern, it makes no difference whether a filler of this position is a listed grammar word, or an unlisted word such as a derivative.  Such distinction is transparent to the syntactic structure.

4.4. Summary

Efforts have been made to reach a better understanding of Chinese wordhood in theory, methodology and formalization.  The main spirit of the HPSG theory and Di Sciullo and Williams' ‘syntactic atomicity’ theory has been applied to the study of Chinese wordhood and its formal representation.  Some effective wordhood judgment methods have also been proposed, based on theoretical guidelines.

The above work in the area of Chinese wordhood study provides a sound foundation for the analysis of the specific Chinese morpho-syntactic interface problems in Chapter V and Chapter VI.

 

 

-------------------------------------------------------

[1] For Classical Chinese, word, morpheme, syllable and hanzi are presumably all co-extensive.  This is the so-called Monosyllabic Myth of Chinese (DeFrancis 1984: ch.8).  The development of large numbers of homophones, mainly due to the loss of coda stops, has led to the development of large quantities of bi-syllabic and poly-syllabic word-like expressions (Chen and Wang 1975).

[2] Classical Chinese arguably allows for a certain degree of compounding.  In the linguistic literature, some linguists (e.g. Sapir 1921; Zhang 1957; Jensen 1990) did not strictly distinguish Contemporay/Modern Chinese from Classical Chinese and they held the general view that Chinese has little morphology except for limited compounding.  But this view of Contemporary Chinese has been criticized as misconception (Dai 1993) and is no longer accepted by the community of Chinese grammarians.

[3] Di Sciullo and Williams call a sign listable in the lexicon listeme, equivalent to the notion vocabulary word.

[4] In the literature, variations of  this view include the Lexicalist position (Chomsky 1970), the Lexical Integrity Hypothesis (Jackendoff 1972), the Principle of Morphology-Free Syntax (Zwicky 1987), etc.

[5] This type of ‘atomicity’ constraint (Di Sciullo and Williams 1987) is generally known as Lexical Integrity Hypothesis (LIH, Jackendoff 1972), which states that syntactic rules or operations cannot refer to part of a word.  A more elaborate version of LIH is proposed by Zwicky (1987) as a Principle of Morphology-Free Syntax.  This principle states that syntactic rules cannot make reference to the internal morphological composition of words.  The only lexical properties accessible to syntax, according to Zwicky, are syntactic category, subcategory, and features like gender, case, person, etc.

[6] Of course, in theory a word may be separated by morphological infix.  But except for the two modal signs de3 (can) and bu (cannot) (see Section 5.3 in Chapter V), there does not seem to exist infixation in Mandarin Chinese.

[7] In terms of rank, [no_syn_dtr] in CPSG95 corresponds to the type [lexical_sign] in HPSG (Pollard and Sag 1987).  A binary division between [lexical_sign] and [phrasal_sign] is enough in HPSG to distinguish the atomic unit word from syntactic construction.  But, as CPSG95 incorporates derivation in the general grammar, [no_syn_dtr] covers for both free morphemes and bound morphemes.  That is why the [no_syn_dtr] constraint on [STRUCT] alone cannot define word in CPSG95;  it needs to involve constraints on morphological expectation structures as well, as shown in the macro definition.

[8] Note that there are [LEX -] signs which are not of the type [phrasal_sign].

 

[Related]

PhD Thesis: Morpho-syntactic Interface in CPSG (cover page)

PhD Thesis: Chapter I Introduction

PhD Thesis: Chapter II Role of Grammar

PhD Thesis: Chapter III Design of CPSG95

PhD Thesis: Chapter IV Defining the Chinese Word

PhD Thesis: Chapter V Chinese Separable Verbs

PhD Thesis: Chapter VI Morpho-syntactic Interface Involving Derivation

PhD Thesis: Chapter VII Concluding Remarks

Overview of Natural Language Processing

Dr. Wei Li’s English Blog on NLP

PhD Thesis: Chapter III Design of CPSG95

3.0. Introduction

CPSG95 is the grammar designed to formalize the morpho-syntactic analysis presented in this dissertation.  This chapter presents the general design of CPSG95 with emphasis on three essential aspects related to the morpho-syntactic interface:  (i) the overall mono-stratal design of the sign;  (ii) the design of expectation feature structures;  (iii) the design of structural feature structures.

The HPSG-style mono-stratal design of the sign in CPSG95 provides a general framework for the information flow between different components of a grammar via unification.  Morphology, syntax and semantics are all accommodated in distinct features of a sign.  An example will be shown to illustrate the information flow between these components.

Expectation feature structures are designed to accommodate lexical information for the structural combination.  Expectation feature structures are vital to a lexicalized grammar like CPSG95.  The formal definition for the sort hierarchy [expected] for the expectation features will be given.  It will be demonstrated that the defined sort hierarchy provides means for imposing a proper structural hierarchy as defined by the general grammar.

One characteristic of the CPSG95 structural expectation is the unique design of morphological expectation features to incorporate Chinese productive derivation.  This design is believed to be a feasible and natural way of modeling Chinese derivation, as shall be presented shortly below and elaborated in section 3.2.1.  How this design benefits the interface coordination between derivation and syntax will be further demonstrated in Chapter VI.

The type [expected] for the expectation features is similar to the HPSG definition of [subcat] and [mod].  They both accommodate lexical expectation information to drive the analysis conducted via the general grammar.  In order to meet some requirements induced by introducing morphology into the general grammar and by accommodating linguistic characteristics of Chinese, three major modifications from the standard HPSG are proposed in CPSG95.  They are:  (i) the CPSG95 type [expected] is more generalized as to cover productive derivation in addition to syntactic subcategorization and modification;  (ii) unlike HPSG which tries to capture word order phenomena as independent constraints, Chinese word order in CPSG95 is integrated in the definition of the expectation features and the corresponding morphological/syntactic relations;  (iii) in terms of handling the syntactic subcategorization, CPSG95 pursues a non-list alternative to the standard practice of HPSG relying on the list design of obliqueness hierarchy.  The rationale and arguments for these modifications are presented in the corresponding sections, with a brief summary given below.

The first modification is necessitated by meeting the needs of introducing Chinese productive derivation into the grammar.  It is observed that a Chinese affix acts as the head daughter of the derivative in terms of expectation (Dai 1993).  The expectation information that drives the analysis of a Chinese productive derivation is found to be capturable lexically by the affix sign;  this is very similar to how the information for the head-driven syntactic analysis is captured in HPSG.  The expansion of the expectation notion to include productive morphology can account for a wider range of linguistic phenomena.  The feasibility of this modification has been verified by the implementation of CPSG95 based on the generalized expectation feature structures.

One outstanding characteristic of all the expectation features designed in CPSG95 is that the word order information is implied in the definition of these features.[1]  Word order constraints in CPSG95 are captured by individual PS rules for the structural relationship between the constituents.  In other words, Chinese word order constraints are not treated as phenomena which have sufficient generalizations of themselves independent of the individual morphological or syntactic relations.  This is very different from the word order treatment in theories like HPSG (Pollard and Sag 1987) and GPSG (Gazdar, Klein, Pullum and Sag 1985).  However, a similar treatment can be found in the work from  the school of ‘categorial grammar’ (e.g. Dowty 1982).

The word order theory in HPSG and GPSG is based on the assumption that structural relations and syntactic roles can be defined without involving the factor of word order.  In other words, it is assumed that the structural nature of a constituent (subject, object, etc.) and its linear position in the related structures can be studied separately.  This assumption is found to be inappropriate in capturing Chinese structural relations.  So far, no one has been able to propose an operational definition for Chinese structural relations and morphological/syntactic roles without bringing in word order.[2]

As Ding (1953) points out, without the means of inflections and case markers, word order is a primary constraint for defining and distinguishing Chinese structural relations.[3]  In terms of expectation, it can always be lexically decided where for the head sign to look for its expected daughter(s).  It is thus natural to design the expectation features directly on their expected word order.

The reason for the non-list design in capturing Chinese subcategorization can be summarized as follows:  (i) there has been no successful attempt by anyone, including the initial effort involved in the CPSG95 experiment, which demonstrates that the obliqueness design can be applied to Chinese grammar with sufficient linguistic generalizations;  (ii) it is found that the atomic approach with separate features for each complement is a feasible and flexible proposal in representing the relevant linguistic phenomena.

Finally, the design of the structural feature [STRUCT]  originates from [LEX + | -] in HPSG (Pollard and Sag 1987).  Unlike the binary type for [LEX], the type [struct] for [STRUCT] forms an elaborate sort hierarchy.  This is designed to meet the configurational requirements of introducing morphology into CPSG95.  This feature structure, together with the design of expectation feature structures, will help create a favorable framework for handling Chinese morpho-syntactic interface.  The proposed structural feature structure and the expectation feature structures contribute to the formal definition of linguistic units in CPSG95.  Such definitions enable proper lexical configurational constraints to be imposed on the expected signs when required.

3.1. Mono-stratal Design of Sign

This section presents the data structure involving the interface between morphology, syntax and semantics in CPSG95.  This is done by defining the mono-stratal design of the fundamental notion sign and by illustrating how different components, represented by the distinct features for the sign, interact.

As a dynamic unit of grammatical analysis, a sign can be a morpheme, a word, a phrase or a sentence.  It is the most fundamental object of HPSG-style grammars.  Formally, a sign is defined in CPSG95 by the type [a_sign], as shown below.[4]

(3-1.) Definition: a_sign

a_sign
HANZI                            hanzi_list
CONTENT                      content
CATEGORY                    category
SUBJ                               expected
COMP0_LEFT               expected
COMP1_RIGHT             expected
COMP2_RIGHT             expected
MOD_LEFT                    expected
MOD_RIGHT                  expected
PREFIXING                    expected
SUFFIXING                    expected
STRUCT                          struct

The type [a_sign] introduces a set of linguistic features for the description of a sign.  These are features for orthography, morphology, syntax and semantics, etc.[5]  The types, which are eligible to be the values of these features, have their own definitions in the sort hierarchy.  An introduction of these features follows.

