【李白董冯吕64:NLPers 谈 NLP 渊源及其落地】

董:
冯老师,姜博士,李维,白硕,宋柔老师,这个系统正式上线前,想先请各位看看,横挑鼻子竖挑眼。这个系统是去年6月开始开发的。时间短。最近几个月更是忙得厉害

李:
刚发朋友圈了。“中国nlp老前辈董老师的知网支持的平台 值得关注 推荐。世界上自然语言理解的深度 董老师是最深的了。逻辑语义的开创者。三十多年的智慧和知识积累 董振东老师是 让我辈高山仰止的语义巨人(见 科学网《语义三巨人)。【语知科技】多语种NLP平台正式上线。  demo.keenage.com

冯:
董老师,语义理解,还是要依靠规则。深度学习不行!

李:

Manning 教授昨天座谈时说 最近三年是他一辈子做nlp感觉进步最大的三年 他主要指的是深度学习。曼宁是一位一直强调语言结构和理解的老教授 NLP最知名的权威了。他的感受应该是真切的 不过来不及细问他 这种感受多大程度上是基于深度学习在语音处理以及mt方面的突破性进展,文本方面其实目前很难说深度学习引发了革命。不过 word embedding 还有什么 adversary 学习方面 开始在词汇语义级发力 有些结果令人印象深刻。parsing 要等到深度学习能把 parsing 落地为应用 才值得侧目以待 目前不行。曼宁教授还是很学究 甚至有些腼腆的气质 现在火得不得了 也是时势使然。ai 一热 nlp 就热。病急多投医,nlp各路 也跟着提升了在ai中的地位,I guess。

董:
@李,你说的让我脸红了。我在研究上是个工匠,做学问认死理。我研究语义,是叫当年的机器翻译研究逼出来的。什么是理解?什么是常识?什么是知识库?人的知识是如何建构的?我后来的感觉人是用“少”,而非用“多”来计算语义的。你常说起的Cyc,是“多”的典型。语义的关键是“关系”,而分类只是语义关系的一种。近年我们开发了基于知网的翻译,最近一年开发了中文分析,从学术的观点看,是为了考验知网,是为了给自己30年前的设想做个交代。这个交代既是给自己的,也是给别人的。告诉人们哪些努力是值得的,哪些努力是仍然无法圆满成功的。

李:
董老师退而不休 能够完成心愿 给我们留下的这笔知识财富 我们需要时间咀嚼 消化 但我坚信这种影响是深远的。潮起潮落 有些东西是不变的。语义及其语义研究的一些方法 具有相对恒定的价值 好比金子 总会发光 这个没有疑问。ai 中真正懂 nlp 特别是 nlu 的人不多,好多声称nlp的专家 只是做过自然语言的某个端对端的应用 专家做 text NLP与他做Visual 做 audio 做生物DNA 是一样的路数和算法,不过是数据不同而已。没有啥语言学。

白:
佩服董老师的执着和务实。如果说哪里还差点什么,就是对于“多个爹”的刻画机制问题。

董:
白硕说的对。“多个爹”是我们想做的新的探讨。两个问题我们遇到的:一是“是不是个“爹””,如何在文句中正确的确定那个“爹”。

冯:
有的作自然语言理解的人不关心语言学。词向量效果不错,理论机制不清楚。

李:
戏不够 词来凑。语言的分析理解主要有两个支柱,一个是词汇 吕先生称为珍珠;一个是结构 称为串子。传统说法是没有串子 做不了语言理解的项链。

白:
@冯志伟 词向量是保运算的降维,数学上是清楚的,但是跟理解搭不上钩。

李:
所以我们这些擅长 deep parsing 的人就开始看不起只看到珍珠的人,但是 其实二者的 overlapping,从完成nlp任务的角度 作为两种证据源 其实是相当地大。因此善于把 词模型 词向量模型用到极致的人,有时候的确产生了让我们意想不到的结果。

冯:
珍珠和串子是缺一不可的!

白:
如果每颗珍珠都有插销插座,确实可以不用串子。或者说,寓串子于珍珠之中。

李:
我的意思是 我们多少有些老古董了。虽然可以继续执着下去 也的确可看到一些我们擅长的nlu工作 词模型似乎根本就没有可能赶上来。但还是应该保持一种 open 心态。

白:
开开脑洞还是必要的。
词负载结构是好东西。

冯:
我们要关注词向量的成果,更要问一个为什么?

李:
对 应该探究这种表达的背后。

白:
设想回到老乔刚冒泡的年代,那时的语言学家怎么看老乔?

李:
其实我最早读乔姆斯基的转换生成语法的介绍的时候,非常看不起,觉得就是儿戏。那还是在 1982 年备考语言研究所刘老师的机器翻译研究生的时候不得不临时抱佛脚,了解一些计算语言学的基本概念。此前我做过英语教学多年(包括插队做民办教师),从中学做学生的时代就教别人的英语句法分析,主动语态被动语态等转换烂熟于心。觉得老乔演示的那些转换生成案例,太低级 太常识 太机械 乏味,太不具有神秘感。直到后来学形式语言理论 才生出崇拜感。

白:
说实话,如果知识结构跟不上老乔,恐怕根本没有跟老乔PK过招的可能。

李:
人岁数大以后的一个好处是,可以直抒己见,没有啥顾忌。我其实在读博士做汉语形式研究的时候,就对乔老爷的句法独立句法自足论极为不满,就在 seminar 指出乔老爷错了,离开语义,汉语句法形式分析搞不定。被我的导师劈头盖脸一顿轻蔑,大意是:你不知道天高地厚,一边去。被哑口很多年过去,我还是发扬光大了当年的批判。

冯:
我在57年读到乔的三个模型就开始崇拜他了!

李:
是啊,一个理论把自然语言与电脑语言形式上统一起来,使得电脑语言编译越来越像语言学,这种抽象让人震撼。震撼过后的很多年 就是对乔老爷的不断扬弃和批判,批判的主要点还是源于他的抽象:是赞也抽象,批也抽象。的确 他把电脑语言带进了语言学,居功至伟 。同时他也把自然语言带进了坑里面,误导了太多的人 整整一代人。(详见:《立委:乔姆斯基批判》 )。

白:
@wei 你那不算是语言学的批判,只是工程视角的批判。他是语言学家,但从未承诺过NLP什么。NLP掉坑里也是自作多情

李:
我们下意识还是 认定他应该引领nlp 和 cl,结果是他越走越远 越走越邪门,nlp 已然与他无关了。

白:
他不管工程,不管技术,只管数学。

李:
结构分析中的叠床架屋 使得过程中夹杂了太多的 assumptions,看上去高度抽象 追求共性 实际上是越来越像空中楼阁。当然 我肯定戴了有色眼镜,做了一辈子nlp 对纯语言学很难批评得中肯 只是一种感觉而已。老乔的语言学 对于绝大多数NLP践行者包括在下,都是供在菩萨庙里面的 只膜拜 不 follow。

白:
如果从工程角度批判,估计人家看都不看----关我什么事。

李:
老乔的思维高度自然不看 也不用看 这种批判。但是老乔下面的语言学家我认识很多,我就是这堆人里面混出来的,从他们身上我能感觉到他误导的后果。这些人很多时候就是在老乔的框架里面 自己跟自己玩游戏 没有理论创新 只好在语言数据上玩游戏,而且是一点都不感觉高明的游戏。说的是一批 或一大批语言学家。(也有一些绝顶聪明的纯语言学家让我叹服的,为数极少。)

洪:
做计算机编译的,没人认为老乔误导 Knuth和老乔貌是惺惺相惜。

吕:
赞@wei , 很多看法深有同感

李:
编译的理论基础 编译的祖师爷,电脑界理应崇拜 给10个图灵奖也不过分。当然 乔老爷哪里在意什么图灵奖。@吕正东 有机会咱俩坐下来谈。你最近的大作(见 独家|专访深度好奇创始人吕正东:通向理解之路)中我最不满意的就是一句话:说什么 符号逻辑规则路线没有成功的(大意,查原文是:“这三点都导致至今没有成功的规则系统”)。我得让你见识一下符号系统,没有深度学习的任何一家目前可以做到这个NLU的,无论深度 广度 速度 鲁棒 迁移度 可行性 还是其他指标 (It is untrue that Google SyntaxNet is the "world’s most accurate parser)。

吕:
@wei 惭愧,改日一定当面请教。

白:
说这些其实是在以史为镜。今天语言学界看DL、看词向量的心态,跟当初老语言学界看老乔的心态,有没有几分相似?

吕:
我的意思是说规则系统很难做到我所期望的NLU,不是说现在最好的规则系统弱于DL的系统。当然我对规则系统确实了解不够(现在正在补课),不免贻笑方家。

李:
不知道你去期望是什么。如果期望是现实的,很可能已经接近你的期望,如果期望是科幻,不谈。开玩笑了。王婆卖瓜而已。

吕:
我那篇访谈其实更多的是反对generic DL system 搞定一切的天真想法...

董:
@吕正东 你所期望的NLU,能否举个例子。

白:
里面有些模块可以是神经的,这有啥。

李:
所以我说我其实只有一点不满。你的访谈很好,

吕:
当然是现实的... 我们有现实的语义理解的项目

李:
@白硕 前乔姆斯基时代的老语言学界,陷入了田野工作的泥坑,是老乔把他们带出来的,革命了这个领域。纯粹的田野工作的确也是没大意思 比码农好不到哪里去。

吕:
@董振东 董老师,比如从一个偏口语的对事件的描述中得到对该事件的(“法律相关”)事实的表示.... , 当然这个定义是不那么严谨的

白:
其中一些方法,包括《降临》主角跟外星人沟通并试图破译其语言的一些方法,其实和主动机器学习很像了。

李:
一辈子也常陷入事务主义 没完没了地田野作业 自得其乐,但好在自我感觉好像心里还有某种哲学的俯视。有如神授:在田野工作的间歇 在某个高远的所在 有指引着道路。我是 语言工程师 knowledge engineer 的一员 毫无疑问。而且90%的时间都是。但是一辈子感觉这些田野作业的乐趣的本源却不在田野,而是在于架构。所以自我定义为架构师是最感觉自豪和 job satisfaction 的所在,否则与一头驴有啥区别。

白:
就是说,理想的田野工作一定是遵循某种算法的。而且算法不仅包括学习,还包括主动采样。

李:
所以在自我兜售的时候,强调 hands on 的田野作业,只是不想让人觉得飘在上面。但实际上卖的还是哲学。

Nick:
@wei 你就是自作多情

李:
我就自作多情 怎么着,你一边去 给冰冰多情去。@Nick  还想垄断哲学,搞什么哲学评书,不许我们搞哲学。王老五的桌子里面还有哲学呢,何况我辈语言学家。

董:
《福州晚报》7月15日报道,针对日前在日本横滨被证实遭杀害的福建姐妹一事,记者了解到,两姐妹均为福清江镜镇文房村人。
该报记者采访了该对姐妹花的父亲陈先生,陈先生回顾了得知姐妹被杀害的过程,并称女儿对父亲说的最后一句话是“谢谢爸爸”。

这一段事件,nlu 是什么呢?

吕:
@董振东 好难... , 实际上我们关注的是更加“冷冰冰”的事实,但即使这样也很难

白:
这里最大的问题,就是产品经理。

李:
同意,应用场景和应用角度 做技术的人很难看准。

白:
nlu是一层,但不构成核心服务。核心服务是另外的东西,让你贴近客户的东西。
相对称呼对身份一致性形成干扰,但相对称呼的谜一解开,倒也不是很难。姐妹花、姐妹,语境里的意思都是互为姐妹。

董:
我一直困惑:什么叫“我懂了”,“我明白了”。我觉得是高度抽象的关系。

李:
董老师30年前的论文(董振东:逻辑语义及其在机译中的应用)不是一再强调,所谓我懂了这句,核心就是懂了这句的逻辑语义吗?董老师的这个“理解”的教导,是一辈子遵循的指针。

白:
这得举例子吧……几何题的证明思路也可以“我懂了”“我明白了”,确定那也跟nlu相关?

董:
“姐妹花”,做为一个词语,可能合适。因为它就是“姐妹”,而且不见能产,如“母女花”

白:
“母女花”输入法里都有

李:
婆媳花 可能不在,但可以想见。

白:
我刚才意思是说,懂,明白,具有比nlu更宽泛的外延,nlu里面说的懂、明白,要窄、狭义。

董:
这样就可以依靠大数据了。对吧?
比“懂”、“明白”,要窄、狭义,那是什么呢?我如何在系统里体现呢?