The orthographic feature [HANZI] contains a list of Chinese characters (hanzi or kanji).  The feature [CONTENT] embodies the semantic representation of the sign.  [CATEGORY] carries values like [n] for noun, [v] for verb, [a] for adjective, [p] for preposition, etc.  The structural feature [STRUCT] contains information on the relation of the structure to its sub-constituents, to be presented in detail in section 3.3.

The features whose appropriate value must be the type [expected] are called expectation features.  They are the essential part of a lexicalist grammar as these features contain information about various types of potential structures in both syntax and morphology.  They specify various constraints on the expected daughter(s) of a sign for structural analysis.   The design of these expectation features and their appropriate type [expected] will be presented shortly in section 3.2.

The definition of [a_sign] illustrates the HPSG philosophy of mono-stratal analysis interleaving different components.  As seen, different components of Chinese grammar are contained in different feature structures for the general linguistic unit sign.  Their interaction is effected via the unification of relevant feature structures during various stages of analysis.  This will unfold as the solutions to the morpho-syntactic interface problems are presented in Chapter V and Chapter VI.  For illustration, the prefix 可 ke (-able) is used as an example in the following discussion.

As is known, the prefix ke- (-able) makes an adjective out of a transitive verb:  ke- + Vt --> A.  This lexicalized rule is contained in the CPSG95 entry for the prefix ke-, shown in (3-2).  Following the ALE notation, @ is used for macro, a shorthand mechanism for a pre-defined feature structure.[6]

th1

As seen, the prefix ke- morphologically expects a sign with [CATEGORY vt].  An affix is analyzed as the head of a derivational structure in CPSG95 (see section 6.1 for discussion) and [CATEGORY] is a representative head feature to be percolated up to the mother sign via the corresponding morphological PS rule as formulated in (6-4) of section 6.2, this expectation eventually leads to a derived word with [CATEGORY a].  Like most Chinese adjectives, the derived adjective has an optional expectation for a subject NP to account for sentences like 这本书很可读 zhe (this) ben (CLA) shu (book) hen (very) ke-du (read-able): ‘This book is very readable’.  This syntactic optional expectation for the derivative is accommodated in the head feature [SUBJ].

Note that before any structural combination of ke- with other expected signs, ke- is a bound morpheme, a sign which has obligatory morphological expectation in [PREFIXING].  As a head for both the morphological combination ke+Vt and the potential syntactic combination NP+[ke+Vt], the interface between morphology and syntax in this case lies in the hierarchical structures which should be imposed.   That is, the morphological structure (derivation) should be established before its syntactic expected structure can be realized.  Such a configurational constraint is specified in the corresponding PS rules, i.e. the Subject PS Rule and The Prefix PS Rule.  It guarantees that the obligatory morphological expectation of ke- has to be saturated before the sign can be legitimately used in syntactic combination.

The interaction between morphology/syntax and semantics in this case is encoded by the information flow, i.e. structure-sharing indicated by the number index in square brackets, between the corresponding feature structures inside this sign.  The semantic compositionality involved in the morphological and syntactic grouping is represented like this.  There is a semantic predicate marked as [-able] (for worthiness) in the content feature [RELN];  this predicate has an argument which is co-indexed by [1] with the semantics of the expected Vt.  Note that the syntactic subject of the derived adjective, say ke-du (read-able) or ke-chi (eat-able), is the semantic (or logical) object of the stem verb, co-indexed by [2] in the sample entry above.  The head feature [CONTENT] which reflects the semantic compositionality will be percolated up to the mother sign when applicable morphological and syntactic PS rules take effect in structure building.

In summary, embodied in CPSG95 is a mono-stratal grammar of morphology and syntax within the same formalism.  Both morphology and syntax use same data structure (typed feature structure) and mechanisms (unification, sort hierarchy, PS rules, lexical rules, macros).   This design for Chinese grammar is original and is shown to be feasible in the CPSG95 experiments on various Chinese constructions.  The advantages of handling morpho-syntactic interface problems under this design will be demonstrated throughout this dissertation.

3.2. Expectation Feature Structures

This section presents the design of the expectation features in CPSG95.  In general, the expectation features contain information about various types of potential structures of the sign.  In CPSG95, various constraints on the expected daughter(s) of a sign are specified in the lexicon to drive both morphological and syntactic structural analysis.  This provides a favorable basis for interleaving Chinese morphology and syntax in analysis.

The expected daughter in CPSG95 is defined as one of the following grammatical constituents:  (i) subject in the feature [SUBJ];  (ii) first complement in the feature [COMP0_LEFT] or [COMP1_RIGHT];  (iii) second complement in [COMP2_RIGHT];   (iv) head of a modifier in the feature [MOD_LEFT] or [MOD_RIGHT];   (v) stem of an affix in the feature [PREFIXING] or [SUFFIXING].[7]  The first four are syntactic daughters which will be investigated in sections 3.2.2 and 3.2.3.  The last one is the morphological daughter for affixation, to be presented in section 3.2.1.  All these features are defined on the basis of the relative word order of the constituents in the structure.  The hierarchy for the structure at issue resorts to the configurational constraints which will be presented in section 3.2.4.

3.2.1. Morphological Expectation

One key characteristic of the CPSG95 expectation features is the design of morphological expectation features to incorporate Chinese productive derivation.

It is observed that a Chinese affix acts as the head daughter of the derivative in terms of expectation (see section 6.1 for more discussion).   An affix can lexically define what stem to expect and can predict the derivation structure to be built.  For example, the suffix 性 –xing demands that it combine with a preceding adjective to make an abstract noun, i.e. A+-xing --> N.  This type of information can be easily captured by the expectation feature structure in the lexicon, following the practice of the HPSG treatment of the syntactic expectation such as subcategorization and modification.

In the CPSG95 lexicon, each affix entry is encoded to provide the following derivation information:   (i) what type of stem it expects;  (ii) whether it is a prefix or suffix to decide where to look for the expected stem;  (iii) what type of (derived) word it produces.  Based on this lexical information, the general grammar only needs to include two PS rules for Chinese derivation:  one for prefixation, one for suffixation.  These rules will be formulated in Chapter VI (sections 6.2 and 6.3).  It will also be demonstrated that this lexicalist design for Chinese derivation works for both typical cases of affixation and for some difficult cases such as ‘quasi-affixation’ and zhe-suffixation.

In summary, the morphological combination for productive derivation in CPSG95 is designed to be handled by only two PS rules in the general grammar, based on the lexical specification in [PREFIXING] and [SUFFIXING].  Essentially, in CPSG95, productive derivation is treated like a ‘mini-syntax’;[8]  it becomes an integrated part of Chinese structural analysis.

3.2.2. Syntactic Expectation

This section presents the design of the expectation features to represent Chinese syntactic relations.  It will be demonstrated that constraints like word order and function words are crucial to the formalization of syntactic relations.  Based on them, four types of syntactic relations can be defined, which are accommodated in six syntactic expectation feature structures for each head word.

There is no general agreement on how to define Chinese syntactic relations.  In particular, the distinction between Chinese subject and object has been a long debated topic (e.g. Ding 1953; L. Li 1986, 1990; Zhu 1985; Lü 1989).  The major difficulty lies in the fact that Chinese does not have inflection to indicate subject-verb agreement and nominative case or accusative case, etc.

Theory-internally, there have been various proposals that Chinese syntactic relations be defined on the basis of one or more of the following factors:  (i) word order (more precisely, constituent order);  (ii) the function words associated with the constituents;  (iii) the semantic relations or roles.  The first two factors are linguistic forms while the third factor belongs to linguistic content.

L. Li (1986, 1990) relies mainly on the third factor to study Chinese verb patterns. The constituents in his proposal are named as NP-agent (ming-shi), NP-patient (ming-shou), etc. This practice amounts to placing an equal sign between the syntactic relation and semantic relation.  It implies that the syntactic relation is not an independent feature.  This makes syntactic generalization difficult.

Other Chinese grammarians (e.g. Ding 1953; Zhu 1985) emphasize the factor of word order in defining syntactic relations.  This school insists that syntactic relations be differentiated from semantic relations.  More precisely, semantic relations should be the result of the analysis of syntactic relations.  That is also the rationale behind the CPSG95 practice of using word order and other constraints (including function words) in the definition of Chinese relations.

In CPSG95, the expected syntactic daughter in CPSG95 is defined as one of the following grammatical constituents:  (i) subject in the feature [SUBJ], typically an NP which is on the leftmost position relative to the head;  (ii) complements closer to the head in the feature [COMP0_LEFT] or [COMP1_RIGHT], in the form of an NP or a specific PP;  (iii) the second complement in [COMP2_RIGHT]: this complement is defined to be an XP (NP, a specific PP, VP, AP, etc.) farther away from the head than [COMP1_RIGHT] in word order;  (iv) head of a modifier in the feature [MOD_LEFT] or [MOD_RIGHT].  In this defined framework of four types of possible syntactic relations, for each head word, the lexicon is expected to specify the specific constraints in its corresponding expectation feature structures and map the syntactic constituents to the corresponding semantic roles in [CONTENT].  This is a secure way of linking syntactic structures and their semantic composition for the following reason.  Given a specific head word and a syntactic structure with its various constraints specified in the expectation feature structures, the decoding of semantics is guaranteed.[9]

A Chinese syntactic pattern can usually be defined by constraints from category, word order, and/or function words (W. Li 1996).  For example, NP+V, NP+V+NP, NP+PP(x)+NP, NP+V+NP+NP, NP+V+NP+VP, etc.  are all  such patterns.  With the design of the expectation features presented above, these patterns can be easily formulated in the lexicon under the relevant head entry, as demonstrated by the sample formulations given in (3-3) and (3-4).

th2

th3

The structure in (3-3) is a Chinese transitive pattern in its default word order, namely NP1+Vt+NP2.  The representation in (3-4) is another transitive pattern NP+PP(x)+Vt.  This pattern requires a particular preposition x to introduce its object before the head verb.

The sample entry in (3-5) is an example of how modification is represented in CPSG95.  Following the HPSG semantics principle, the semantic content from the modifier will be percolated up to the mother sign from the head-modifier structure via the corresponding PS rule.  The added semantic contribution of the adverb chang-chang (often) is its specification of the feature [FREQUENCY] for the event at issue.

th4

3.2.3. Chinese Subcategorization

This section presents the rationale behind the CPSG95 design for subcategorization.  Instead of a SUBCAT-list, a keyword approach with separate features for each complement is chosen for representing the subcategorization information, as shown in the corresponding expectation features in section 3.2.2.  This design has been found to be a feasible alternative to the standard practice of HPSG relying on the list design of obliqueness hierarchy and SUBCAT Principle when handling subject and complements.

The CPSG95 design for representing subcategorization follows one proposal from Pollard and Sag (1987:121), who point out:  “It may be possible to develop a hybrid theory that uses the keyword approach to subjects, objects and other complements, but which uses other means to impose a hierarchical structure on syntactic elements, including optional modifiers not subcategorized for in the same sense.”  There are two issues for such a hybrid theory:  the keyword approach to representing subject and complements and the means for imposing a hierarchical structure.  The former is discussed below while the latter will be addressed in the subsequent section 3.2.4.

The basic reason for abandoning the list design is due to the lack of an operational definition of obliqueness which captures generalizations of Chinese subcategorization.  In the English version of HPSG (Pollard and Sag 1987, 1994), the obliqueness ordering is established between the syntactic notions of subject, direct object and second object (or oblique object).[10]  But these syntactic relations themselves are by no means universal.  In order to apply this concept to the Chinese language, there is a need for an operational definition of obliqueness which can be applied to Chinese syntactic relations.  Such a definition has not been available.

In fact, how to define Chinese subject, object and other complements has been one of the central debated topics among Chinese grammarians for decades (Lü 1946, 1989; Ding 1953; L. Li 1986, 1990; Zhu 1985; P. Chen 1994).  No general agreement for an operational, cross-theory definition of Chinese subcategorization has been reached.  It is often the case that formal or informal definitions of Chinese subcategorization are given within a theory or grammar.   But so far no Chinese syntactic relations defined in a theory are found to demonstrate convincing advantages of a possible obliqueness ordering, i.e. capturing the various syntactic generalizations for Chinese.

Technically, however, as long as subject and complements are formally defined in a theory, one can impose an ordering of them in a SUBCAT list.  But if such a list does not capture significant generalizations, there is no point in doing so.[11]  It has turned out that the keyword approach is a promising alternative once proper means are developed for the required configurational constraint on structure building.

The keyword approach is realized in CPSG95 as follows.  Syntactic constituents for subcategorization, namely subject and complements, are directly accommodated in four parallel features [SUBJ], [COMP0_LEFT], [COMP1_RIGHT] and [COMP2_RIGHT].

The feasibility of the keyword approach proposed here has been tested during the implementation of CPSG95 in representing a variety of structures.  Particular attention has been given to the constructions or patterns related to Chinese subcategorization.  They include various transitive structures, di-transitive structures, pivotal construction (jianyu-shi), ba-construction (ba-zi ju), various passive constructions (bei-dong shi), etc.  It is found to be easy to  accommodate all these structures in the defined framework consisting of the four features.

We give a couple of typical examples below, in addition to the ones in (3-3) and (3-4) formulated before, to show how various subcategorization phenomena are accommodated in the CPSG95 lexicon within the defined feature structures for subcategorization.  The expected structure and example are shown before each sample formulation in (3‑6) through (3-8) (with irrelevant implementation details left out).

th5

th6

Based on such lexical information, the desirable hierarchical structure on the related syntactic elements, e.g. [S [V O]] instead of [[S V] O], can be imposed via the configurational constraint based on the design of the expectation type.  This is presented in section 3.2.4 below.

3.2.4. Configurational Constraint

The means for the configurational constraint to impose a desirable hierarchical morpho-syntactic structure defined by a grammar is the key to the success of a keyword approach to structural constituents, including subject and complements from the subcategorization.  This section defines the sort hierarchy of the expectation type [expected].  The use of this design for flexible configurational constraint both in the general grammar and in the lexicon will be demonstrated.

As presented before, whether a sign has structural expectation, and what type of expectation a sign has, can be lexically decided:  they form the basis for a lexicalized grammar.  Four basic cases for  expectation are distinguished in the expectation type of CPSG95:  (i) obligatory: the expected sign must occur;  (ii) optional:  the expected sign may occur;  (iii) null:  no expectation;  (iv) satisfied: the expected sign has occurred.  Note that case (i), case (ii) and case (iii) are static information while (iv) is dynamic information, updated at the time when the daughters are combined into a mother sign.  In other words, case (iv) is only possible when the expected structure has actually been built.  In HPSG-style grammars, only the general grammar, i.e. the set of PS rules, has the power of building structures.  For each structure being built, the general grammar will set [satisfied] to the corresponding expectation feature of the mother sign.

Out of the four types, case (i) and case (ii) form a natural class,  named as [a_expected];  case (iii) and case (iv) are of one class named as [saturated].  The formal definition of the type [expected] is given (3-9].

(3-9.) Definition: sorted hierarchy for [expected]

expected: {a_expected, saturated}
a_expected: {obligatory, optional}
ROLE role
SIGN a_sign
saturated: {null, satisfied}

The type [a_expected] introduces two features:  [ROLE] and [SIGN].   [ROLE] specifies the semantic role which the expected sign plays in the structure.  [SIGN] houses various types of constraints on the expected sign.

The type [expected] is designed to meet the requirement of the configurational constraint.  For example, in order to guarantee that syntactic structures for an expecting sign are built on top of its morphological structures if the sign has obligatory morphological expectation, the following configurational constraint is enforced in the general grammar.  (The notation | is used for logical OR.)

(3-10.)         configurational constraint in syntactic PS rules

PREFIXING                    saturated | optional
SUFFIXING                    saturated | optional

The constraint [saturated] means that syntactic rules are permitted to apply if a sign has no morphological expectation or after the morphological expectation has been satisfied.  The reason why the case [optional] does not block the application of syntactic rules is the following.  Optional expectation entails that the expected sign may or may not appear.  It does not have to be satisfied.

Similarly, within syntax, the constraints can be specified in the Subject PS Rule:

(3-11.)         configurational constraint in Subject PS rule

COMP0_LEFT                 saturated | optional
COMP1_RIGHT              saturated | optional
COMP2                           saturated | optional

This ensures that complement rules apply before the subject rule does.  This way of imposing a hierarchical structure between subcategorized elements corresponds to the use of SUBCAT Principle in HPSG based on the notion of obliqueness.

The configurational constraint is also used in CPSG95 for the formal definition of phrase, as formulated below.

phrase macro

a_sign
PREFIXING saturated | optional
SUFFIXING saturated | optional
COMP1_LEFT saturated | optional
COMP1_RIGHT saturated | optional
COMP2 saturated | optional

Despite the notational difference, this definition follows the spirit reflected in the phrase definition given in Pollard and Sag (1987:69) in terms of the saturation status of the subcategorized complements.  In essence, the above definition says that a phrase is a sign whose morphological expectation and syntactic complement expectation (except for subject) are both saturated.  The reason to include [optional] in the definition is to cover phrases whose head daughter has optional expectation, for example, a verb phrase consisting of just a verb with its optional object omitted in the text.

Together with the design of the structural feature [STRUCT] (section 3.3), the sort hierarchy of the type [expected] will also enable the formal definition for the representation of the fundamental notion word (see Section 4.3 in Chapter IV).  Definitions such as @word and @phrase are the basis for lexical configurational constraints to be imposed on the expected signs when required.  For example, -xing (-ness) will expect an adjective stem with the word constraint and -zhe (-er) can impose the phrase constraint on the expected verb sign based on the analysis proposed in section 6.5.

3.3. Structural Feature Structure

The design of the feature [STRUCT] serves important structural purposes in the formalization of the CPSG95 interface between morphology and syntax.  It is necessary to present the rationale of this design and the sort hierarchy of the type [struct] used in this feature.

The design of [STRUCT struct] originates from the binary structural feature structure [LEX + | -] in the original HPSG theory (Pollard and Sag 1987).  However, in the CPSG95 definition, the type [struct] forms an elaborate sort hierarchy.   It is divided into two types at the top level:  [syn_dtr] and [no_syn_dtr].  A sub-type of [no_syn_dtr] is [no_dtr].  The CPSG95 lexicon encodes the feature [STRUCT no_dtr] for all single morphemes.[12]  Another sub-type of [no_syn_dtr] is [affix] (for units formed via affixation) which is further sub-typed into [prefix] and [suffix], assigned by the Prefix PS rule and Suffix PS Rule.  In syntax, [syn_dtr] includes sub-types like [subj], [comp] and [mod].  Despite the hierarchical depth of the type, it is organized to follow the natural classification of the structural relation involved.  The formal definition is given below.