白:
我们先说逻辑语义包括什么。我的观点:一包括symbol grounding,二包括role assignment。这两个搞定了,就是nlu的u。最狭窄了。茅塞顿开什么的,那种“懂”,跟nlu毛关系没有。可以说不在讨论范围内。在系统里体现,如果是role assignment,其实很好办,就是知网啊。如果是symbol grounding,那就要看系统的对接能力了。对接电话本、位置、天气、颜色、声音、实体知识库,都属于symbol grounding。

吕:
怒赞白老师1024次

白:
对接网页,往好里说属于兜底,往坏里说属于耍赖。一看见对接网页,我基本上可以判断系统黔驴技穷了。这都是在系统里能体现的,不知道入不入董老师法眼。

董:
是的,说得明白。我们的中文分析归根结底追求的就是你说的这两件东西。用逻辑语义和深层逻辑语义(多个爹),表示你说的role assignment,用ID No来落实实体知识库的symbol,即概念。所以判别歧义是不得不做的事情。

白:
我现在的方法处理“多个爹”已经成体系了。直接在句法分析阶段就能拿到“多个爹”的结构。

李:
Node to concept,Arc to logic semantics。很多时候 词到概念可以不做,wsd 绕过去,到了应用场景 再定 哪些词需要落地 其实多数根本就不用落地。

白:
这是parser提供商的思路。但是这思路在商业上有问题。不现实。比如,阿里的parser,为啥给京东用来落地?

李:
商业上就是 落地也做 当成 Professional services,量身定制,利用 parsing 的结构优势。 parser 不卖,内部消化。

白:
内部消化的本质还是深耕行业,而不是什么通用性。当你定位为深耕行业者,恭喜你做对了,但是牺牲通用性是板上钉钉的。

李:
卖components或平台基本没有做大的,还不如卖服务 做承包商。

白:
卖服务我判断也是不成立的。场景不长在你手里,实体数据库落不下来,图啥?跟通用系统如董老师的系统,根本不存在可比性。

李:
其实 目前为止 卖工具 卖服务 都没戏。实际上nlp还是寄生在产品应用。技术人的命运掌握在产品老总手里。赶巧遇到好产品 就一起飞。其次不死不活 这算好的。更多是陪葬。

白:
这不叫寄生,应该叫赋能 enabling

李:
一个牛的技术 可以降低陪葬 增加不死不活的可能  譬如我过去的二十年,但是无法让产品飞起来。

白:
除了产品经理,还有nlp之外的其他技术,也不是吃素的。到底谁贡献最关键,有得扯

李:
就是啊 使不上力 只好拼运气 看根誰搭档了。

白:
深耕行业定位下的nlper要时刻警觉的三点:1、你已有局限,不要和学术界比通用;2、你只是一个方面的enabler,服从、配合产品designer是天职;3、从产品全面看,其他方面的enabler或许贡献更大,nlp不见得一定是这个场景下最具杀手性质的技术成分,心理该平衡还是要平衡。

李:
让不让人活啊。
白老师所说极是。

吕:
谨记白老师教诲

刘:
赞 @白硕 @wei @吕正东 白老师关于nlp应用要语义落地的说法我深以为然。现在我的一些工作的motivation就是把基于NN的一些NLP的工作跟落地的语义结合起来,我希望能在这方面做一些通用性的工作,而不是仅仅局限于具体的应用。这应该是一条很长的路,有很多事情可做。

梁:
@wei nlp 不是“寄生”于产品,是“add value", 正面去说。在最终产品的增值链上,nlp 只是其中一环。Me too. 谨记白老师教诲。

李:
寄生是负面说法 赋能是正面激励。

张:
主动学习、主动适应、主动釆样~~~白硕老师的“主动学说”给当年在MT创业的我极大启示@白硕

董:
关于研究与产品、通用与专用、寄生与赋能,我的想法和做法是:这些是对立且统一的。研究要通用些,要深,而应用要专门,要浅。研究可以关起门,应用就必须是开门的。这就是“深研究,浅应用”。就像一个老师,备课不怕深、广,但讲课要深入浅出。我经历过多次处理研究与应用间的关系的机会。

白:
@董振东 董强这次展示的系统,感觉还是学术性质的。@董振东 “备课”工作的一部分,确实可以用大数据、机器学习来做,全都人来做,周期太长,对灵魂人物的要求太高。

董:
@白硕 欢迎多多指教。我们希望有人帮助我们走向非学术性的。

白:
伟哥说大树吃小树,这话对的,不过涉及到时空的错乱。是吃了小树的树自然而然地成为了大树。

洪:
应该这样“全国猪人工智能受精关键技术研讨会”

吕:
猪AI会议可以撸出小猪来,不少国内的人AI会议,只能撸出更多的傻叉和骗子.....

冯:
近年来计算语言学的发展迅速,越来越工程化,文科背景的师生有的难以适应,海涛和他团队明察秋毫,迅速由计算语言学转入计量语言学,用计量方法来研究语言本体,这是聪明的做法。希望他们在这个研究方向上作出更多的成绩。海涛是我的博士生,浙大外国语学院教授。他是院士,世界语研究院院士。我仍然坚守在计算语言学的阵地上,没有转入计量语言学。我老了,不中用了!

李:
白老师说的大树吃小树 背景在这里:《科研笔记:NLP “毛毛虫” 笔记,从一维到二维

冯:
学习了。毛毛虫有道理。

李:
@冯志伟 洗脚池转文总是漏掉后面的 相关文章 现补上白老师这篇奇文:【白硕 - 穿越乔家大院寻找“毛毛虫”

 

【相关】

董振东:逻辑语义及其在机译中的应用

立委:乔姆斯基批判

独家|专访深度好奇创始人吕正东:通向理解之路

科学网《语义三巨人

尼克:哲学评书

科研笔记:NLP “毛毛虫” 笔记,从一维到二维

白硕 - 穿越乔家大院寻找“毛毛虫”

It is untrue that Google SyntaxNet is the "world’s most accurate parser

【语义计算:李白对话录系列】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【李白雷63:做NLP也要见好就收,适可而止】

白:
“那个假流氓真流氓”
“这种做法不禁令我们大吃一惊”

李:
前一句有意思 等我回头试试,第二句没看到 catch 啊。

白:
分词和句法的相互作用,“禁令”是名词,“令”是类介词的动词。“不+名词”即使不是严格禁止的,至少也是极其低概率的。

李:
这个知识在多数切词程序里是没有容身之地。当然还有别的办法。人在伯克利 没法测 第一眼居然没看到切分歧义。刚回家第一件事就是测试白老师的句子,悲喜参半啊:

第一句出来了,第二句果然切分错了,当然前面说过,“不+名词”的规则通常在切词的时候没地方容纳。还是用更简单的ngram的头疼医疼的办法吧。于是改正如下:

不过话说回来,如果真要难为系统,总是可以的:譬如,假流氓真流氓我管不着。

果然中招:

分了真假 就做不好并列;做了并列 就难兼顾真假。

白:
按下葫芦起来瓢

李:
如果鱼与熊掌一定要兼得,就太过精巧 君子不为也。不是不可以做 但不能这样做。维持现状吧。

白:
对NLP没感觉的人很难理解是什么让顶尖高手不得不妥协。

雷: 哈哈哈。顶杆

李:
妥协是因为吃过亏 吃过自作聪明的亏 精巧的亏

白:
问题不在于你解决了什么,而在于你解决了“这一个”的同时,不影响你已经解决的“那些个”。

雷:
不可调和?not even by bribery?

李:
哈,那要看量

雷:
工程上可以

李:
没有不可以的事儿

白:
不是技术问题,是商业问题

雷:
理论上顶在那里

李:
但懂得什么时候选择不做 有时比做 更重要。见好就收吧。这是不同维度的纠缠。

白:
里维和外围的纠缠

我:
平行并列是一个维度。“真”“假”的词性和用法的不同是另一个维度。“流氓”的名词形容词歧义又增加了一个维度。事不过三原则(见【系统不能太精巧,正如人不能太聪明】) 说的就是当多维纠缠的时候 你可以随风起舞 跟着去绕 但不要绕进去太深 要有适可而止的智慧。

梅:
@wei 是啊,不必去fit noise。

李:
不仅是 noise,更主要的是要皮实,不能让系统内部相互依赖太多。“精巧”的系统今天把一个拐角处的“艰深”问题解决了,而且通过了 regressions 测试,似乎没有副作用。可是明天呢 后天呢?系统在前进过程中,一定会打破动态平衡,凡是太过精巧的地方最终会在前进中遭遇困扰。于是我们就被拖进了两难的泥潭,把注意力放到了不该放的犄角旮旯。两难是:

那个 case 是 tested case,进入了 regressions baseline,因为精巧而脆弱,因此常常成为 regressions testing 的红灯区。红灯一亮,我是去对付它呢,还是放过它呢,真地两难啊:

对付它就要耗费资源,耗费我的时间,为了维护的是一个小概率的case,不断地耗费资源,不值得。如果放过它呢,这就等价于我们一开始就不该做,不该精巧地“解决”这个问题。后一个选择是明智的,但还是不如一开始就坚持事不过三的原则来指导系统的开发。系统的鲁棒性比解决个别的长尾问题要重要。

首发 2016-06-02 【新智元笔记:做NLP也要见好就收,适可而止】-科学网

【相关】

【系统不能太精巧,正如人不能太聪明】

【立委科普:美梦成真的通俗版解说】

【立委科普:语法结构树之美(之二)】

【语义计算:李白对话录系列】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【李白雷梅59:自动句法分析中的伪歧义泥潭】

李:
“难得他认可啊。” 歧义句。有点类似于 、但也不同于“难过” 的歧义:

(1)他认可,难得啊(已然);(2)得他认可,难啊(未然)。

前者可以骄傲,是正面信息;后者是负面的畏难情绪,不自信,或的确客观上难以达到。

parse 的是 (1),如果想要(2),还是循“难过”的先例,去在语用层做休眠唤醒吧:  “难过”(“小河很难过”)见 【立委科普:歧义parsing的休眠唤醒机制再探

董:
我以前讲过,在实际语言交流中,人与人之间几乎没有歧义。如果真像nlp一步一个歧义,那还得了。类似范冰冰奶奶、咬死猎人的狗之类的句子是语言学家消遣自己的。上帝是为人准备的语言,不是为机器的。

白:
nlp大多数歧义是伪歧义。问题是,这些伪歧义,对人来说,是在哪个环节被干掉的。只要分析器在按照语言学家的思路做,语言学家消遣自己的把戏,就总有一天会消遣到机器的头上来。

雪:
common sense环节?人自身对于整个世界的建模

李:
CFG based parser,哪怕是 lexicalist 的语法 如HPSH,也有很多伪歧义 parses,可是多层的 parsers 就很少受到这个困扰。这个事实显而易见。可见 common sense 不该是 key,因为 多层系统里面 common sense 即便利用,也是零星带入的 不是主力。

我做博士的时候,导师的实验室里面有一个英语的 HPSG parser,parses 输出如此之多,如此地不能辨别真假,以至于最后在使用这个parser做MT实验的时候,我们不得不只选取第一个 parse,等价于随机选择。

层层递进的多层 parsing 虽然会偶然出现漏掉有效parses 的路径(过早删除),但比起其他 parser 的伪歧义成堆,还是境况好得多。此外,漏掉的有效 parses 在开发过程中,可以被重新补足,或被唤醒。

所以,白老师说 NLP大多数歧义是伪歧义,基本是针对单层搜索的 parsing 算法而言,而不是多层 cascaded parser 的真正缺陷。

梅:
可以说是“common sense”吧。人不是机器。

李:
一般来说,语言学的细线条知识 不划归 common sense 范畴。当然,细线条到一定程度,常识也就溜进来了,没有绝对界限。人类交流没有感觉到歧义,有几个原因:

(1)歧义休眠了,正常的场景不被唤醒,因此无感;
(2)有些歧义不影响大面的理解和主旨的交流,说的人也许本来自己就含混,听得人也没有理由去追究细节。保持某种语义模糊是人类交流相当常见的状态,但是一旦形式化,歧义就站在那里了,除非是做系统的人特地去把歧义中性化或模糊化。一个典型的 PP-attachment 的歧义是 for-PP,以前说过,在很多场合,这个 for-PP 做定语还是做状语,根本没啥大差别。

梅:
人要是想多了,说不定也有“歧义“,但人的“short term memory”是有limit的

李:
(3) 当然还有一部分所谓歧义是系统 “人造”的,本来无歧义,系统自扰之。譬如,在 HPSG 的数据结构 feature structure 的设计中,经常会出现这种歧义。由于过分强调 feature structure 的层次性、逻辑性和合一性,以至于当这个 structure 投入使用的时候,带来了大量的对于人没有区别意义,但对于结构具有区别的所谓歧义。这是与具体的系统formalism 的设计有关,是 system internal 的,与其他 formalism 无关,与人的理解无关,是模型化形式化过程中的产物。unification 是双刃剑,推向极端,系统就失之太过精巧,没有容错性。

刚才例行散步时仔细想了想了这个伪歧义的问题。为什么这么多 parsers,包括传统的 CFG-based 规则系统和统计训练出来的 parsers,陷入伪歧义的泥潭?

白:
没用盘外招呗

李:
得了 得了。我一肚子话还没说呢。白老师,I 服了 U!