(3-12.)         Definition: sorted hierarchy for [struct]

struct: {syn_dtr, no_syn_dtr}
syn_dtr: {subj, comp, mod}
comp: {comp0_left, comp1_right, comp2_right}
mod: {mod_left, mod_right}
no_syn_dtr: {no_dtr, affix}
affix: {prefix, suffix}

In CPSG95, [STRUCT] is not a (head) feature which percolates up to the mother sign;  its value is solely decided by the structure being built.[13]   Each PS rule, whether syntactic or morphological, assigns the value of the [STRUCT] feature for the mother sign, according to the nature of combination.  When morpheme daughters are combined into a mother sign word, the value of the feature [STRUCT] for the mother sign remains a sub-type of [no_syn_dtr].  But when some syntactic rules are applied, the rules will assign the value to the mother sign as a sub-type of [syn_dtr] to show that the structure being built is a syntactic construction.

The design of the feature structure [STRUCT struct] is motivated by the new requirement caused by introducing morphology into the general grammar of  CPSG95.  In HPSG, a simple, binary type for [LEX] is sufficient to distinguish lexical signs, i.e. [LEX +], from signs created via syntactic rules, i.e. [LEX -].  But in CPSG95, as presented in section 3.2.1 before, productive derivation is also accommodated in the general grammar.  A simple distinction between a lexical sign and a syntactic sign cannot capture the difference between signs created via morphological rules and signs created via syntactic rules.  This difference plays an essential role in formalizing the morpho-syntactic interface, as shown below.

The following examples demonstrate the structural representation through the design of the feature [STRUCT].  In the CPSG95 lexicon, the single Chinese characters like the prefix ke- (-able) and the free morphemes du (read), bao (newspaper) are all coded as [STRUCT no_dtr].   When the Prefix PS Rule combines the prefix ke- and the verb du into an adjective ke-du, the rule assigns [STRUCT prefix] to the newly built derivative.  The structure may remain in the domain of morphology as the value [prefix] is a sub-type of [no_syn_dtr].  However, when this structure is further combined with a subject, say, bao (newspaper) by the syntactic Subj PS Rule, the resulting structure [bao [ke-du]] (‘Newspapers are readable’) is syntactic, having [STRUCT subj] assigned by the Subj PS Rule;  in fact, this is a simple sentence.  Similarly, the syntactic Comp1_right PS Rules can combine the transitive verb du (read) and the object bao (newspaper) and assign for the unit du bao (read newspapers) in the feature [STRUCT comp1_right].  In general, when signs whose [STRUCT] value is a sub-type of [no_syn_dtr] combine into a unit whose [STRUCT] is assigned a sub-type of [syn_dtr], it marks the jump from the domain of morphology to syntax.  This is the way the interface of Chinese morphology and syntax is formalized in the present formalism.

The use of this feature structure in the definition of Chinese word will be presented in Chapter IV.  Further advantages and flexibility of the design of this structural feature structure and the expectation feature structures will be demonstrated in later chapters in presenting solutions to some long-standing problems at the morpho-syntactic interface.

3.4. Summary

The major design issues for the proposed mono-stratal Chinese grammar CPSG95 are addressed.  This provides a framework and means for formalizing the analysis of the linguistic problems at the morpho-syntactic interface.  It has been shown that the design of the CPSG95 expectation structures enables configuration constraints to be imposed on the structure hierarchy defined by the grammar.  This makes the keyword approach to Chinese subcategorization a feasible alternative to the list design based on the obliqueness hierarchy of subject and complements.

Within this defined framework of CPSG95, the subsequent Chapter IV will be able to formulate the system-internal, but strictly formalized definition of Chinese word.  Formal definitions such as @word and @phrase enable proper configurational constraints to be imposed on the expected signs when required.  This lays a foundation for implementing the proposed solutions to the morpho-syntactic interface problems to be explored in the remaining chapters.

 

---------------------------------------------------------------------------------

[1] More precisely, it is not ‘word’ order, it is constituent order, or linear precedence (LP) constraint between constituents.

[2]  L. Li (1986, 1990)’s definition on structural constituents does not involve word order.  However, his proposed definition is not an operational one from the angle of natural language processing.  He relies on the decoding of the semantic roles for the definitions of the proposed constituents like NP-agent (ming-shi), NP-patient (ming-shou), etc.  Nevertheless, his proposal has been reported to produce good results in the field of Chinese language teaching.  This seems to be understandable because the process of decoding semantic roles is naturally and subconsciously conducted in the mind of the language instructors/learners.

[3] Most linguists agree that Chinese has no inflectional morphology (e.g. Hockett 1958; Li and Thompson 1981; Zwicky 1987; Sun and Cole 1991).  The few linguists who believe that Chinese has developed or is developing inflection morphology include  Bauer (1988) and Dai (1993).  Typical examples cited as Chinese inflection morphemes are aspect markers le, zhe, guo and the plural marker men.

[4] A note for the notation: uppercase is used for feature and lowercase, for type.

[5] Phonology and discourse are not yet included in the definition.  The latter is a complicated area which requires further research before it can be properly integrated in the grammar analysis.  The former is not necessary because the object for CPSG95 is Written Chinese.   In the few cases where phonology affects structural analysis, e.g. some structural expectation needs to check the match of number of syllables, one can place such a constraint indirectly by checking the number of Chinese characters instead (as we know, a syllable roughly corresponds to a Chinese character or hanzi).

[6] The macro constraint @np in (3-2) is defined to be [CATEGORY n] and a call to another macro constraint @phrase to be defined shortly in Section 3.2.4.

[7] These expectation features defined for [a_sign] are a maximum set of possible expected daughters;  any specific sign may only activate a subset of them, represented by non-null value.

[8] This is similar to viewing morphology as ‘the syntax of words’ (Selkirk 1982; Lieber 1992; Krieger 1994).  It seems that at least affixation shares with syntax similar structural constraints on constituency and linear ordering in Chinese.  The same type of mechanisms (PS rules, typed feature structure for expectation, etc) can be used to capture both Chinese affixation and syntax (see Chapter VI).

[9] More precisely, the decoding of possible ways of semantic composition is guaranteed.  Syntactically ambiguous structures with the same constraints correspond to multiple ways of semantic compositionality.  These are expressed as different entries in the lexicon and the link between these entries is via corresponding lexical rules, following the HPSG practice. (W. Li 1996)

[10]  Borsley (1987) has proposed an HPSG framework where subject is posited as a distinct feature than other complements.  Pollard and Sag (1994:345) point out that “the overwhelming weight of evidence favors Borsley’s view of this matter”.

[11] The only possible benefit of such arrangement is that one can continue using the SUBCAT Principle for building complement structure via list cancellation.

[12] It also includes idioms whose internal morphological structure is unknown or has no grammatical relevance.

[13] The reader might have noticed that the assigned value is the same as the name of the PS rule which applies.  This is because there is correspondence between what type of structure is being built and what PS rule is building it.  Thus, the [STRUCT] feature actually records the rule application information.  For example, [STRUCT subj] reflects the fact that the Subj PS Rule is the most recently applied rule to the structure in point;  a structure built via the Prefix PS Rule has [STRUCT prefix] in place; etc.  This practice gives an extra benefit of the functionality of ‘tracing’ which rules have been applied in the process of debugging the grammar.  If there has never been a rule applied to a sign, it must be a morpheme carrying [STRUCT no_dtr] from the lexicon.

 

[Related]

PhD Thesis: Morpho-syntactic Interface in CPSG (cover page)

PhD Thesis: Chapter I Introduction

PhD Thesis: Chapter II Role of Grammar

PhD Thesis: Chapter III Design of CPSG95

PhD Thesis: Chapter IV Defining the Chinese Word

PhD Thesis: Chapter V Chinese Separable Verbs

PhD Thesis: Chapter VI Morpho-syntactic Interface Involving Derivation

PhD Thesis: Chapter VII Concluding Remarks

Overview of Natural Language Processing

Dr. Wei Li’s English Blog on NLP

 

 

【心路历程:当理论遭遇实践、博士走向工业】

这两天翻开我20年前关于汉语短语结构文法的博士论文,重读一遍,有些感慨。

我的博士做得比较辛苦,其中的曲折和坎坷,不足道也。总之是,做实验做了很多现象,舍不得放弃,可博士论文要求有一条主线,讲究的是点入。不知道草稿了多少提纲,一律被导师忽视或枪毙,最后是不断舍弃,不断聚焦,千锤百炼,才打造出这么个棱角全部被磨圆了所谓博士论文。感觉上,多数的博士论文都是这种过分打磨,读起来了无趣味的文字,在下的更是如此。但里面包含多少不眠之夜的挣扎、艰辛和血泪,天知地知也。

其实,所谓PhD哲学博士是一个历史遗留下来的错误称号,当代的博士基本都是专才,一点也不“博”,很少通才。很多年的辛苦研究基本是掘地三尺的劲头,重精不重广,除了自己的一亩三分地,其他领域无知得很,哲学就更谈不上了。北美的博士制度耗费了人一生中最有创造力的时期,长达5-8年,感觉是太超过了。见过很多博士磨圆了锐气,了无成就,面对真实市场手足失措的案例。难怪俗话有说,傻得像博士。这里的得失留给教育学家研究点评吧。

话说我终于一边工作,一边完成了定稿,导师也首肯了。那时甜甜刚四岁。

I should thank my four-year-old daughter, Tian Tian. I feel sorry for not being able to spend more time with her. What has supported me all these years is the idea that some day she will understand that as a first-generation immigrant, her dad has managed to overcome various challenges in order to create a better environment for her to grow.
PhD Thesis Dedication
To my daughter Tian Tian
whose babbling accompanied and inspired the writing of this work

I still remember I was in tears when writing this to give a final touch on this degree thesis

现如在正在做中文 deep parser,已经很有规模了。正好回顾一下,看 20 年前的思路与20年后做法,有何不同。离校后开始工业开发至今,我毫不犹豫就抛弃了博士的自动分析的路线,虽然做博士时说得头头是道。实际是扬弃吧。有抛弃有继承。抛弃的是单层的CFG,继承的是词法句法的无缝连接。这个转变反映的是理论和实践的距离以及学术与工业的关系。

做博士的时候,正是 unification systems 最被热捧的时候。于是跟随导师,在 Prolog平台上用 HPSG 做了一个汉语文法的MT双向实验(同一个汉语文法被用来同时做分析与生成,支持汉语英语的双向机器翻译),做了个 toy。需要写论文了,不得不把做过的各种现象不断缩小,最后集中到汉语的词法(包括切词)和句法的接口上做文章。整篇论文论述的就是一个思想,切词、词法与句法必须一体化,用的是单层 CFG parsing,说得头头是道。

一体化理论上当然是成立的,因为语言现象中的相互依赖,只有在一体化的框架下才好对付。哪怕 90% 的现象不是相互依赖的,是可以摘开的,你总可以用 10% 的现象证明一体化的正确性(理论上不妨碍那 90%)。

20年后呢,去球吧。早抛弃了单层一体化的思路,那是一个死胡同,做 toy 可以,很难 scale up,也做不深入,做不了真实世界的系统。继承的是一体化的通信管道和休眠唤醒似的patching机制。但宁肯修修补补,也不追求语法体系的完美。

对 HPSG 好奇,或感兴趣汉语怎么用HPSG的同学可以看看我整理出来的博士论文,虽然是过气了的 formalism,记得半年前冯志伟老师还系列编译介绍了 HPSG 讲座。有读者问,怎么用到中文呢?其实对于这种涉及一系列理论assumptions和技术细节的所谓 theoretical formalism,不做一遍基本是雾里看花。Unification 和 typed 数据结构逻辑上看上去很美,做起来也觉得好玩,做过后就洗手不干了。玩过 Prolog 的人也许有类似的体会。

决定把当年在博士论文中列举的具有句法分析难点的例子,当作 unit test 都  parse  一遍,看变了设计思想的系统是不是还可以抓住这些语言现象。

0824e

0824d

0824f

0824h

0824g

0824i

0824a

0824b

0824c

0825d

“头羊”(类似案例还有“个人”、“难过”)带有所谓切词的 hidden ambiguity,因为直接违反 longest principle,是中文切词的痛点,也是一体化的有力证据。理论上,任何的切词 ambiguity (不仅仅是 hidden ambiguity)都需要带入整个句子才能最后确认,local context 永远有漏洞,你永远可以营造出一个 context 使得你的 local 决策失效。但实践中还是可以大体把 local 与 全局分开,没必要带着切词的 ambiguity 一路跑到终点。hidden ambiguity 不影响大局者可以休眠,如上例。必要的时候可以用 word-driven 的句法后模块再唤醒它

 

【相关篇什】

PhD Thesis: Morpho-syntactic Interface in CPSG (cover page)

《泥沙龙笔记:parsing 的休眠反悔机制》

【立委科普:歧义parsing的休眠唤醒机制初探】

【泥沙龙笔记:NLP hard 的歧义突破】

【立委科普:结构歧义的休眠唤醒演义】

【新智元笔记:李白对话录 – 从“把手”谈起】

《新智元笔记:跨层次结构歧义的识别表达痛点》

【离皇冠上的明珠只有一步之遥的感觉】

关于 parsing

【关于中文NLP】

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

PhD Thesis: Morpho-syntactic Interface in CPSG (cover page)

 

The Morpho-syntactic Interface in a Chinese Phrase Structure Grammar

by

 

Wei Li

B.A., Anqing Normal College, China, 1982

M.A., The Graduate School of Chinese Academy of

Social Sciences, China, 1986

 

 

Thesis submitted in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

 

in the Department

of

Linguistics

Morpho-syntactic Interface in a Chinese Phrase Structure Grammar

 

Wei Li 2000

SIMON FRASER UNIVERSITY

November 2000

 

 

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.

 

Approval

Name:                         Wei Li

Degree:                       Ph.D.

Title of thesis:             THE MORPHO-SYNTACTIC INTERFACE IN

A CHINESE PHRASE STRUCTURE GRAMMAR

 

(Approved January 12, 2001)

 

Abstract

This dissertation examines issues related to the morpho-syntactic interface in Chinese, specifically those issues related to the following long-standing problems in Chinese Natural Language Processing (NLP): (i) disambiguation in Chinese word identification;  (ii) Chinese productive word formation;  (iii) borderline phenomena between morphology and syntax, such as Chinese separable verbs and ‘quasi-affixation’.

All these problems pose challenges to an independent Chinese morphology system or separate word segmenter.  It is argued that there is a need to bring in the syntactic analysis in handling these problems.

To enable syntactic analysis in addition to morphological analysis in an integrated system, it is necessary to develop a Chinese grammar that is capable of representing sufficient information from both morphology and syntax.  The dissertation presents the design of such a Chinese phrase structure grammar, named CPSG95 (for Chinese Phrase Structure Grammar).  The unique feature of CPSG95 is its incorporation of Chinese morphology in the framework of Head-Driven Phrase Structure Grammar.  The interface between morphology and syntax is then defined system internally in CPSG95 and uniformly represented using the underlying grammar formalism used by the Attribute Logic Engine.  For each problem, arguments are presented for the proposed analysis to capture the linguistic generality;  morphological or syntactic solutions are formulated based on the analysis.  This provides a secure approach to solving problems at the interface of Chinese morphology and syntax.


Dedication

To my daughter Tian Tian

whose babbling accompanied and inspired the writing of this work

And to my most devoted friend Dr. Jianjun Wang

whose help and advice encouraged me to complete this work

Acknowledgments

First and foremost, I feel profoundly grateful to Dr. Paul McFetridge, my senior supervisor.  It was his support that brought me to SFU and the beautiful city Vancouver, which changed my life.  Over the years,  he introduced me into the HPSG study, and provided me with his own parser for testing grammar writing.  His mentorship and guidance have influenced my research fundamentally.  He critiqued my research experiments and thesis writing in many facets, from the development of key ideas, selection of topics, methodology, implementation details to writing and presentation style.  I feel guilty for not being able to promptly understand and follow his guidance at times.

I would like to thank Dr. Fred Popowich, my second advisor.  He has given me both general academic guidance on research methodology and numerous specific comments for the thesis revision which have helped shape the present version of the thesis as it is today.

I am also grateful to Dr. Nancy Hedberg from whom I have taken four graduate courses, including the course of HPSG.  I have not only learned a lot from her lectures in the classroom, but have benefited greatly from our numerous discussions on general linguistic topics as well as issues in Chinese linguistics.

Thanks to Davide Turkato, my friend and colleague in the Natural Language Lab.  He is always there whenever I need help.  We have also shared many happy hours in our common circle of Esperanto club in Vancouver.

I would like to thank Dr. Ping Xue, Dr. Zita McRobbie, Dr. Thomas Perry, Dr. Donna Gerdts and Dr. Richard DeArmond for the courses I have taken from them.  These courses were an important part of my linguistic training at SFU.

For various help and encouragement I have got during my graduate studies, I should also thank all the faculty, staff and colleagues of the linguistics department and the Natural Language Lab of SFU, in particular, Rita, Sheilagh, Dr. Ross Saunders, Dr. Wyn Roberts, Dr. Murray Munro and Dr. Olivier Laurens.  I am particularly thankful to Carol Jackson, our Graduate Secretary for her years of help.  She is remarkable, very caring and responsive.

I would like to extend my thanks to all my fellow students and friends in the linguistics department of SFU, in particular, Dr. Trude Heift, Dr. Janine Toole, Susan Russel, Dr. Baoning Fu, Zhongying Lu, Dr. Shuicai Zhou, Jianyi Yu, Jean Wang, Cliff Burgess and Kyoung-Ja Lee.  We have had so much fun together and have had many interesting discussions, both academic and non-academic.  Today, most of us have graduated, some are professors or professionals in different universities or institutions.  Our linguistics department is not big, but it is such a nice department where faculty, staff and the graduate student body form a very sociable community.  I have truly enjoyed my graduate life in this department.

Beyond SFU, I would like to thank Dr. De-Kang Lin for the insightful discussion on the possibilities of integrated Chinese parsing back in 1995.  Thanks to Gerald Penn, one of the authors of ALE, for providing the powerful tool ALE and for giving me instructions on modifying some functions in ALE to accommodate some needs for Chinese parsing during my experiment in implementing a Chinese grammar.

I am also grateful to Dr. Rohini Srihari, my current industry supervisor, for giving me an opportunity to manage NLP projects for real world applications at Cymfony.  This industrial experience has helped me to broaden my NLP knowledge, especially in the area of statistical NLP and the area of shallow parsing using Finite State Transducers.

Thanks to Carrie Pine and Walter Gadz from US Air Force Research Laboratory who have been project managers for the Small Business Innovation Research (SBIR) efforts ‘A Domain Independent Event Extraction Toolkit’ (Phase II), ‘Flexible Information Extraction Learning Algorithm’ (Phase I and Phase II) and ‘Intermediate-Level Event Extraction for Temporal and Spatial Analysis and Visualization’ (Phase I and Phase II).  I have been Principal Investigator for these government funded efforts at Cymfony Inc. and have had frequent and extremely beneficial contact with them.  With these projects, I have had an opportunity to apply the skills and knowledge I have acquired from my Ph.D. program at SFU.

My professional training at SFU was made possible by a grant that Dr. Paul McFetridge and Dr. Nick Cercone applied for.  The work reported in this thesis was supported in the later stage  by a Science Council of B.C. (CANADA) G.R.E.A.T. award.  I am grateful to both my academic advisor Paul McFetridge and my industry advisor John Grayson, CEO of TCC Communications Corporation of Victoria, for assisting me in obtaining this prestigious grant.

I would not have been able to start and continue my research career without many previous helps I got from various sources, agencies and people in the last 15 years, for which I owe a big prayer of thanks.