白:
羊头+盘外招=狗肉

李:
白老师讽刺我是卖狗肉的

梅:
Spoken 和 written 应该有很多不同吧?@wei

李:
很多不同是对那些从 PennTree 训练出来的系统。对我们的系统,没有什么不同。spoken  的语言不太规范,transcribe 成 text 我一样 parse,质量会有降低,但那是与 spoken text 的随意性成比例的,绝对不会是直线下降。反过来,我以 degraded text 做我的数据制导,出来的系统一样对付正规文体。parse 新闻不会比专门从新闻训练出来的系统差。这是语言学家做系统的好处之一吧,我们是人,不是机器,不会被数据牵着鼻子亦步亦趋。

白:
光分层,不可能把伪歧义去的那么好。这里面太多只可意会 不可言传。有剪必有捡

李:
关于伪歧义,这么说吧:伪歧义太多是枝枝蔓蔓没有及时修剪的必然结果。理论上讲,修枝剪叶是危险的,实践中却不尽然。自然语言中的现象中有很多是相互依赖的,但也有很多现象是相互独立的。如果你设计的系统是以相互依赖作为基本的 assumption,祝贺你,你就跳进泥潭吧。跳吧,跳吧,不要往两边看。

如果你相信语言现象的 dependency 是有限的,可以调控的,即便剪错了也不是世界末日,你就可以在数据制导的开发环境里,逐渐把系统调适得恰到好处:该休眠的休眠,该保留的保留,该杀头的立即枪毙。你就不会为伪歧义所困扰。

白:
一个硬币的两面。靠剪对付标配,靠捡对付长尾。两手都要硬

李:
是的,可是怎么硬呢?硬必须要有语言学的sense,必须知道根据不同情况做不同的对待。缺乏语言学的人 把各种路径放在一个锅里炒,无论你有多大的数据,你也还是陷入泥潭。

雷:
@wei 不是秋后问斩,是斩立决

李:
白老师字字珠玑: 靠剪对付标配,靠捡对付长尾。

雷:
@wei 其实,即使没有歧义,语言理解也是如若有歧义,理解有多个

白:
把人际沟通中的各种暗示、言外之意都算进来,歧义不得了,但是核心的精神,剪与捡,是不变的。

雷:
每个人接受的模式决定了理解的样式

白:
比如站在严格逻辑的角度,从“该来的没来”,本不该推出“来的都是不该来的”;从“不该走的走了”,也不应推出“没走的是该走的”。但是人就是要听话听声。

李:
@雷,一码一码吧。语义落地到人或产品,那是 parsing 的后过程。

雷:
句法是语言学家的

李:
@白老师 盘外招 只可意会不可言传的 tricks 这些在学习系统中怎么去 model 呢?我怀疑学习算法不敌领域专家(对于 parsing 就是语言学家),根据的就是这个。我作为专家如果在迷宫里千辛万苦绕出来了,学习怎么恰好也能绕出来?

白:
@wei 同样的话,围棋高手们也问过。

李:
说的也是,围棋手也这么问过。不过,白老师其实只说了半句话。

白:
另半句,取决于学习模型长什么样。

李:
这个模型的定义至少不该排除领域专家的参与 无论以什么方式 除非设计者是个全才。

白:
标配是必然的,也不排除有个居高临下的模型,俯瞰N个领域,语言只是其中之一,但是人家从其他领域登顶了。就像控制论,把人、动物、机器里的反馈控制一网打尽了。生理学家、动物学家都买账的。尽管创始人是从机器出发登顶的

首发:【科学网:自动句法分析中的伪歧义泥潭

 

 

【相关】

【语义计算:李白对话录系列】

《李白之零:NLP 骨灰级砖家一席谈,关于伪歧义》

【立委科普:语言学算法是 deep NLP 绕不过去的坎儿】

《对于 tractable tasks, 机器学习很难胜过专家》

《NLP 系统的分层挑战》 

《泥沙龙笔记:连续、离散,模块化和接口》 

《泥沙龙笔记:parsing 的休眠反悔机制》

【立委科普:歧义parsing的休眠唤醒机制初探】 

【泥沙龙笔记:NLP hard 的歧义突破】

【立委科普:结构歧义的休眠唤醒演义】

《跨层次结构歧义的识别表达痛点》

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【李白之58:爬楼NLU】

爬楼NLU(Natural Language Understanding): 二楼句法结构三楼语义落地

李:
问各位一个 lexical feature 的转移问题及其解决途径,譬如 “所吃”。在小词 “所” 与 vt 结合成合成词以后,该词的语义等价于vt 标配宾语的语义。换句话说 “吃” 的动作性 语义本体标注 [consume] ,应该被置换成名词性标注 [food]。这个 feature 更新如何实现比较合适?到 HowNet 里面去挖出来? 如果 feature 不更新,那些细线条的指望语义 features 查询条件的规则就会失效。“所” 是一例,“的字结构” 是类似的例子。无论小词负载结构 还是小词参与合成词模式 都躲不过这个 feature 大转移的语义坎儿。当然可以为每一种主要关系(譬如 动宾)从 HowNet 抽取出一个语义词表,等到需要更新的时候,就让系统根据关系的规定来查表解决。不知道有人在 parsing 中做了这个工作没有? 估计很少,多数系统还没有细线条到这个地步。

白:
所,是N/S。的,是N+/X。所吃,是 N/S 与S/*N*,结合以后变成N/**,这是句法层面。subcat层面,它继承S的逻辑宾语坑的subcat。的,就没这么精准了。X里面谁空着就提取谁的subcat。“这本书我送的是他。”间接宾语也能提取。*N*是分母的一般形式,吃还是S/2N,所吃,是N/N,被谁所吃不知道。我所吃,N与N/N正好得出N。

李:
这里的继承有文章。“所吃” 继承的subcat 有:(1)“吃”的本体标配宾语,(2)subcat 剩余坑,也就是主语坑 /N == [animate]。这两项继承 一个是本体自己的 type 一个是坑的 type,都不是简单的事儿。因为承载本体的语词“吃” 由于小词“所”的作用 ,已经与本体概念 来了个乾坤大转移。

白:
[animate],[food]; 继承后者,即food。“这碗饭的所吃”不可以,

李:
N/**,这个句法符号里面有很多本体名堂。当然,这些本体关系信息都是现成的 ,Hownet 里面就有类似的知识表达:吃: s=[animate] o=[food]。

白:
“考”有点特殊。我们不知道“考”句法上应该是几个标配坑,但“所考”的subcat可以是人、学校、科目、某种证书。也就是说,不排除标配坑与subcat的对应有多元化的可能性。简单说逻辑宾语是不足以刻画这里面的复杂性的。不过,“所考”不可以继承分数【score】, 似乎所有事前不能有所控制的,都不能用“所”。“所梦”VS“所梦想”

李:
甲: 吃了吗
乙: 吃了
甲: 所食何物?
乙: 所食非物。
甲: 莫非秀色?
乙: 非也。 所食不过食堂耳。
甲:我的所吃更惨 非食堂 非馆子 更非秀色。所吃乃瘪、苦头、抑或 一鼻子灰。

白:
嗯,句法层能说“吃食堂”,“所吃”就可以是“食堂”。就是说,“吃”的逻辑宾语,是一堆而不是一个subcat。

李:
我要说的是 本体标配受事,还有一个上位概念,这个上位概念倚靠的是句法,表达的是逻辑谓宾的语义相谐。它不是本体那样纯粹 那样独立于具体语言,但又离不开本体的大框架。我一直把这种上位逻辑语义叫做逻辑宾语、逻辑主语,有意借用句法术语,加上前缀“逻辑”。所以逻辑宾语 可以是 【受事】、【对象】。【地点】等,以及其他种种说不清的搭配,逻辑主语 可以是 【施事】、【工具】、【地点】等。

白:
语义相谐不局限于受事,而是“可宾”的subcat。所砍,不能是工具。所去,可以是处所。所卖,可以是买主。所送,可以是对手方。

李:
这个 logical S 和 logical O 其实是很关键的概念。

白:
但是标逻辑主宾语给谁看给谁用?
语义落地,还是本体的坑好用,除非像“所X”这种含混的。

李:
主要是为了概括句型:svoc,就三个args。arg0 逻辑主语,arg1 逻辑宾语,arg2 逻辑补足语,更加杂乱一些,包括谓词结构嵌套也在内。但不管这三个 args 的内部逻辑语义细节多丰富,这三个坑从语言句型结构上定下了框架,万变不离其宗。

白:
好像不需要这一层,大面上也都可以语义落地。从“跟谁有关系”到“是什么关系”。
当“是什么关系”有多选时,就对应subcat集合,当然可以有个概率分布之类。按老乔的理论,你这是移位前的“logical form”,本质上还是句法。

李:
对 是句法。句法才是纯粹的语言学,到了语义就开始变味了。

白:
但是这标签贴了又不是最终落地用的,感觉不爽。要贴标签的话,还是只贴一次为好。句法不贴又何妨。

李:
在我这儿 语义落地靠的就是 svoc 句型,有了svoc 的框架,落地的句型 就一目了然了。 具体工作不过是给句型做细节条件的微调,然后就落地为具体场景的角色了。譬如 o 落地为 【发布的产品】,s 落地为 【发布产品的公司】:Apple launched iPhone 7 yesterday

白:
在我这儿,“可宾”包括的subcat范围,一是可以学出来的,二是仅仅跟少量词语的语义落地有关,没有大动干戈的必要。大多数落地(role assignment)的场景都不需要这个中介。

李:
把 s 标签 map 到 【发布产品的公司】这类工作,简直就是玩儿。 是典型的以不变应万变。不管产品和客户需求有多少变化 本质上 语义落地玩的就是换名的游戏。比起 parsing 这一层工作的繁难,信息抽取层面的这些工作太简明了。 虽然需要落地的谓词 都是少量的,但所有的谓词都逃不过句法的逻辑句型。 因此针对所有谓词建立句型模式 就形成了一种以不变应万变的结构准备,接下去爱怎么落地 都是一览众山小了 跑不过如来佛的手掌 。所以 这一层本身虽然不是客户的需求 而只是内部的桥梁,但我还是很推崇它作为语义落地骨架或桥梁的地位。

白:
如来佛手掌可以有多种造型

李:
那是。跳过它落地 完全可以想象。也许是偏好 总之玩一个主人三个仆从的游戏觉得很好把握,组合一下 也是非常有限的边界。不会做着做着 觉得进入迷宫 或搞不清漏掉多少。说着说着 觉得自己一方面批判乔老爷(参见【乔姆斯基批判- 李维), 一方面可能中了他老人家句法中心论、句法自足论的流毒太深 而不自知。

白:
从“有关系”到“是受事”,中间再经历一个环节好,还是直达好?我的选择是“直达”。至于“受事”是“发布的产品”,这只是一个alias。没有什么技术含量的

李:
对呀。正因为没有含量 所以就更像是游戏。真正有技术含量都在前期的 deep parsing 里面了,那才是自然语言理解的核武器。换句话说 svoc deep parsing 已经把句法做到通用领域的极致了,以至于落地到领域几乎就是一个换名的游戏,换一个领域容易接受、客户听起来舒适的情报标签。

白:
回到前面“吃食堂”,“食堂”可直接匹配“处所”,我说它是O不是O,有何意义?

李:
关键的 argument 还是:落地是千变万化的领域 和 各种不同客户的需求,但 svoc 永存 永远不变。只要领域用的是语言数据 这就是恒定的,就如二元关系的永恒一样。

白:
这里焦点不是有没有,是可不可以不用,不用是否一定差。语言学有很强的构造性,你构造他就有。角色本地名称是第一性的,通用名称是第二性的。对机器来说本地名称可以是不要名称,只有编号:第一个语义坑、第二个语义坑……,给个本地别名,就是公司、产品,给个通用名,就是施事受事。

李:
关于直达还是通过语义中间表达的桥梁,我也问过类似的问题。我诘问的对象是费尔默理论。在信息抽取的落地框架前, 有没有必要先经过一下他老人家的 FrameNet 的框架?我的答案是否定的:多此一举 没有必要。这就基本否定了 FrameNet 的实用意义。没有必要的理由是 FrameNet 理论上缩短了语义落地的距离,实践中增加了落地的麻烦。一个 svoc 的简单通用句型 分化到成百上千的 frames 去 还没有最终到达目标地。

白:
svoc也没有达到目的地,“有填坑关系”不是更干脆么,中间的过程,无论借助subcat锁定还是借助语序,都是自动化的。

李:
svoc 可控、intuitive,而且语言学家如数家珍。其实,说了半天,从落地对策的大类上,我和白老师是一伙的。标不标 svo 只是细节的差异,虽然从我的架构看,这个差异还是蛮重要的。

白:
语言学家如果是我培养出来的,用我这一套也可以如数家珍。

李:
但如果落地从领域落地泛化到通用的应用,譬如搜索,搜索没有预先定义的事件。svo 的搜索比较容易训练给大众,这与多数人的基本语感相吻合 who did what.  这类重要应用增加了 svo 的独立价值。你要搜索产品发布事件?好 那你就搜索:“发布” 其宾语是 【产品】。至于这个宾语在语言中有多少变体的句式 那都不是大众需要关心的,deep parsing 早就 normalize 了。

白:
这只是一个动词被“实例化”的wizard

李:
如果不标svo, 搜索的时候可以这么说,搜索 “发布” 其二元关系词是 【产品】,也可以达到类似的结构搜索的效果,返回精准的产品发布事件的清单来。比纯关键词词搜索精细高明多了。可是如果客户想 搜索所有受雇的人 ,在 svo 系统中 就搜索:“雇佣” 检索出其【宾语】出来。在不标 so 的二元关系系统中,雇主和雇员就混在一起了。

白:
1、你无法排除取消发布、拒绝发布、打算发布、能够发布……这些用模态词沾染过的发布;2、发布的如果不是产品而是新闻怎么办。svoc自身无法区分哪些是产品哪些是新闻。

李:
这些都不是问题。或者说不是因为增加 svoc 而新出的问题。svoc 反而为在何处解决那个问题提供了蓝图和便利。这都是另外层面的问题,譬如节点的条件、数据的来源、李ta data 等。与评价 svo 本身的利弊没有关系。

白:
我的问题是,如果这些区分导致svoc这一层反正信息不足,反正还需要借助另一层的信息,那么直达那一层有何不妥

李:
但信息不足是有不同层面的。任何图谱(graph),是 arcs 信息不足,还是 nodes 信息不足?还是超越句内结构的discourse不足,还是 meta data 不足?不能混谈,虽然这些不同层面的信息有相互弥补的作用:戏(arcs)不够可以词(nodes)来凑。

白:
标签不足。

李:
arcs 不标标签 是一个极端。arcs 标了 soc 是多了一些句法结构的关键信息,soc 再细化为董老师的90多种逻辑语义,就又更多了信息。nodes 呢, 啥也不标 是一个极端, 标了 pos 有了一些信息分类,再标 subcats,进而做NE实体标注(包括产品),直到引进 常识本体乃至领域本体(ontologies), 信息就越来越丰富。自然也越来越难维护和掌控。

白:
反正要上三楼,就是二楼的高矮问题。

李:
对。

白:
如果为了上一个高的二楼,导致付出的代价接近上三楼,二楼就取消算了。三楼的细活儿做得越好,二楼矮点儿就越没关系。

李:
为搭建二楼 svoc 所需要的信息及其技术手段,基本全部可以继承下来为三楼服务。所以 为什么说 parsing 不仅仅是所看到的树结构,也不要指望一个 offshelf parser 就很容易语义落地为产品了。parser 要成为语义落地直通车, 需要借用 parsing 本身所带来的资源积累。结构图只是这些资源的一个最容易彰显的部分 但绝不是全部。

白:
自带插销插座,到三楼装配起来就easy多了。

李:
完全同意 同感。但 “二楼就取消算了”,不愿苟同。问题是三楼是 moving 的,业务场景变化 客户需求变化 产品角度变化 ......  都使得三楼细活显得琐碎而不容易概括。

白:
不会
那都是贴牌问题,瓤不是moving的。

李:
二楼是清晰定义的目标。在我看来,二楼的 svoc 正是不变之瓤。

白:
我的二楼是让有关系的都勾搭上。是什么关系你们到三楼谈。但是自带了三楼才会用到的插销插座的,不妨提前锁定。到了三楼,就只剩贴牌了。但是也有需要必须在三楼才能锁定的,二楼无须代劳和强制。

李:
理论上 必须在三楼做的 只是领域知识。这些知识在二楼是避开的。

白:
另外贴牌是很外在的东东,没必要单独一层,只相当于在三楼化个妆。只需要示例就可以让领域的人干,都不用跟语言学家打照面。

李:
然,贴牌很多时候不过是 config,可以让用户或产品经理根据喜好而定,随时更换。

白:
跨领域的实体数据库,这个环节可以众包。领域知识说起来是无底洞,但是做法不同收效相差很远。根本分歧是,知识的使用是“推演”的套路还是“联想”的套路。“推演”的套路精准但笨重,只能借助人工而无法借助大数据。“联想”的套路模糊而轻盈,不过多依赖人工而寻求借助大数据讨巧。只要模糊给出的效果是应用可容忍的,“联想”的套路就会胜出。所以,哈工大做的“事理图谱”如果沿着联想的路往前走,我很看好。有理由相信,语言处理需要的知识,不是“精准”而是“轻盈”。对话场合大不了还可以追问。文本场合虽然不能受理追问,但受众有相对充分的时间调动“精准”的手段。二楼的高和矮,如果涉及到二楼的业绩,确实另当别论。如果二楼三楼的发明人都是公司的大老板,或许另样格局。这两碗水怎么端都是平的。

 

 

【相关】

【语义计算:李白对话录系列】

乔姆斯基批判- 李维

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【李白雷54:句法语义纠缠论】

白: @wei 微博上的讨论很有代表性。

李: 看到了,这个错误放大(error propagation)的问题,我以前也讨论过。很多人是杞人之忧,包括雷司令。@雷 你上次说到,parsing 需要准确才好做知识图谱。还说差之毫厘失之千里,其实完全不是这样子的。估计你是深陷在你的 parser 里面,还没有真正放开手做知识图谱的工作。

说句实话,所有的抽取工作,对于 twitter 和微博这样的短消息的细线条的舆情抽取是最难的,知识图谱这样的工作比起前者简直就是 piece of cake. 我们跟舆情奋斗了这么几年,比较了一下里面的复杂度和tricky的地方,也比较了里面实现的规则,可以说,最难的果子已经吃过了,剩下的大量的知识图谱类的抽取挖掘关系,在 parsing 的基础上,就是一个单纯的工作量的问题,没有门槛,没有难度。

信息抽取中的两大类,一类是客观事实类抽取(关系和事件),针对的是客观语言(objective language),这就是知识图谱的主要内容。另一类是舆情抽取,针对的是主观语言 (subjective language),情绪和评价类。后者的难度高出前者太多。

客观事实类抽取包括:专名 NE, 这是做基础的工作。下面就是在这些NE之间找关系(relationships),找事件(events)。为了抽取出来的东西可以整合(fusion),为挖掘服务,里面还有一些 CO (coreference)的工作。

雷:  知道Watson是怎么抽取相当于100万书籍的知识吗?

李:  上次我就说,如果主语宾语弄错了,那么按照错误放大的说法,抽取是不是就一定做不了呢?答案是否定的。parsing 错了,也可以支持抽取。只要错误是可以预见的,错误不是全方位的。

推向极端就是 @白 老师的“意合”系统。你看,根据词和词的 semantic coherence 的某种模板,甚至没有 parsing 都可以做。何况有了 parsing,不过是 parsing 偶然断链,或错置呢?有很多弥补 parsing 错误的手段可以在接近产品的层面施展,包括 domain knowledge 和 ontology。

雷:  我做过英文文献的药物副作用的抽取。严格的svo,结果不错。但我的感觉是,如果parsing再准确一些,结果会更好,而且事后的处理要少很多。这个仅仅是我的感觉。

李: 再准确也不能完美,主要还是思路要转变。

提高准确性是一个 incremental 的过程,而且一定会遇到 diminishing return 的两难。关键是在做抽取的时候,要知道,利用 node 的信息,可以弥补 arc 信息的不足。node 就是词,arc 就是句法。句法不够,词来补,因为词本身就是语义的最基本的载体,里面可以玩出很多名堂来,包括 ontology。

雷: NLP像地基,如果结实,可以起高楼。后续的修补要少,后面的工作就是建立FACTS,问题是战线要拉多长。

白: 意合法从来不拒绝partial parse tree,句法有什么拿什么,没有也憋不死。

李: Parsing 当然是地基,地基好了一定省力,这都没错。这么多年鼓吹 deep parsing 就是基于同样的理念,因为业界的 parsing 太 shallow, 没有地基。中文NLP 玩了那么多年的业界,谈起 NLP,默认就是切词,或者在切词上做一点啥,譬如 base  NP。

雷: 事后修补也是对的,这个在认知心理学中也有证明。但是,这种事后修补在认知中不是大量的。工程的探索和应用是一个方向,认知上探索也是一个方向。

李: 白老师,严格的说,不是句法与语义配合到怎样的比例才做好系统。我们实际上是说,显性形式和隐性形式怎样搭配(参见【立委科普:漫谈语言形式】),才能出一个高效的NLP系统来。可以简单地用句法手段来代表显性形式,语义手段来代表隐性形式,但是说句法语义容易歧义,不容易讨论清楚问题。所以上次,白老师提到 POS 有时候有害,不如语义分类好用。其实白老师说的不过是粗线条的隐性形式POS(一共就给词做10多个POS分类)和细线条的隐性形式(成百上千的语义分类),后者对于汉语分析的重要性。这个没有任何疑问,因为说的都是一家:隐性形式,都是语言里面看不见的形式,都是人必须在词典了给出的 tags,或者需要专门模块去给的 tags。所以我说,再纯粹的语义系统,只要是为工程用,就绝不可能放着显性形式不用,而去舍近求远地依靠隐性形式的语义。只有理论研究,可以放弃显性形式,因为放弃了显性形式,可以从理论上做出一个 universal parser,它可以 parse 人类任何的语言。显性形式(词序,小词,词尾和其他语缀)是 language dependent 的,只有剔除它,才可以做"纯粹语义" 的系统。

雷: 同意,不能放着有用的信息不要。我觉得模拟人的认知可能最是捷径。

白: 前提是,句法不能挡路,不能说你分析不出来了还不让语义按自己的逻辑往前走。

李: 还有,纯粹语义系统肯定不如显性形式可靠。在显性形式可以决定的时候,没有语义(隐性形式)出场的必要,它只会添乱。乔姆斯基的 Green ideas 的伟大实验就是要证明,显性形式能够做决策的地方,语义和常识都失效了。汉语中,“铅笔吃了我”,“铅笔把我吃了”,就是又一例证。绝对不会因为有了隐性的语义格框:动物-吃-食物,就可以用来解决 “铅笔吃了我” 这样句子的语义,这时候是(显性)形式的句法所决定。这样的句子就是显性形式词序或小词“把”在主导,没有语义(隐性形式)出场的空间。再举一个有力的例子,在有显性形式的格标记的语言,宾格基本对应的就是宾语。没有一个 parser 会不利用显性形式格标记,来做分析的。因为它明明告诉了“我已经标注好了,注定要做宾语”,你有什么道理要按照[动物-吃-食物] 这样的语义框格去找宾语呢?

白: 注定的话也不要说绝了。在幽默或修辞的场合,会来翻旧账的。

李: 意思你明白的。

雷: 语意是一个没有学过语言学的人可以说上一些东西的,但他很难说语法的东西

白: 你说的那不叫语义学,叫学语义。

小词本身也携带语义信息、结构信息,比如“的”。为什么我说从语义角色指派的逻辑上看“这本书的出版”和“这本书的封面”有很多共同之处甚至本质上相同,就是因为它的回环结构。

雷:  “这本书的出版”和“这本书的封面”的相似度又有什么计算方法吗?

白: “出版”有两个坑,“封面”有一个坑。“的”是提取坑,不管一个两个,不管动词名词形容词。

雷: 出版与封面在wordnet上有什么近似度吗?

李: 你那个“的”是提取坑,我搞不明白。出版是逻辑动词,封面是逻辑名词,迥异。

雷: 封面是没有坑的,有属性,封面是一个class,坑是method提供的。

白: 有坑,part-of,是什么的封面

李: 这是一个 single-arg 的坑,partof 和 wholeof 互为坑。语义面上的,不是传统句法subcat上的坑。

白: 对,一价和二价的差别,如果规定从右边的变元提取,就没差别。右边饱和了,就往左挪。及物动词填掉一个宾语,就成了不及物动词。与此类似。

李: 具体谈一下这两例。结论是?