I owe a great deal to Prof. Zhuo Liu and Prof. Yongquan Liu for leading me into the NLP area and supervising my master program in computational linguistics at CASS (Chinese Academy of Social Sciences, 1983-1986).  Their guidance in both research ideas and implementation details benefited me for life.  I am grateful to my former colleagues Prof. Aiping Fu, Prof. Zhenghui Xiong and Prof. Linding Li at the Institute of Linguistics of CASS for many insightful discussions on issues involving NLP and Chinese grammars.  Thanks also go to Ms. Fang Yang and the machine translation team at Gaoli Software Co. in Beijing for the very constructive and fruitful collaborative research and development work.  Our collaboration ultimately resulted in the commercialization of the GLMT English-to-Chinese machine translation system.

Thanks to Dr. Klaus Schubert, Dr. Dan Maxwell and Dr. Victor Sadler from BSO (Utrecht, The Netherlands) for giving me the project of writing a computational grammar of Chinese dependency syntax in 1988.  They gave me a lot of encouragement and guidance in the course of writing the grammar.  This work enabled me to study Chinese grammar in a formal and systematic way.  I have carried over this formal study of Chinese grammar to the work reported in this thesis.

I am also thankful to the Education Ministry of China, Sir Pao Foundation and British Council for providing me with the prestigious Sino-British Friendship Scholarship.  This scholarship enabled me to study computational linguistics at Centre for Computational Linguistics, UMIST, England (1992).  During my stay in UMIST, I had opportunities to attend lectures given by Prof. Jun-ichi Tsujii, Prof. Harold Somers and Dr. Paul Bennett.  I feel grateful to all of them for their guidance in and beyond the classroom.  In particular, I must thank Dr. Paul Bennett for his supervision, help and care.

I would like to thank Prof. Dong Zhen Dong and Dr. Lua Kim Teng for inviting and sponsoring me for a presentation at ICCC'96 in Singapore.  They are the leading researchers in the area of Chinese NLP.  I have benefited greatly from the academic contact and communication with them.

Thanks to anonymous reviewers of the international journals of  Communications of COLIPS, Journal of Chinese Information Processing, World Science and Technology and grkg/Humankybernetik.  Thanks also to reviewers of the International Conference on Chinese Computing (ICCC’96), North American Conference on Chinese Linguistics (NACCL‑9), Applied Natural Language Conference (ANLP’2000), Text Retrieval Conference (TREC-8), Machine Translation SUMMIT II, Conference of the Pacific Association for Computational Linguistics (PACLING-II) and North West Linguistics Conferences (NWLC).  These journals and conferences have provided a forum for publishing the NLP-related research work I and my colleagues have undertaken at different times of my research career.

Thanks to Dr. Jin Guo who has developed his influential theory of tokenization.  I have benefited enormously from exchanging ideas with him on tokenization and Chinese NLP.

In terms of research methodology and personal advice, I owe a great deal to my most devoted friend Dr. Jianjun Wang, Associate Professor at California State University, Bakersfield, and Fellow of the National Center for Education Statistics in US.  Although in a totally different discipline, there has never been an obstacle for him to understand the basic problem I was facing and to offer me professional advice.  At times when I was puzzled and confused, his guidance often helped me to quickly sort things out.  Without his advice and encouragement, I would not have been able to complete this thesis.

Finally, I wish to thank my family for their support.  All my family members, including my parents, brothers and sisters in China, have been so supportive and understanding.  In particular, my father has been encouraging me all the time.  When I went through hardships  in my pursuit,  he shared the same burden;  when I had some achievement,  he was as happy as I was.

I am especially grateful to my wife, Chunxi.  Without her love, understanding and support, it is impossible for me to complete this thesis.  I wish I had done a better job to have kept her less worried and frustrated.  I should thank my four-year-old daughter, Tian Tian.  I feel sorry for not being able to spend more time with her.  What has supported me all these years is the idea that some day she will understand that as a first-generation immigrant, her dad has managed to overcome various challenges in order to create a better environment for her to grow.


 

Approval                    ii

Abstract                    iii

Dedication                    iv

Acknowledgments                  v

Chapter I  Introduction                1

1.0. Foreword                1

1.1. Background                2

  • Principle of Maximum Tokenization and Critical Tokenization            2
  • Monotonicity Principle and Task-driven Segmentation            5

1.2. Morpho-syntactic Interface Problems        8

1.2.1. Segmentation ambiguity        8

1.2.2. Productive Word Formation        10

1.2.3. Borderline Cases between Morphology and Syntax              11

1.3. CPSG95:  HPSG-style Chinese Grammar in ALE    13

1.3.1. Background and Overview of CPSG95    14

1.3.2. Illustration              15

1.4. Organization of the Dissertation          16

Chapter II  Role of Grammar              18

2.0. Introduction                18

2.1. Segmentation Ambiguity and Syntax        19

2.1.1. Resolution of Hidden Ambiguity      19

2.1.2. Resolution of Overlapping Ambiguity    24

2.2. Productive Word Formation and Syntax      33

2.3. Borderline Cases and Grammar          37

2.4. Knowledge beyond Syntax            39

2.5. Summary                46

Chapter III  Design of CPSG95              48

3.0. Introduction                48

3.1. Mono-stratal Design of Sign          52

3.2. Expectation Feature Structures          57

3.2.1. Morphological Expectation        58

3.2.2. Syntactic Expectation          59

3.2.3. Chinese Subcategorization        63

3.2.4. Configurational Constraint        67

3.3. Structural Feature Structure          70

3.4. Summary                73

Chapter IV  Defining the Chinese Word          75

4.0. Introduction                75

4.1. Two Notions of Word            78

4.2. Judgment Methods              83

4.3. Formal Representation of Word          88

4.4. Summary                92

Chapter V  Chinese Separable Verbs            93

5.0. Introduction                93

5.1. Verb-object Idioms: V+N I            96

5.2. Verb-object Idioms: V+N II          107

5.3. Verb-modifier Idioms: V+A/V          116

5.4. Summary                122

Chapter VI  Morpho-syntactic Interface Involving Derivation    123

6.0. Introduction                123

6.1. General Approach to Derivation          125

6.2. Prefixation                127

6.3. Suffixation                130

6.4. Quasi-affixes                132

6.5. Suffix zhe (-er)              139

6.6. Summary                151

Chapter VII  Concluding Remarks            152

7.0. Summary                152

7.1. Contributions              154

7.2. Limitation                158

7.3. Final Notes                    159

BIBLIOGRAPHY                  161

APPENDIX I    Source Code of Implemented CPSG95      170

APPENDIX II  Source Code of Implemented CPSG95 Lexicon    208

APPENDIX III  Tested Results in Three Experiments Using CPSG95  229

 

[Related]

PhD Thesis: Morpho-syntactic Interface in CPSG (cover page)

PhD Thesis: Chapter I Introduction

PhD Thesis: Chapter II Role of Grammar

PhD Thesis: Chapter III Design of CPSG95

PhD Thesis: Chapter IV Defining the Chinese Word

PhD Thesis: Chapter V Chinese Separable Verbs

PhD Thesis: Chapter VI Morpho-syntactic Interface Involving Derivation

PhD Thesis: Chapter VII Concluding Remarks

Overview of Natural Language Processing

Dr. Wei Li’s English Blog on NLP

【汉语句法的挑战之一:if-then的简约式】

我:
汉语中有一种特别常见的句式,形式上看上去很像主谓关系(S-Pred)或 Topic+Clause,但是却是表达类似条件虚拟的因果关系(的浓缩形式,通常前一部分是VP或Clause,后一部分是 Pred,偶尔为小句),考虑给这种关系一个特别的命名,不叫 S,也不叫 Next,也不叫 Conj, 叫个什么好呢?实质是条件状语 Cond-Adv,
应该做个文献调查,看看汉语语法学家对这个现象,都怎么个说法?

他要来就好了 ==【 if】 他要来 【then it】 就好了 == 如果他要来,【那】就好了。

LOCK状态下连按两下HOME可以快速启动照相机 ==
【if】LOCK状态下【你】连按两下HOME【then 你就】可以快速启动照相机

喝粥吃不饱 《-- 【if 我们】喝粥【then 我们就】吃不饱

这个句式似乎有些 trigger 它的小词,但非常微妙,形式也很多样,不好掌控:上面几句算随手举例,里面的 triggers 大概包括:“就”、“可以”、“也”等。“喝粥吃不饱”似乎与结果补语“不饱”有关。也有前后都是小句的:

她来我走 == 【if】她来【then】我【就】走。
她不来我也走 《-- 【if】她不来【then】我也【仍然要】走

“她来我走”似乎是依靠平行句式(她来、我走)和对比谓词(来、走)。这种东西在英语就很难这样简约。

白:
@wei “要来”也可以是“要是来”的缩略。

宋:
这些压缩复句内部的逻辑关系是上下文相关的。某人拼命挣钱,忽略了健康,被人批评为“要钱不要命”,是“(为了)要钱(而)不要命”;但如果出自强盗之口,就是 “(如果)要钱(就)不要命”。强盗对被抢人说的话。也可能是 “(我)(只)要钱,不要(你的)命。” 这是复句义的歧义。

白:
卖瓜的说“不甜不要钱”。明明有歧义,大家也不按别的意思去理解,否则有强词夺理的嫌疑,比如“不甜 and 不要钱”。

宋:
因为不甜,所以不要钱,你们随便拿吧。

白:
在面对强盗的时候,求自保的被抢人肯定按照最配合强盗的理解行事。有实力干掉强盗的,就可能故意采用不利于强盗的解释。强盗本来就是不讲理的。

我:
这玩意儿真是难点 不好识别 可不识别 就有恶果,譬如 假如语义落地是抽取 sentiment,这种句子里一多半的虚拟式的本质 说明不是事实 不应该抽取。
“x 不好不要钱” 并不是评价 x 不好,而是条件虚拟 “如果 x 不好”,条件是没有 sentiment 的。