“的”作为显性形式的小词,其提取作用,与英语小词 of 和 's 类似:

translate A into B --> translation OF A into B
A's translation into B
a book's translation into B
a book's title

白: “的”的定义,就是f(x1,x2,……,xn)的xn,你给我一个f,我就给你一个xn

雷: 以面向对象的模型类比,class,method,和attribute,书是class,封面也是class,但封面又是书的一个attribute。

李:  一般的关系分析并不深入到“partof”这个级别。一般遇到 “的” 或者英语的 's/of ,就是粗线条分析到 Possessive 这一个包罗万象的关系为止。这本书的封面,粗线条就是,“封面”属于“这本书”。而“这本书的出版”则不用,所有的分析都指向动词的 subcat。

白: 粗线条对于汉语不行。汉语有显式的句式与part-of有关。

李: “这本书的出版”,只是利用了小词“的”,把动词名词化,与动词直接加宾语,分析同:出版加宾语,通常在右边,这是一条。变式就是:可以名词化,用“的”,宾语前置。

白: 比如 “老李把脚冻肿了”,缺省是老李的脚,不是别人的脚。

李: 那是,不过这个分析真地太细。

雷: 老李的脚是一个NP

白: 老李的脚,老李的讲演,老李的意见

李: 缺省是老李的脚是常识,否则就会显性的把别人的脚表达出来。英语 “撞了我的头” 常常是:hit me on the head,这个 the 缺省的就是 me。翻译成汉语就用显示的 possessive。

雷: 老李的人的概念,提供属性与构成结构

白: the有anaphor的功能。

李: the 不过是显性地标注了 anaphor ,汉语没有 the,默认的还是 the,而不是 a。凡是一个名词表示非限定的含义的时候,其汉语的用法和条件相对来说,比较可以找得出来。而默认的 the 的含义,不太容易找出条件来,所以默认是个好东西,不需要去定义外延,外延靠别的东西去定义。

雷: 昨天不是有一个language universal的帖子吗?相近原理。

白: 看看汉语讲故事怎么讲:从前有座(a)山,(the)山里有个(a)庙,(the)庙里有个和尚讲故事。

李: 对,我们其实有 a,但常常没有 the,于是 the 是默认。量词是 a,"某" 也是 a, 我们甚至直接用“有”来表示 a (“有人”昨天来讲课了; “有部件”坏了--》一个部件坏了), 当然还有”一“,也可以用做 a,所以汉语表示 a 的形式手段还蛮丰富,因此就不需要 the。the 是默认,实在还是不清晰,就用 ”这“、”那“ 等指示小词来强调一下限定的语义。

白: 都是不带形式标记的anaphor

雷: 细致的坑是ontologies的。parsing中动词和形容词有坑就可以了

李: 传统的 subcat 的坑是粗线条的,里面映射的可以是细线条的语义约束的坑。语义模板与 subcat 的关系。

白: anaphor 的 trigger 必须带坑。本身共指,或者 part-of 共指。记得 Winograd 讲过一个例子,一个小孩得到了一个礼物。当他打开(the)盒子,发现……。盒子就是装礼物的盒子,用the勾连起来。

李: 恩

白: 咱汉语里都是隐形的,于是“盒子”作为 “坑的 provider”,必须写到词典里。封面,也一样。

李: 恩,封面的优先主人是谁的信息在词典里,针对的是出版物。

白: 出版的受事坑,恰好也是。所以用的,一提取一个准儿。

县长派来的,比这复杂,因为"派"和"来"各自提供的坑,被一个“的”给提取了。或者说,"派"和"来",经过了一次内部整合,统一一个坑对外,被“的”给提取了。派是兼语动词(三个坑),来是不及物动词(一个坑)。但是“派”最左的坑被“县长”填充,饱和了。“派”的另一个“事件”类型的坑,只能接受“来”。于是剩下的那个类型为human的坑,与“来”提供的类型为animate的坑,统一对外了。

李: 很有道理。填坑最好的是只有唯一的候选人,没其他可选。最麻烦的是要动用语义优先。语义优先可以作为知识,预先学出来或标出来,或半自动,先学后标(postediting)。可是在使用现场需要层层松绑,想想就头大。遇到结构歧义(不是伪歧义),还不是松绑的问题,而是对比的问题,要看三角恋的三方,哪一对最有 chemistry。松绑只是对条件按照 taxonomy 去有步骤放宽,而对比不是,对比需要动态的看随机配对的力量对比。不是不可做,是 overhead 太大。如果不考虑 overhead 和实用,力量对比的评判比层层松绑更容易,因为前者是二值的,总有一个吸引力更强,后者是趋于离散的。

原载 《铿锵三人行:句法语义纠缠论》

【相关】

【立委科普:漫谈语言形式】

【语义计算:李白对话录系列】

【李白之50:符号战壕的两条道路之辩(续)】

白:
我的思路是:句法维护纯二元关系,模式编码进subcat,直接对接语义。纯二元关系对模式既兼容又有更大的robustness,不用白不用。

李:
pos 支持句法做粗线条分析 subcat支持逻辑语义做细线条分析?

白:
必须的

李:
那倒未必。可以结合做的。显式的句法语义关系可以一起做, 没有句法关系的隐式逻辑语义可以推后。subcat 结合句法语义。

白:
模式方法中,小词的缺省和成分的倒置,只能认为是不同的模式,不穷尽则不work。二元关系方法中,缺了小词也好,倒置也好,在subcat那里都可以重构出来。输出是现成的,既可以跟着cat一起输出,也可以等语义落地了再输出。这是个简单的配置问题。

李:
缺省不怕:就是 optionality,不是模式必需的。倒置的确需要增加模式,没办法,模式也是线性。

白:
“我紧张,一见到那个人。”
省略了“就”,而且倒置。但是在二元关系方法下,这都不是问题。

李:
但n元模式,在多层系统中,并非全排列模式。模式负担完全可控。也可以类似于二元的样子,一层层做:起码动宾与主谓通常被认为是不同层次的组合,无需SVO全排列。推得极端一点,n=2,多层n元就成了2元,也是可行的策略之一。

白:
对“一”的subcat标注,已经隐含了对“就”的“脑补”。
语义frame任何语言中都不必然是二元关系,这层落地映射,本来就是缺不了的,并不是因为模式而特设的。

李:
exactly

白:
句法专注二元关系,好处多多。

李:
1 【一VP(S)就VP】
2 【一VP】
也就是两条模式捕捉的事儿。都很直观 intuitive。捕捉了,还不是要怎么玩语义怎么玩。

白:
这实际是语义直观,跟那些多元关系是同等对待的。

李:
第1个模式涉及5元,第2个模式是bigram,我说过,模式也就是以三元为峰值的正态分布。并不是想象的那样组合爆炸,完全在可掌握之中。最大特点还是其接地气,直观,容易 debug 和维护。不就是给语言结构拍照吗?所谓句型练习(pattern drills),人学语言也就是这么个事儿,我们当过外语老师的,都知道 drills 的重要。

白:
那个完全是UI的问题

李:
如果你做二元配对,我心里想的是五元模式,【一VP(S)就VP】 这样的模式,你如何把二元的过程UI到我感觉舒服的五元模式呢?

白:
双宾语结构也是一样啊
二元的过程是在机器里发生的,五元模式是结果,不在一个频道上。边加够了,五元模式就出来了,就这么简单。

李:
机器发生的过程 不是基于词典的标注吗?这个标注不需要人去做 去维护 去 debug?

白:
但过程总是一个一个边加的

李:
那是因为你的 parsing 是 PSG的 parsing 过程,虽然表达的是DG。这个 PSG 的过程,是遇到任何物件都不能跳过去,要一个一个的叠加组合。

白:
能跳,否则就无法处理交叉了

李:
从你画的图看,还是一个不跳地在叠加,只不过叠加的顺序可以不同,然后导致一些远距离二元关系的最终建立。(当然你的X见人见鬼,先加上再说,也算是一种模糊应对或“跳过”。) 换句话说,parsing 的总过程与经典的 chart parsing 没有看出大的区别。

白:
这理解是错的

李:
可能。也许我看得不够仔细。

白:
从数学上看,模式引发的步骤不是分析树的“构造”而是分析树的“映射(变换)”。这个映射环节引入PSG还是引入DG的差别是细节的差别,核心的精神都是一致的。如果你说的“跳跃”意味着“映射”的引入,我目前确实没有,但 1、这并不影响在较上层的节点上,映射的结果和非映射的结果会得到相同的语义落地。2、如果一定要引入映射,与我现在的体系也毫无违和感,可以兼容处理好的。

另外,不包含映射的技术方案并非都是一丘之貉,彼此之间可以有天壤之别。这实质上是模式驱动的“一揽子”填坑动作,可以加速分析进程(就是你说的“跳跃”),又不破坏填坑的基础架构。但是我要说的是,既然看到了这个实质,映射的触发就不必拘泥于从左到右的模式匹配,一定程度上的词袋模型一样可以触发!实际上我在subcat里面做的事情就是这种不完全信息的模式触发,只不过做在了语义层。语义层都能做,回头做句法层纯粹就是锦上添花,照顾语言学家的UI感受而已。我不看好从左到右依次匹配,但我认同通过映射实现跳跃。语言学家不应该成为排列组合匠, 更不应该为某项排列组合的缺失而背黑锅。除非该项排列组合有明显不同的语言学意义。此其一

另外一个因素就是模式在激活之前的状态一定要有一个载体,而且这个载体必须跟着分析进程动态维护。伟哥有分层的fsa做这个事情,我是用词负载的subcat(实际上就是词袋)做这个事情。词袋的好处就是对排列无感,只认组合而且允许组合缺斤短两。在某些场合,词袋的部分填充会造成激活歧义。所以要用“状态”记录这些有歧义的部分填充(套用时髦的量子话术,这就是几个候选词袋的“叠加态”)。随着分析进程的展开,叠加态会“坍缩”到确定的词袋上,完成激活。

李:
大赞。...... 先赞后辩。
没全看懂 但似乎又懂了 貌似透过做法看实质 有不少共同的观念。消化消化。

白:
“人肉”本意是名词。在“人肉搜索”这个短语中是副词(N降格为S+),意思是用活人去深挖特定对象的隐秘信息。再简化一点去掉“搜索”二字,“人肉”就成了动词了(S+升格为S)。升格降格操作的活标本啊

李:
人肉搜索 不是宾语提前?把衣服扒光 不是人肉?

白:
“这个公司的所有人都是好样的。”居然有歧义。

李:
“所有-人” 歧义(hidden ambiguity): 单数 vs 复数, 复合词 vs NP,黑箱 vs 白箱,[possessor/N] vs [All people]

白:
“发言的是我们公司的。”

李:
1[human-action 的] --> NP[human]
2. [human|organization 的] --> AP[possessive]

1 + be + 2 --> 1 belong-to 2

“发言的是我们公司的。” --> [发言的 human] belong-to [我们公司 的 possessive】

所谓句子解析及其语义落地,不过就是模式的拼接。

白:
“作业你是不是不打算做了?”

李:
1 [plan V] --> plan-V (verb compounding like)
2. [ NP VP] --> S Pred
3. [NP S Pred] --> Topic S Pred
4. Topic S Pred(/O) --> O S Pred (所谓先耍流氓后结合:有“做-作业”的可分离动词的搭配关系更是坐实了远距离勾搭)
5. Vt NP --> VP
6. Vt --> VP(/O)
7. "是不是不" can be treated as one compound 小词 whether (or whether-or-not)

白:
是你打算,还是作业打算?是你打算做作业,还是作业打算做你?由什么决定?就本例而言,语序已经完全乱套了,只有subcat能决定。好在我们知道,计划类动词具有穿透性。打算的两个坑,是human、event;做的两个坑,是human、thing。这两个human就是穿透确定的共享萝卜的坑。往前面看,能填的只有“你”。“做-作业”离合词的远距离锁定,从另一个侧面做了神助攻。所以,不管前面“作业”和“你”的顺序怎么折腾,它们的subcat如同狐狸尾巴,总会泄露真正的结合方向。我们不需要S/O/Topic这些名目,直接根据萝卜和坑的subcat相谐性,就可以选择行的,排除不行的。也不需要针对不同语序设置不同模式。跟着词条走的cat/subcat就足够确定目标了。

“你懂的。”其中的“的”就是句末助词,标记为+S。“我是不懂。”其中的“是”是表强调义的副词,标记为S+。“你是不懂的。”其中的“是”和“的”借助这两个修饰语标记完成了绿叶的使命,把红花凸显出来。但是这种做法的好处更在于,“是”或者“的”之一缺位时,句法上照样work。红花之间的关系照样不变。不需要针对几片绿叶的有或无的排列组合一个个遍历。

李:
这话说的,好像世界上就有人有直道不走,偏要走弯道似的 哈。白老师雄辩。
排列组合遍历很多时候是免不了的,除非可以证明这些绿叶红花的排列没有意义, 所有绿叶都是可有可无的。语言的最大形式特点之一就是排列,或曰线性次序。概念通过语词,关系通过小词以及词序,线性地流进我们的耳朵。小词和词序,作为显性语言形式(参见【立委科普:漫谈语言形式】),其功能本质是一样的。由于信息和形式的冗余,厚此薄彼可以作为一个可行的策略,作为一个精算师的算法之一,但拔到理论高度说,让小词负载结构,赋予重任,同时忽视词序来取得鲁棒,总是很难让人信服的。

汉语的省略小词,是如此普遍,就跟汉语的词序灵活一样,都给鲁棒提出挑战也留下空间。你可以厚此薄彼作为一个 parsing 策略,别人也可以厚彼薄此作为一个策略。更有人二者都不厚不薄,利用模式,用?(optionality) 传达鲁棒,用显性排列形式的 obligatory 出现(何时、何地)来表达精准及其语义落地。有何不可?有何不好呢?能想到的不好都是实践层面,而不是理论层面,譬如:(1)可行吗?组合爆炸,排列得过来吗?(2)即便不组合爆炸,有本事伺候排列吗?(可维护性)

可行性的问题已经有答案也有实践,就是多层。Note that 这个多层也不是单单为了可行而采纳的。多层反映的是自然语言的 configuration(参见乔老爷杆杆理论,X-bar,科学网—乔氏X 杠杠理论以及各式树形图表达法),也是语言本质之一,譬如动宾(VP)与主谓对于多数语言就天然不在一层。

多层排列的可行性,其理论基础在于人脑记忆的有限,自然语言的可学习性。如果语言本质就是排列的组合爆炸,人也无法学习语言了。我们所做的不过是瞄着人 parse 语言的样子,去模拟实现它。符号逻辑的模型透明性和可维护性在多层模式里面得到了彰显。

第(2)个问题是本事问题。的确多层排列算法不是每一个人都玩得转的,就如小词负载结构兼以隐藏知识的大数据中间件除了白老师迄今无人能玩一样(甚至无人想到了这条路,参见【李白之15:白老师的秘密武器探秘】)。两条路线都严重偏离主流,主流人才的多数或者无视或者没有历练/本事来玩转这任何一条路线。

正如尺有所长,寸亦有所长。如今是各自玩各自的。区别在于,这个战壕自认为可以对nlu挖掘更深(这一点在下确信无疑:毕竟坐井观天一辈子了,天可能还是没看清,但井的深浅是清楚的,如数家珍;而且不需要做天外比较,就可以得出结论,因为自然语言在这口井里面基本是已经见底了),主流的战壕在我们不过是摘除低枝果实(这一点无法确认,保不定哪一天主流就突然从导弹演化为核弹,也未可知,彼此祝好运吧)。

白:
小词“可”负载结构,不是“仅”小词负载结构。语言的层次性在技术上“可”通过分层fsa消化,不是“仅”通过分层fsa消化。模式也不是“仅”通过负载结构的小词消化。同样负载结构的实词、算符优先序,都在推波助澜。一个句法体系和技术体系,一些特色或许突出,但贡献是多个特色联合作出的。

我不希望受众被误导。

李:
哈 我也不希望误导,或被误导。
其实,因素比重的差别,还是构成了技术路线的不同。也许用“小词负载结构”(的因素)来概括或代表白老师的路线,就好比以“多层专家词典排列模式”来代表的立委路线(听上去好耳熟,对了,历史上有过被毛委员往死里批判的立三路线)一样,都是不准确的。但仔细看过讨论系列的会了解其中的路线之别。

二元句法在前,逻辑语义在后的策略之所以可以成功,我觉得是因为有了“大数据中间件”的助力,否则很难想象那么简单的句法操作可以应对那么复杂的语言现象。所以,让我 wonder 的主要是大数据中间件,如何训练如何使用的。而对于二元本身,特别是小词负载结构,相对于多层专家词典的模式匹配,我没看出多少优势。如果硬要评价 pros and cons,从我的角度,前者长于简洁(也许也增强了效率)和鲁棒,后者更符合语言学家的语言认知和描述习惯,可以更加从容地对语言做精细而不失鲁棒的描述。

重要的是,二者同属符号主义,同一战壕,也似乎都可以包容对方。

 

【相关】

【李白梁49:同一个战壕的两条道路之辨】

【李白之16:小词负载结构与小词只参与模式条件之辩】

【李白之15:白老师的秘密武器探秘】

【立委科普:漫谈语言形式】

科学网—乔氏X 杠杠理论以及各式树形图表达法

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白梁49:同一个战壕的两条道路之辨】

小词负载结构 vs.  模式专家词典

白:
我举的例子“这个字他是不会写错的”意思是“他不会写错这个字”。

李:
【是 …的】 小词筐式结构 里面包了一个谓语 表示肯定的语气。如果没有 “的” 那么通常 “是” 就转为强调小词(emphasis particle) 依然是肯定语气(affirmative mode)。如果没有 “是” 只有 “的” 那还是肯定语气 但似乎弱了一点。

我吃素:
我是吃素的
我吃素的
我是吃素

我不吃素:
我不是吃素的
我是不吃素
我不吃素的

“不是吃素的” 是熟语 半路杀出一个程咬金 有黑箱义与通常的白箱义两种。“不吃素” 不是成语 只有白箱子语义。这算是个小插曲,是个案。

白:
“应付这种局面他有准备的”

李:
应付这种局面他有准备:
应付这种局面他是有准备的
应付这种局面他是有准备 == “应付这种局面他的确有准备”

三种变式 都是肯定语气 不同程度而已 给基式增加一点语气色彩 不改变逻辑语义。

白:
好办,这种“是”,直接标成S+,“的”直接标成+S。bingo

李:
Bingo ?
“是”、“的” 还有很多其他用法。 都靠 wsd 去选?假如只有一种 pos 自然没问题。

白:
“是”还能做N+

李:
假如 pos/wsd 模块可以准确输出一种 pos 也自然没问题。第一个假如 只有到理想世界寻,譬如 世界语 或 计算机语言。第二个假如 是 传统系统架构的误区。铁路警察各管一段 听起来干净利落 模块清晰 实际不知道误导了多少良家上进男女青年学子。

前置状语性材料 S+ ,后置状语性材料 +S,哪个语言都有,标注这个不难。但这种标注难以匹敌模式:

1【Subj 是 Pred 的】
2【Subj Pred 的】
3【Subj 是 Pred】

这些变式才是这类现象的真正的distribution 才能一一对应到细微的语义计算 表达语气的差别(nuances)。都是从基式 【Subj Pred】(or 【NP VP】) 加小词 derive 出来的。

基式: Subj Pred
变式:
1 Subj 是 Pred 的
2 Subj Pred 的
3 Subj 是 Pred

1 最常见 是一种缓和的肯定语气。2 更加口语化 语气与 1 接近。3 就是强调语气。捕捉这些细微差别 对于对话机器人 有意义 。

梁:
记得,我们做过规则: 是 VP 的 --> VP, 我是爱你的 --> 我爱你

李:
Thanks. I did not know that
Moi 奥see

@梁 kidding ....

梁:
@wei  :=)

对,语气略有不同。老外若问我,我会告诉他。其实,外国人学汉语,这种小词的细微差异最难。

2 Subj Pred 的, 她卖菜的。 “卖菜的”是不是职业的意思,就是说”她的职业是卖菜“?

李:
这 2 本来是通用的肯定语气,但恰好又与表达职业的独立的 “的字结构” 搅和在一起。

梁:
我拥护你的。加强了肯定语气。

李:
1 我拥护你 --》我拥护你的
2 拥护你的不占多数

1 遵循的变式 需要主谓齐全,而且不局限于 human action;2 里面的 的字结构 不需要主语的条件 “的字结构”做的也不是谓语,而是np,并且 必须是 human action,常表达职业。这是两条道上跑的车 但可能撞车。

白:
“这信写的连个落款都没有。”
“等我有空的看怎么收拾你。”
“这雨下的都没脚脖子了。”
“那几天雨下的什么心情都没有。”

李:
一个一个来,先细看:“这信写的连个落款都没有。”

我的设想是 将来应该可以学出很多词典化模式(lexicalized patterns or word-driven rules),不必做太多的 generalization。全句分析就是对这些词典化模式的拼接 譬如上句。

模式1:【这 O Vt de-buyu】
模式2:【连个 O 都没有】 或者 【连个 O 都 Vt-negative】

语言中这类模式成千上万。所谓一个人学会一个语言 学得地道,就是这个人记住了这些模式,下意识的 还是明意识的。总之是词典化模式烂熟于心,才可以像 native speakers那样自如。 非词典化的语法实际上很少:主要就是规定 这些细小模式如何拼接
譬如上两个模式拼接:one form of de-buyu is de + S, so we can connect the 2 patterns:

【这 O Vt de-buyu】+ S【连个 O 都没有】==》“这信写的连个落款都没有。”

梁:
连个被子都叠不好!
连个衣服都不会穿。

白:
还是没说,如果没有词典化模式救驾,主谓宾又不齐全,“的”就一定不是+S?

李:
那是另一回事。词典化模式是累积的。不是一开始就是 logically complete。

梁:
"不是一开始就是 logically complete" 同意!

李:
“的” 的其他用法 最后或者融化(或被表达)在与其搭配的词的词典化模式中,或者表达在 它 自身的模式中。最后 由于其万能词的特性 也可以作为直接量 表达在少数的抽象规则模式中,即非词典化的语法模式规则中。

白:
那还不如先都当同一个“的”用。后面再分。至少不会错。

李:
这一点 我一直持与白老师相反的意见:对于用法繁多的小词 包括介词,我一直以为 不要只围着小词本身做,而是应该各个击破 负担分开来。小词本身只负担最后的标配用法。其他的搭配词 承载小词也是举手之劳 题中应有之义,而且小词也常是这些模式的必要(obligatory)或可预测(optional)的因素。

白:
“瞧把你得瑟的”

梁:
“瞧把NP AP的” 瞧把她美的!

李:
@梁 对 就是这个思路。这里的 “把” 不再引导宾语 而是引导主谓结构。放在模式里 就一目了然 这才是语义计算的真谛。

梁:
我们人脑善于做 puzzle (拼板游戏)。

白:
这不是问题,唯一一个坑,怎么引导也是它。小词就是模式的状态转换开关,这也不是问题。

李:
词典模式不怕冗余 越多越好。要说冗余和死记 谁能比得上机器以及机器学习的ngrams,人会抽象,自然可以稍微聪明一点,但切记过度,聪明反被聪明误。

梁:
好几个词一起做了一个坑,把 NP AP 套进去。

白:
没有模式能做而小词不能做的,没有模式能识别而小词的特殊pos不能识别的。

李:
需要各自保留意见了。
即便能力等价 ,也还有其他层面的考量:直观性、可维护性 、与语言直觉的距离,等等。

白:
那是UI的问题。谁说定义在小词,界面也必须显示小词的词条?

李:
是语言资源的可读性。模式 我认为是最可读的。小词 在 pos 层面做抽象 影响了可读性和可维护性。

白:
语言资源就是给机器读的,遇到要呈现给人的时候有一万种办法让人可读,这个根本无需操心。

李:
小词没必要分类。

白:
记得当年做XBRL标准,有人就拿可读性说事儿,我们就搞了屏幕取词转换,搞了把机读格式隐藏在用户友好界面中的工具,攻击的人从此闭嘴。

所谓分类是字面意义的误导。我们要做的实际是告诉这个词的周边,有多少插座,有多少插头,什么制式的。哪怕这种标记是这个词独有的,也要这样标,并不因为独特性而偷工减料。分类这个说法似乎是给语言学家自己看的,其实不然。标记是给这个词的周边看的。有些插座和插头就是为模式准备的。在给人看的时候,自会转换成人最方便接受的样子。但是插头插座虽然不是人最方便接受的样子,却是词们彼此勾搭最方便的样子。

梁:
我懂白老师想把“词负载语义”进行到底。

李:
“哪怕这种标记是这个词独有的,也要这样标”?

白:
不这样标就会影响它与周边词的关系。

李:
标记的必要性 是别处要用,是用直接量不能表达或不能概括的部分。如果独有 就没有必要 因为直接量就是标注,这是其一。其二 如果所标记的 pos 或 subcat,是为了自己的模式 而不是别人用,也无必要,因为可以词典化。

白:
标小词就是在做模式词典化,只不过模式不显性出现。举个例子,“连N都V”,连就是N+,都就是S+,顺顺当当吃掉,但是里面实际上在做状态转换。

李:
形式都在模式里面了,还标注个啥。直接量多直观。

白:
不是特意为模式标的。

李:
我在词典主义和专家词典里面浸润太久,感觉上受益太多,不忍心抽象化。

白:
直接量想要就有啊,表示是等价的。这是个UI问题。我这才是词典主义,除了词典不剩啥。

李:
不太一样。
你的词典主义 貌似是词典标注主义,我的词典主义 主体是规则词典化。专家词典(expert lexicon)里面全是模式,不怕冗余。与句法变换有接口,所以也不是完全没有抽象性。

白:
不对,在插销和插座结合的时候,有个东西叫状态转换,它比模式更容易被机器接受,计算上更简洁。给人看是totally another story,跟实时计算没有一毛钱关系,根本是在编辑态下工作的。

“连”这个N+和N结合的时候,N这个位置上的状态是要发生变化的,某个开关打开。“都”这个S+和S结合的时候,S这个位置上的状态也是要发生变化的,某个开关关闭。其实准确地说“连”应该是X+,混混。

李:
具体说说,哪个变化 什么开关?