宋:
不一定虚拟。“(我)(只)要钱,不要(你的)命。” 就不是虚拟。

我:
“x 不降价就不要买”,也没断定 x 降价还是没降价。x “降价”一般认为是好事,“不要买” 一般认为是对 x 不利的行为:“x 不增加电池寿命就不喜欢了” (本来可能是喜欢的,但这里隐含了小抱怨,抱怨的原因是“电池寿命”)。诸如此类 都要求要识别条件式 才好准确判断 sentiment 及其原因。

汉语怎么就发展了这么个表达法呢 偏偏不用显性的小词 “如果”、“要是”、“假如”、“倘若” 等。口语还特常见。英语不用 if 的时候就要用倒装词序,也还是有了显性的形式痕迹:
Had I done that I would have lost
Should they get there in time they would make it

宋:
百度翻译结果:
Had I done that I would have lost
如果我这样做了,我会失去
Should they get there in time they would make it
如果他们及时赶到那里,他们会做到的

我:
很不错。MT 汉语生成用了显性表达的主从连词“如果”。
汉语分析绕不过去口语化句式常省略小词这一关。

网:
越是大家熟悉的事,大家才会用缩略语,口语。 才会出现一些语法上有歧义的句子,因为大家心照不宣,太熟悉了。这叫做语境。 而大多数不那么熟悉的地方就更偏向书面语,歧义就很少了。 所以我觉得歧义问题没那么严重吧,假如碰到就把这个特例记住得了。英语应该也有很多省略的口语,生活中的。这是人之常情吧,太常见的事就省略点,反正大家都懂。

我:
记住的是可以词典化的,open ended 的句式难进词典,死记不行。汉语省略小词的现象 总体说都是句法层的挑战 不是词典可以解决的。除了主从连词,省略介词也极为常见:

这件事儿我的意见大家还是要往前看
== 【关于】这件事儿【依】我的意见【,】大家还是要往前看

翻译成英语,这些介词绝不可以省略,否则就是 Chinglish:on this matter in my opinion, .......

* this matter my opinion we all should look forward

网:
关于这件事我的意见是。不能是省略了“是”?英语口语也有省略吧 肯定有

我:
也可能。“是”也是小词,那也是省了小词。
汉语难缠就难缠在,本来就是一个形态缺乏的语言,按照常理,应该更多依赖小词和词序来弥补形式的不足,但事实上,汉语的小词经常省略,词序也比我们想象的自由和弹性得多.

白:
“还是”有副词和动词的不同义项。

我:
简直就是挑战显性形式的极限,逼迫我们不得不诉求隐性形式(包括常识)来达到交流和理解。如果把汉语治服了,人类的多数语言就是小菜。

宋:
还依靠上下文。

白:
“意见“涉及三个坑,谁,对谁/什么,什么内容。其实填坑的要素一样不少
没有小词,一样填坑。但是,如果有多种填坑的可能性 问题就出来了。在涉及公平交易的场合,设坑和填坑 都是隐性形式的法子。如果你用明显不利于交易对手方的解释,这法子太low。不甜不要钱,就是这个情况。

我:
如果有显性形式可资利用,就对隐性形式(subcat 之类)的依赖减轻了。
涉及语用,算另一个层面,开始可以不问。只解析出 if-then 的框架即可。

白:
如果…则,是有利于对手方的;… and …,是不利于对手方的

我:
我准备在 links 中加一个 CondAdv 的 link,把目前的 S,Next 和 Conj
分出来一批表达这类条件。Next 从默认越来越单纯化为 【接续】;Conj 为【并列】,S 为【主语】, CondAdv【条件】

白:
我小的时候就对“不学无术”产生过疑问。到底是“因为不学,所以无术”还是“既不学,又无术”还是“如果不学,则无术”?

我:
还有 “不破不立”。不破哪能立。不学则无术。

白:
真的不是则 是因为所以

我:
【因为所以】 与 【如果则】 已经相当接近了 可以找一个上位,把两者都囊括进去 模糊一把。它们 与 【并列】 完全不同。

白:
如果则是潜在的关系,因为所以是已落地的关系

我:
“不学无术” 作为【并列】 也很说得通。【如果则】 是虚拟,而【因为所以】可能是已然,也可能不是已然: 除非【因为所以】里面的动词附着了时体助词,否则 因为所以不强调已然。

白:
如果则是门卫,因为是门票,所以是住户

我:
林彪既不学亦无术: “不读书 不看报 一点马列主义都不讲”。当年批林的时候常有类似的话。
不甜不要钱,甜也不要钱。” 前者是省了 if 后者是省了 even if 让了一步,可仅有的形式是那个几乎万能的 “也”。

白:
“他这人不学无术”
“这对冤家还真是不打不成交”

我:
成语好说,但此类句子完全可以不是成语:“这对冤家不打得头破血流不罢休
【不 VP 不 Pred(结果)】这样的 pattern,“罢休” 这个谓词可以在词典标注隐性形式 具有结果的意味。

其实虽然英语没有汉语这种表达条件的简约句式,但英语在【主语从句】和【条件状语从句】之间,也有摇摆:可见【状语】、【主语】有时真地蛮接近的:

it won't be good that you are not coming
it won't be good if u r not coming
你不来不好

这类句式限定于谓语是判定性的说法 诸如 not good, does not work。有时想 硬把汉语的简约条件式直译过去 虽然不合语法 似乎老外也应该可以理解(待核实。假设可理解,这说明简约式还是内含了某种逻辑链条的蛛丝马迹,即便没有小词的显性形式的帮忙):

? u come, I will leave
* u not come, i stay
* not work not succeed
* no work no success
* not leave won't work

洋泾浜就是从类似下面的简约式直译过来的:

不走不行
不工作不成事儿
你来我【就】走

汉语简约式最大的好处是对无意义主语的省略,比较英语就很明显:

不劳动不得食
if you/we/one/anyone/everyone/anyone/they/people do not work
you/we/one/they/he/she should not get food

英语不得不在主句和条件从句加上这些莫名其妙的主语;汉语简约式直接省去,默认就是宇宙真理,普适于所有人。最叠床架屋的是,为了政治正确,在填写这些无意义的主语的时候,还常不得不这样来说: he or she 或者 s/he: if a person does not work, he or she should not get food.

no hard work no success 这种应该算是英语接受的、最接近汉语的简约句式了。

网:
@wei 你解析句子生成的内容用什么形式?用什么来表达解析后获得的语义?

我:
tree (& roles) / IE Templates

 

【相关篇什】

【离皇冠上的明珠只有一步之遥的感觉】

关于 parsing

【关于中文NLP】

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

【立委科普:美梦成真的通俗版解说】

凑热闹参加【征文:美梦成真】 ,有网友搞不懂这美梦是啥,怎么叫美梦成真。说明我瞎激动的所谓美梦,非但没有做到老妪能解,甚至没有让科学人士明白,就科普而言,那是相当的失败。

看我能不能用大白话说明白这事儿:

我们人类的语言说简单也简单,说复杂也复杂。简单到不管多笨的人,也大都从小就学会了语言,交流没问题。但是人学会语言,大多知其然,不知其所以然。只有专门研究语言的语言学家一直在尝试对人类语言讲出点所以然来。可语言这玩意儿,不研究也就罢了,一研究就发现这是上帝的恶作剧,复杂得很,深不可测。

几千年的探索,总结出一种叫文法的东西,用它可以对语言的内在规律做一些总结,这样,千变万化的语句就可以分析成有限的句型结构,可以帮助语言理解和把握。人类本能的语言理解能力也因此显得有迹可循了。这就是我们在学校文法课上老师教给我们的知识,特别是一种语句分析的结构图的画法(grammar diagramming),条分缕析建立主语谓语宾语定语状语等结构联系,证明是一个很管用的语言分析技能。这一切本来是为了加强我们的语文能力。

电脑出现以后,就有人工智能的科学家想到,要教会电脑人类语言,这个领域叫自然语言理解(Natural Language Understanding),其核心是对人类语言做自动分析(parsing),分析结果往往用类似文法课上学到的树形图来表达。自动语言分析很重要,它是语言处理的核心技术。一个质量优良、抗干扰强(所谓鲁棒 robust)而且可以运行到大数据上面的自动分析引擎,就是个核武器。有了这样的自动分析,就可以帮助完成很多语言任务,譬如人机对话、机器秘书、情报抽取、舆情挖掘、自动文摘、机器翻译、热点追踪等等。(也有不少日常语言处理应用,譬如关键词搜索、垃圾过滤、文章分类、作者鉴定,甚至自动文摘和机器翻译,不分析,不理解,只是把语言当成黑匣子,把任务定义成通过黑匣子的从输入到输出的映射,然后利用统计模型来学习模拟,也可以走得很远。这些绕过了结构和理解的近似方法,由于其鲁棒性等优点,实际上是主流的主导性做法)。

自动分析语言方面,英语研究得比较充分。中文还刚刚在起步阶段,原因之一,是中文比欧洲语言难学,歧义更严重,大规律少,小规律和例外较多,不太好捉摸。因此有不少似是而非的流行说法,什么,词无定类,入句而后定,句无定法,“意合”而已矣。总之,中文自动分析是一项公认的很有意义但非常艰难的任务。尤其是要教会电脑分析真实世界的社交媒体大数据中的形形色色文句,更是难上加难。就是这个中文自动分析的美梦,最近被实现了。

这样的成就可以不可以说是美梦成真呢?

[11]方锦清  2013-10-17 15:04

我看不懂啊,可以进一步解释一下?