我套用白老师:没有小词负载的结构不可以用模式去识别的。最多不过是冗余。冗余换来的是接地气。一眼看模式 就可以知道背后的语言现象。模式的最原始形式就是 ngram,那就是直接给语言拍照。当然我们比ngram高明太多,但继承了其接地气的特性。

白:
subcat有静态和动态两种。静态的词典说啥是啥,动态的随着分析动作而变。动态subcat实际上就是状态。它们跟着词,但是不属于cat。也就是说,词负载结构不等于仅cat负载结构。subcat也在分担负载结构。但这部分subcat已经跟怎么画依存关系脱钩了,直接对接语义,所以不画出来。

李:
从词义到逻辑语义的 subcat,最完美的体现是董老师的知网。

白:
其实,模式与纯粹的二元关系本来就捏不到一起。模式往往代表多元关系,而多元关系是二元关系的组合。用动态subcat,可以借二元关系的壳,把多元关系重组起来。

李:
从词到句法的subcat最粗糙的体现在牛津 朗曼词典里面。纽约大学的两部词典(COMPLEX and NOMLEX)稍微好一些,那是一帮爱打瞌睡 动机不专的语言学博士生在名导督促下编制。显然没有nlp历练 纯粹为交差。句法subcat最完美的体现自然是:立委牌2017新版语言学专家词典。

白:
我觉得判别标准不能混淆。计算上怎么精准方便是一回事,人看了是否感觉优雅是另一回事。两者之间不能两全的时候,计算语言学要优先考虑“计算”,人看到什么,是可以用UI来转换弥补的。二元关系在计算上的优势,不用足了天理不容。

李:
模式也是有限状态 怕啥。专家词典不仅仅是有限状态,而且专家词典还可以建立索引来提效。其实 在绕过了中心嵌套的陷阱(我把它叫作乔老爷圈套)以后 计算优势在其他几个指标中 已经退居后位。除非是用在大数据实时处理的现场 计算的考量不是紧要的。所谓二元关系vs模式匹配的关系 说到底就是 bigram 与 ngram 的对比。 有点像排列和组合的对比。只要这个n 是相当有限的 通常不过五元,最常用的模式在三元左右。由于mult-level的模块化效应,三元左右的模式就可以涵盖几乎所有的远程(long-distance)句法。因此计算通常不会成为系统应用的瓶颈。

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白之48:依存关系不交叉原则再探】

李:
画了前面的图回头仔细一看才发现,这个例句是擦边的“交叉”:

如果DG(Dependency Grammar)揉进了浅层的短语结构及其边界,先做了合成词“学习 成绩”,那么把“他”与合成词内部的“学习”连接成主谓关系,是交叉。但是如果不引入短语结构,一切节点都是终极节点,实行彻底的原汁原味的依存关系(DG)表达,那么“他”作为主语连接给“学习”以及“学习”作为修饰语连接给“成绩”,并没有真正交叉,只是层次(configuration)显得乱了。但是DG的最大特点(或缺点)就是打破层次,只论二元。多年来我们在DG中部分引入 PHG (Phrase Structure Grammar) 短语结构表达,也是为了弥补这个缺陷。

我要说的是,这不是DG最典型的交叉关系图。不知道有没有更好的交叉而且语言逻辑仍然合理的案例。以前一直以为从逻辑上看,真正的交叉是站不住的,会引起语义的混乱。

白:
这又和“学习成绩”是在词法层面的论断矛盾了。二元关系这竿子杵到底,似乎就不管你什么层面了。“这牛吹得有点儿大”算不算交叉?

李:
盘点一下关涉到的二元关系:

吹-牛
吹-得
得-大
有点儿-大
这-牛

白:
牛-大
牛有俩爹。

李:
从 “牛” 到 “大”,从 “牛” 到 “吹”,起点同,终点不同,所以不算交叉。
n年前,刘倬老师画过图,说只有交叉站不住,不允许。其余的情形(见下图)全部是可能的,说的就是依存。

现在清楚的是,逻辑语义依存可以一个儿子多个老子,甚至互为父子。可以跨越层次,因此是图不是树。但是真正的交叉好像还是不被允许的。逻辑上,依存交叉是思维混乱。

白:
“辫子是谁给你梳歪了?” 试试看。

李:
梳-辫子
梳-歪
谁-梳
给你-梳
给-你
?是-谁(这个强调词可能进不了逻辑语义图,如果硬要进入,就挂在被强调的“谁”上)

还有哪些二元关系?

白:
辫子-歪
你-辫子
交叉了吗?

我觉得首先思维不混乱,再看看交叉了没有。

李:
没有交叉,貌似并不违反刘老师当年定下的天条。

白:
我提到的两个不算?如果讲的是“逻辑语义”,我认为要算。除非承认过继和挪移。

辫子-歪,你-辫子

李:
【辫子-歪】 与 【梳-了】 是交叉了。【辫子-歪】与【你-辫子】并不交叉。不算。因为其中一个端点重合。端点重合的,与内嵌套类似,不是严格意义的交叉。这么多的二元关系,勉强找到一对貌似违背了不交叉原则,而且这一对涉及小词“了”。涉及小词的,原则上在逻辑语义图里面没有地位,不应该进入关系。这样看来,实词概念逻辑语义不允许交叉,是可以自圆其说的。

白:
在我这里小词都有地位。

李:
小词只在句法层面有意义,进入(逻辑)语义,小词不过是给自己的主子添加了“色彩” features,并没有语义关系可言。

白:
你-辫子 与 谁-梳 交叉了,都不是小词

李:
你-辫子 和 谁-梳,的确交叉得太彰显了,掩盖不了 <:]

可能辫子根本就不该找主儿, =)

白:
“腿是谁给你打断的”,腿 也不该找主儿?

李:
这个交叉不交叉原则,可以反过来看。也许可以找到一些案例,的确产生交叉了。但是我们不能允许语句中的概念漫无边际地乱谈恋爱,导致群交的杂乱场面,显然不好。所以,必然会有某个原则在那里起规约作用。也许有某个“不允许交叉”的弱版本需要挖掘和表述。

白:
残坑挪移,可复用萝卜归栈。
技术上当然有办法。

李:
两个人要私奔,天王老子也挡不住。

白:
比如刚才说的“你-辫子”。“你”就属于可复用的萝卜。

李:
二元关系不理别人就是了,不就是一个链接吗。技术上不是问题。管它叫树还是叫图。探讨的是,有没有一个有效的原则在,它合理有效地压缩了乱交。

白:
“辫子-歪”,歪就留下了残坑,被挪移到“梳”的位置。
我认为,残坑的处理和萝卜的复用是天经地义的,是NLP的应有之义。

李:
人心不古啊。现代化摧毁了周礼。是否要克己复礼?现如今,同性都可以结婚,禁区早被突破。

白:
乱交不可能,有辖域的约束,还有subcat的约束。辖域的约束,是指必须挪移到主子的位置。subcat的约束是指必须相谐。在主子的位置看如果没有交叉,就是OK的。

李:
对。
【谁1 给谁2 梳辫子】
【你-辫子】 和 【谁2-梳】 的交叉,是因为“谁2”与“梳”勾搭上以后,把给自己找主人的要求带给了“梳(辫子)”。

白:
所以,我们昨天讲的挪移,是在很严肃、很有效地处理交叉问题,很审慎地剥离表面上貌似交叉、学理上情有可原、技术上完全可控的现象,把它们纳入正轨。绝不是鼓励任意交叉绝不是鼓励任意交叉。

李:
服。

白:
而小词纳入实质性二元关系,一点都不影响上述对交叉的控制手段,但“词负载结构”原则则被推至极致。

李:
不管小词纳入还是不纳入,小词的确没有真正的语义地位。首先,小词各个语言都不同,而语义原则上是人类共同的。在深度分析的结果图上,不同语言的色彩应该已经褪掉。一切图谱理应是实体概念之间的关系。小词负载结构最多只能算是句法层面通向语义的桥梁。过河拆桥不拆桥,桥都不登大雅之堂。大堂里面都是args或mods,围着众神(谓词)跳舞。

白:
这个难以苟同。首先,格、时态、命题连接词、逻辑量词、摹状词都是语义里面必须有的组成部分,各个语言只不过用不同的手段来达到这些组成部分而已,如果碰巧某个语言里小词做了这件事,在这个语言里小词就负载了相应的结构,不描述是不对的。过河拆桥,是一种逻辑等价的技术处理,桥是客观存在的。

李:
总结一下不交叉原则:不交叉原则适用范围要从动态交往中看,而不是去除时间维度,把不同时期的交往压缩到一个平面去看。在没有时间维度的静态平面上看上去的违反不交叉原则的二元组关系,放在时间动态的交往上看,就没有违反原则。

白:
挪移就是位置随时间变化,随分析进程变化。而有些时候,桥是拆不了的。比如“卖盐的”。这个human就负载在“的”上,升格为实词。

李:
[human-action] --> [human],不太好操作。当然,除了[human]以外,貌似其他实体很少出现在这里。

白:
N+-->N,方便得紧,而且和形容词名词化一脉相承:“行个方便”。的字结构,饱和了以后,具有形容词性,形容词能升格为名词,的字结构就能。二者是同一机制。

李:
好像,的字结构可以是主语实体,也可以是宾语实体,后者就超出了[human]:

卖电脑的最新生产的是智能手机。
==卖电脑的[human]最新生产的[product]是智能手机。

白:
那是因为“生产”的两个坑,一个human,被“买电脑的”先占据了,剩下一个“product”坑,被第二个的字结构提取出来,再升格为萝卜。

李:
然后萝卜带上了标配本体?

白:
这整套操作,都在我们提供的机制内完成。

李:
这个标配的设置,不太好处理,虽然硬做总是可以做的。

白:
的字结构是我整个理论体系最早的切入点,不说烂熟于胸,也是胸有成竹的,至少是最不怕挑战的一块。

李:
呵 的字是中文的万恶之首。不说恨不得千刀万剐它,至少也是恨得咬牙切齿。

白:
既然做NLP,就得拿万恶之首开刀

李:
它还有变种:的|地|得|滴|哒|d|de|ㄉ|之
对了,粤语里面还有,那字怎么拼都忘了,但见到认识,口旁加既。

白:

李:
对,上世纪30年代流行

白硕:

日语借来的

李:
相比之下,茴香豆的茴五种写法算个球,李白比孔乙己可学问多了。宝林大师说过,满肚子下水全是学问,不能碰,一碰就往外冒。

白:
妈妈威胁孩子“等你爸爸回来的”那个“的”,在有些方言里似有与普通助词“的”分化的情况,语音形式都不同。

李:
听不懂这个。

白:
潍坊话发音类似“着”。
大家可以内省一下自己的方言是分是合。
@wei 就是,其他语境下的“的”是一种语音形式,这个语境下的“的”是另一种语音形式,简直可以认为是两个词,在普通话里合并了。

 

【相关】

【李白之47:深度分析是图不是树,逻辑语义不怕句法交叉】

《泥沙龙笔记:漫谈自动句法分析和树形图表达》

乔氏 X 杠杠理论 以及各式树形图表达法

【语义计算群:句法语义的萝卜与坑】

语义计算沙龙:基本短语是浅层和深层parsing的重要接口》

【李白之20:得字结构的处置及其结构表达】

【李白之29:依存关系图引入短语结构的百利一弊】 

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白之47:深度分析是图不是树,逻辑语义不怕句法交叉】

白:
还是没说交叉的事情:
“他的学习成绩优秀”,要不要管“他”和“学习”之间的关联?
管了就不是树。不管,差了点什么。

李:
好,现在说交叉。

交叉在语言学课上是一个常讨论的话题。基本上语言系统的部件有一个大体的层次:词典、词法、句法、语义等。这些部件是有一个宏观层次和优先次序的,这个没问题。交叉出现在一个层次的东西,有时候想跳到另一个层次去。说白了就是,交叉就是违反了部门独立性原则。部件的层次架构是原则性的东西,通常不该违反。但自然语言的复杂性就在,有了原则,偏偏有人要违反,那么系统作为一个制度,就必须有一个应对。

“他的学习成绩优秀”:学习成绩 是词法,合成词。“他-学习”是逻辑主谓。“他”作为句法单位,硬要钻进词法(“学习成绩”)内部,这样才能构成完整的逻辑语义全图(graph, 不是严格意义的树!),才能说达成了语言理解。这就是交叉的现象。作为原则,句法词法是隔离的,语言学理论里面给这些原则起了不同的名字和术语,且不管它。总之是,句法单位没有道理进入词法。词法出来的词是句法的最小单位(atomic),所以对于句法,合成词就是一个黑箱子。论句法功能,合成词与非合成词,完全一样。但是逻辑语义不管这一套。逻辑语义是超越语言学句法词法的术语语层次的东西。交叉出现在,我们在句法关系与逻辑语义关系的表达(representation)中,为图方便或其他原因,硬要把它们归拢到一起。

白:
事情可以完全不这么处理。如果秉持句法管谁跟谁有二元关系、语义管是什么二元关系,那么一切不合语义这双脚的句法鞋子都可以动。交叉是自然语言语义表达的客观需要,因此一定会在句法中得到反映。在技术处理上,二元关系的发生位置相对于构成二元关系的词的本源位置可以有所差异或者说变化。二元关系并没有探入词法内部,而是词法本身完成了对外接口的乾坤大挪移。比如,“学习”和“成绩”结合的时候,承认“成绩”是head,同时就把自己的残坑过继给了head,也就是说,“他”找这个“学习”留下的残坑,不是找“学习”要,而是找“成绩”要,这样就消解了交叉问题。

李:
乾坤大挪移应对的是POS约束, 如何应对语义约束:
“他”与“学习”是语义和谐的,“他”与“成绩”没有同样的相谐性(当然,“成绩”也要求 【human】,但那是另一种二元关系的相谐,属于赶巧了,不是原来的主谓关系的相谐要求)。

白:
过继的时候把subcat也一并带过去,不存在这个问题。

李:
操作上不宜、不易。不宜是因为,两个subcats混杂了,“成绩”原本的本体概念与过继来的本体概念,混在一起了。

白:
我们检查相谐性看的是单子singleton。学习的一个坑有human这个subcat,这个坑过继给成绩,只是位置上过继,但是subcat并没减少或改变。

李:
不易是,一个词的本体概念及其背后的常识,是这个词的灵魂,词形不过是躯壳,没有道理轻易出卖灵魂,哪怕出卖对象是你的老板。

白:
不是这样。中心词既然负载结构就必须包容结构。不是向老板出卖灵魂,而是老板包容了你的灵魂。

李:
那就具体说说,这个灵魂怎么转移的(出卖还是包容)。“他”是【human】, “学习”是【huam-action】, 因此“他”与“学习”是(逻辑)主谓相谐的。注意,这里已经把问题简化了:[human] 只是一个相谐的代表或标志,其实主谓相谐包含各种强搭配弱搭配。也许有一个逻辑主语要求的是一个非常细线条的语义类别,不是简单的一个【human】这种层次的类别就可以包揽。

白:
成绩是【action-information】,学习成绩是【human-information】,
perfect。这又要说到unification。

李:
说具体点。action-information,怎么就表达成了 human-information,是一个本体概念节点 还是两个本体概念节点(的混合)?