博主回复(2013-10-17 19:18):

这是一个跨越1/4世纪科研美梦终成真的现实故事。故事的主人公做助理研究员的时候,满怀热情,不知天高地厚地为世界上最微妙的语言之一现代汉语,描绘了一幅自然语言理解(NLU)蓝图,其核心是对千变万化的中文文句施行自动语法分析。这幅蓝图距离现实太过遥远,其实现似乎非人力可为。然而,1/4世纪之后,积累加机缘,天时和地利,主人公终于实现了这个理想,正在投入真实世界的大数据应用。
The mission impossible accomplished.

征文在此,请支持:【征文参赛:美梦成真】

 

【美梦成真】

  • 这是一个跨越1/4世纪科研美梦终成真的现实故事。故事的主人公做助理研究员的时候,满怀热情,不知天高地厚地为世界上最微妙的语言之一现代汉语,描绘了一幅自然语言理解(NLU)蓝图,其核心是对千变万化的中文文句施行自动语法分析。这幅蓝图距离现实太过遥远,其实现似乎遥遥无期,非人力可为。然而,1/4世纪之后,积累加机缘,天时和地利,主人公终于实现了这个理想,正在投入真实世界的大数据应用。The mission impossible accomplished.

二十五年了,中文之心,如在吾庐,一日不曾忘记!拔高一点说,对于语言学家,中文之心可以说是梦萦魂牵的海外流浪人的中国心。

   很多年了,由于工作的原因,一头扎进英语处理的海洋沉浮。直到近两年,英语已经无可再做,该做的差不多都做了,不该做的也神农尝草,遍历辛苦。大山大水已然身后,而且已经大数据实用化了,应该可以放下。近几年来,随着白发的繁盛,岁月的流逝,忧虑之心油然而起。弹指一挥,逝者如斯,怕这辈子没有机会回到中文处理上来,那将抱憾终身。
   都说中文是世界上最诡秘、最玄妙、最不讲逻辑,自然也是最难机器处理的语言。有人甚至声称中文无文法,中文理解全靠“意合”,是对机器自然语言理解和人工智能前所未有的挑战。目的地如此高远,而现状却相当悲惨,中文处理整个领域深陷在汉字串切词的浅层漩涡长达数十年不能自拔。切词是什么?最多算万里长征的前十步而已。
   25年了,许多思考、想法,在头脑绕了很多年,一直未及实现,现在是时候了。这辈子不爬中文的珠穆朗玛,枉为华裔语言学博士。陶先生说:归去来兮,田园将芜胡不归?

喝令三山五岳开道,中文处理,我回来了!

出道之初的上世纪80年代,我为一家荷兰的多语机器翻译BSO项目,参照英文依存文法,设计过一个【中文依存文法】,涵盖了现代汉语几乎所有的重要句型,画过无数的中文依存关系句法树,看上去真地很美。但那只是纸上谈兵。虽然设计这套文法是为机器处理,真要实现起来谈何容易。事实上,在当时那只能是一场科研美梦。这一梦就是25年!

现在回看当年的蓝图,对照最近在机器上实现的依存句法分析器,一脉相承,感慨万千。年轻时就有绿色的梦,那么喜欢树,欣赏树,着迷画树,好像在画天堂美景一样体验着绿之美,梦想某一天亲手栽培这颗语言学之树,为信息技术创造奇迹。如今终于迎来了实现的曙光,天时地利人和,研发的辛苦与享受已然合一,这是何等美妙的体验。

请欣赏青年立委当年“手绘”的粗糙又精致的句法树蓝图的几段截屏(可怜见地,当时只能用纯文本编辑器数着空格和汉字去“画树”,就如我年三十在机房数着字符描画山口百惠并用IBM-PC制成年历一样)。对照新鲜出炉的中文句法分析器全自动生成的婀娜树姿,我不得不说,美梦成真不再是一个传说。

(1) 25年前的蓝图(美梦):

25年后的实现(成真):
(2) 25年前的蓝图(美梦):

25年后的实现(成真):

(3)25年前的蓝图(美梦):

25年后的实现(成真):

(4) 25年前的蓝图(美梦):

25年后的实现(成真):

但那时我在上海也有一个惟一的不但敢于随便谈笑,而且还敢于托他办点私事的人,那就是送书去给白莽的柔石。

(5) 25年前的蓝图(美梦):

25年后的实现(成真):

(6)25年前的蓝图(美梦):

25年后的实现(成真):

胶合板是把原木旋切或刨切成单片薄板, 经过干燥、涂胶,  并按木材纹理方向纵横交错相叠, 在加热或不加热的条件下压制而成的一种板材。
 

 

【相关篇什】

初稿(2012-10-13 ):科学网—【立委随笔:中文之心,如在吾庐】

汉语依从文法: 维文钩沉(25年前旧作,浏览器下请选用国标码 GB 阅读以免乱码和图形失真)】:
ChineseDependencyGrammar1.txt
ChineseDependencyGrammar2.txt
ChineseDependencyGrammar3.txt

立委科普:语法结构树之美 (英文例示)】

立委科普:语法结构树之美(中文例示)】

【立委科普:美梦成真的通俗版解说】

【立委科普:自然语言parsers是揭示语言奥秘的LIGO式探测仪】 

【离皇冠上的明珠只有一步之遥的感觉】

关于 parsing

【关于中文NLP】

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

 

【一日一parsing,而山不加增,何苦而不平?】

"终于冰箱安装到位了, 欣喜之余发现有点儿小问题, 就联系了店家, 店家主动帮助联系客服上门查看, 虽然最终没有解决问题, 心里有点儿遗憾, 但是因为不影响使用, 所以也就无所谓了."  这一句够复杂的,目前酱紫滴:

“店家” 与 “主动帮助”在主语之外,语义中间件给做了逻辑宾语,是 overkill,以为帮助的 subcat 的宾语没有 saturated,但是 动词性宾语ObjV 也算宾语的,这个调整一下可以 fix
最后的错误是远距离,“虽然” 应该找到 “但是”的,是强搭配,但里面有几个小句挡路。“但是”前面的小句没关系,反正是强搭配,抽着鞭子跑马也不怕越位,可是“但是”后面又来了个“因为 。。。所以”,这个嵌套有点讨厌:“但是”的落脚点因此不在第一小句,而在第二小句“所以”上。换句话说,人的理解是,“虽然”引导的让步状语从句应该长距离落实在最后的“无所谓”上,才符合句法语义逻辑。社会媒体似乎是不经意写出来的句子,也有这种繁复的小句嵌套的长距离句法问题(贴帖的人大概是个知道分子老九,大老粗没那么多“因为所以”“虽然但是”的,而且嵌套)。最后,“联系客服上门查看”还有个 subcat 词典没到位的 bug,小 case 了,不难纠正。small bugs are de-ed:

白:
这问题问的

我:
这事儿做的。
这澡洗的。
这牛吹的。
这问题问的。那叫一个水平。
这日子过的。那叫一个窝心。
这戏演的,那叫一个烂。
这话说的,那叫一个高。
感慨或惊叹的口语句式,句法主谓,逻辑述宾:这OV的。默认似乎负面,但正面也不少见。
这OV的 --》瞧人家这OV的
--》【human】+这+OV+的+标点
底层结构应该是:human+V+O+V+得+【】(补语省略)
他问问题问得【那叫一个水平】
他过日子过得【那叫一个窝心】
他演戏演得【烂】
他说话说得【高】

0822a

0822b

0822c

0822d

0822e

 

 

【相关】

【离皇冠上的明珠只有一步之遥的感觉】

关于 parsing

【关于中文NLP】

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【一日一parsing:汉语单音节动词的语义分析很难缠】

白:
“她拿来一根漂亮的海草,围在身上做装饰物。”

我:
0821a

“围” 与 “做” 的逻辑主语阙如。原因之一是这两个动词本身的subcat没有要求“她”【human】或“海草”【physical object】。语义中间件目前是保守策略,因为逻辑填坑是无中生有,宁缺毋滥,rather underkill than overkill,精度优先。

人的理解是怎么回事呢:单个儿的“围”不好说,但是VP【围在身上】从“身上”继承了【human】的未填之坑,正好让“她”填做逻辑主语。同理,“做”是万能动词,也没有特定语义要求的坑,但是VP【做装饰物】(act as NP)则挖了一个同位语的语义坑【physical object】,可以让“海草”来填:【human】“把”(“用”)【physical object】“围在身上”;【physical object】“做装饰物”。
“围在身上”的句法主语可以是【human】,也可以是【physical object】:“一根漂亮的海草围在身上”。但是背后的逻辑语义都是 【human】为逻辑主语。

白:
此例引自小学一年级水平的课外读物

围,属于具有“附着、固定”subcat的动词子类,如果做话题,可以单独表示起始动作完成后的遗留状态。话题化 被固定物做话题

我:
而“海草”可以看做【工具】(包括【材料】状语),也可以看做是 VP【围在身上】内部的“围“的【受事】

白:
是逻辑宾语

我:
这是层次不同造成的逻辑角色的不同。
实际上,对这一类汉语单音节动词做如此细致的语义分析,挑战性很大。它们太多义了,只有组成合成动词、甚至形成 VP 以后,才逐渐排除多义而收心。这个动态的 subcat 的确定和填写过程,相当繁难,if not impossible。

白:
房子盖在山上做行宫

我:
0821b

“盖-房子”算合成词。
again “做” 的逻辑主语(深层同位语)没连上“房子”。

白:
他给你打了一副手镯当嫁妆

我:
0821c
SVO 齐活了,主句的O却断了。这叫顾腚不顾头,需要好好debug一哈:

0821d

这个比较完美了。也把“打手镯”当成“打酱油”一样做进离合词了。这样处理很重要,因为“打”是个万能动词,不知道有多少词义(如果考虑搭配中的词义的话)。

 

【相关】

【离皇冠上的明珠只有一步之遥的感觉】

关于 parsing

【关于中文NLP】

【置顶:立委NLP博文一览】

《朝华午拾》总目录