白:
相谐不是两组符号字面相等。类型演算啊。 输出是information没变,输入变了,级联的整体效果。是输入human,输出information。没有类型演算的ontology,干不了这个。

李:
当“成绩”遇到“学习”,在合成词形成的时候
input is: V(human-action) + N(information) / human-action
output is ??

human-action 的坑满足了,填进去以后,这个头词“成绩”怎么过继,类型演算的结果形态是什么?从道理上,修饰语不能改变头词的本性。因此“成绩”仍然是information, 而不是human-action,尽管它吃掉了 human-action。

白:
不改变输出,改变了输入。

李:
改变了对subcat 的输入要求?

白:
学习是event(human), 成绩是information(event), 学习成绩是information(human)。

李:
我拿放大镜看看这个乾坤大转移。先下线。貌似形式化演算中规中矩。但如果subcat不是那么单纯,如果是强搭配 直接量呢?也可以大转移?

白:
游泳?当然可以。这类,泳就是action,游就是commit,所以,不需要出卖灵魂,老板会包容你的。这是subcat之间的类型演算,完全是结构制导的,残坑挪移后,位置已经没有交叉。语义那边不存在与挪移有任何违和感的东西。没有“不宜”。至于“不易”,说实话还真是有一点点小门槛的。commit太虚,简直就是可以穿透的: commit(action)=action

李:
明白了:过继的是句型信息(对坑的要求,SUBCAT),不是本体全部。

问题过继不是目的,目的还是要建立“他-学习”的主谓关系。而不是“他-学习成绩”的主谓关系,后者不make sense。换句话说,过继了input的要求,逻辑语义output却不能转移,不能张冠李戴。

白:
来源还在,并不因为挪移而抹杀。过继是现状不是历史。

李:
还是有个机制要“进入”词法,才能联系逻辑。

白:
纯二元关系看,交叉是真实发生了的。

李:
好,有理由认为总有办法最终搞定“他-学习”的逻辑语义的二元直接联系,从句法进入词法。

白:
从词负载结构的观点看,交叉这一页可以顺利翻过去,仅此而已

李:
交叉不是关键。

白:

李:
这只是一个帽子,扣帽子可以用,实际不必理他。作为语言学(内)原则,有其合理之处,因为语言学总体或主体是形式层面的理论。但逻辑层面,这个不算啥。

白:
句法不拉语义后腿,句法也不违背所谓的原则,两全其美了。关键是,挪移有了语言学上合理的解释,不仅仅是头疼医头,见招拆招。

李:
第二个相关问题是:刚才所说的演算(SUBCAT坑的挪移或过继)是典型的符号逻辑,
而不是大数据中间件的相谐性的查询。我们可以在符号逻辑操作中,把对坑的【human】要求挪过来,但是我们如何在语义中间件查询中去check非符号的条件。譬如:“他 - 学习” 如果是句法的直接二元关系,我们很容易查询中间件它们是否相谐,而不管这种相谐的符号表示是【human】还是直接量(强搭配)。但是,当“学习”淹没在“学习成绩”的组合里面,如何一致地调用大数据的相谐呢?

白:
subcat有两个作用,一个反作用于句法,辅助做出逆向选择;另一个衔接语义落地。大数据也辅助做出逆向选择,甚至大数据就是用带subcat标记的词典训练出来的。但是语义落地不可以没有subcat,只有好subcat或坏subcat之分。我们不对语料做标注,但不等于不使用带标注的词典。相谐性是原本二元关系的相谐性,不是跟stepmother的相谐性。

李:
可以想见的是: in "NP + de + V + N", the unsaturated subject of V will still try to be paired with NP in checking the middleware based on big data even if V is eaten up by NP.

subcat 句型的原始的完整内容其实很丰富,不是简单的 vi, vt, 等可以涵盖的
从input这面,它规定了:(1)几个坑;(2)坑在哪里(位置和词序);(3)坑的句法形式(包括直接量);(4)坑的语义约束(【human】等)
从output这边,它把每一个按照上述规定的坑,都map到确定的逻语义角色去,是为语义落地。这样一套丰富的内容,在“他的学习成绩”这样的坑过继的机制中,直感上难以面面俱到。

白:
我得睡了,明天一天的会。

李:
晚安。
SUBCAT是半部语言学,而且外接语义,谈不尽的焦点话题。已经谈了n次了,还可以谈多次。

白:
坑,一经产生,就是一个独立的存在,subcat的归属是终身的,不依母体的萝卜去哪儿了为转移,也不依自身的结合位置被挪移到何处为转移。还是拿“王冕死了父亲”为例。从语义角度看,“父亲”挖了一个subcat类型为human的坑,同时对外提供一个subcat类型为human的萝卜。“死了”挖了一个subcat类型为human的坑,对外提供一个subcat类型为event的萝卜。当“父亲”和“死了”结合,“死了”的坑饱和了,“父亲”的坑还亏欠着,那么“死了父亲”这个短语作为一个整体,就还有一个subcat为human的坑对外亏欠着。“死了”既然全权代表这个短语,当然也就继承了这个短语内部对外的一切债务,于是这个亏欠的human坑,就过继到了“死了”的头上。外面的萝卜(王冕)必须找这个“死了”填坑,“死了”自身亲生的坑虽然饱和了,但是对“父亲”过继来的坑却必须负责到底。我们在句法层面,用N S/N +S N/N这个序列,很清晰地实现了结构制导。

李:
“父亲”挖了一个subcat类型为human的坑,同时对外提供一个subcat类型为human的萝卜,后者(萝卜)是本体概念,前者(坑)是句型预期。

白:
句法和语义是同步的。“了”这类萝卜皮的语义作用机制暂略,后续再说。

李:
所以 / 后面是坑,也就是 arg, +是 mod,随机的被吃掉的对象。+S就是被事件谓词S吃掉的东西。这个coding里面不包括词序?
还是没看清“死了”的逻辑主语 怎么从“王冕”转成了“父亲”。从左向右parse ,先跳进坑的是“王冕”。parse 到“父亲”的时候,S 没坑了。按照常规,这个萝卜应该降格,譬如 降格成“化外的”称呼语:王冕死了,父亲。

白:
这涉及到算符优先机制。总的说就是,单坑的动词,右侧填坑比左侧填坑优先。
“台上坐着主席团”,也类似。

李:
有理。
走了很多能人。

白:
甚至也包括形容词:春风又绿江南岸,宁可“春风”先shift,保证“江南岸”优先填“绿”的坑。

李:
这个结构制导清楚了。请教一下:根据规定的优先次序(parsing算法),在萝卜跳进坑的时候,查还是不查语义中间件?如果没有其他的竞争者,就不查了吧?就是说 human 这种东西在与N/N 或S/N结合的时候,有没有用到?也就是在决定第一个NP“王冕”是 shift 还是跳坑的时候,要不要查左边的NP“王冕”与右边的NP“父亲”,看二者的力量对比?还是不管三七二十一,就是右填坑优先。当然在这句,即便查也是力量相当。但是应该会有力量悬殊的情形,这时候右优先的决定是不是就会受到调整改变。

(1a)中文切词作为领域早已终结。
(1b)G教授终结了中文切词。

(2a)门开了
(2b)开了门
(2c)张三开了门
(2d)门张三开了。
(2e)张三门开了就驱车离去。
(2f)张三门开了就闯进来。

最后一句(2f)谁开的门?不知道。开门者不大可能是张三自己。但在“张三门开了就驱车离去”中,开门的一般认为就是张三本人。

白:
“作为”是带坑的后置定语+N/N.  “终结”如果是单坑,“中文分词”填坑恰如其分。如果是双坑,两边都有位置。“开”是双坑无疑。“就”这里涉及到合并(merge)操作的指向问题。如果按default,标配的指向是右边合并到左边。但是在有特殊标记的情况下(比如被副词“就”修饰)就反其道而行之,左边合并到右边。算符优先机制会让右边所带的坑优先选择萝卜。也就是说,先保证“闯进来”的是张三,谁开的门,可以不care。

 

【相关】

《泥沙龙笔记:漫谈自动句法分析和树形图表达》

乔氏 X 杠杠理论 以及各式树形图表达法

【语义计算群:句法语义的萝卜与坑】

语义计算沙龙:基本短语是浅层和深层parsing的重要接口》

【李白之29:依存关系图引入短语结构的百利一弊】 

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白之46:做NLP想不乐观都找不到理由】

白:
“这个人的演奏水平不怎么样。” 问题:是“这个人的演奏+水平”,还是“这个人的+演奏水平”?

如果是前者,“演奏”需要被结构强制,然后再与“水平”结合;如果是后者,“演奏”不变性,可以直接与“水平”结合。“水平”的pos tagging可以直接定义为N/X,既接纳名词填坑,也接纳动词填坑。如果是前者,名词化的“演奏”做大主语,“水平”做小主语。如果是后者,主语不分层,“演奏”做内层定语,“这个人的”做外层定语。如果演奏和水平中间不加标点,个人倾向于后者。如果加逗号或者语音上有较长时间的明显停顿,可以考虑前者。

平行的句式还有“这本书的出版时间真不凑巧。”

我们看到两种不同的定中结构:一种是N+遇上N,一种是N或者S遇上N/X。前者是萝卜皮和萝卜的关系,后者是萝卜与坑的关系。

李:
什么是 N 遇上 N/X?什么是 S 遇上 N/X?
有一类名词,经常要求逻辑动词做修饰语,譬如“计划”,“水平”,“能力”:学习计划;作战水平;融资能力。这时候,如果恰好这个逻辑动词也是及物的,理论上就造成了结构歧义:譬如第一例 “学习计划”,定中还是动宾?

白:
有歧义

李:
标配还是定中。也许这个标配的来源,有音节的因素:双音化趋势使得双音修饰双音 显得特别自然,构成四字NP。而汉语的【动宾结构】比起【定中结构】,音节上“头轻脚重”比较突出。定中有一种四平八稳的趋向(heuristic),动宾则不然。动宾的本性是短V长NP,所谓头轻脚重。正因为此,更突出了头(动词谓语)的统率作用。

白:
问题来了:定中标配是获知四字结构之后才有的,还是此前就有?

这里还涉及了另外一个之前讨论过的问题:交叉。“他的学习成绩优秀”当中,“他”填“学习”坑的事情,怎么算?当没看见,还是承认可以交叉?

李:
定中结构对音节数的条件敏感。双音修饰双音当然最自然理想,四字成语的大批形成就有不小数量的定中结构。作为对比,双音修饰单音,就非常勉强。即便出现,也大多是例外,可以作为合成词绑架到词典去的。

白:
犀利哥,漂亮妞,糊涂蛋

李:
是啊,这些都是词典绑架。词典绑架的一律不算,因为可以死记。而且相对有限。

白:
问题是还有一点点能产性。说不定怎么就流行一个。比如“带路蓝”。

李:
能产性不强。对付这种一点点能产性,句法是先不去形成NP,尽管让其他路径优先,parsing到后面,不得已了,才把这种音节数不符合要求的patch一下。

白:
不理,会被拐跑的

李:
目的就是给拐跑让路。拐不走的,句法勉强同意结合。这就对付了能产性。我们说优先,说多层,贯穿的就是这类原则。本来音节就不和谐,没对上眼,拐跑了太正常了。这时候统计上看,拐跑的往往都是应该被拐的。万一还是拐错了,那就扔进词典。这时候词典就成为一个垃圾站,专门收容这些介于固定搭配与能产性之间的东西,如果这些东西成为句法优先策略的例外的话。例外一个收一个,把这个收取例外的过程,作为研发系统的一个动态过程,就不可怕了。

白:
有大数据,可以颠倒一下顺序。不做第一个吃螃蟹的,做第N个总可以吧。词典应该和大数据无缝连接起来。词典没有、构词法允许,大数据支持的,非标配也应占优,回头再收进词典。

“二孩概念股”

李:
系统越做越好就是这么来的,不断扩大测试,9成的测试符合预期,不到1成的例外,也懒得伤筋动骨,扔词典就完。今天的例外bug,成为明天的词典绑架,岂有不好之理

我是相当相信蛮力的。词典就是最好的蛮力。上帝造语言非常了不起,但百密一疏,无论如何无法与逻辑比规整性。好在上帝留了个垃圾回收的口子,词典。NLP起初拼算法, 拼到最后就是拼蛮力。就是一个力气活。长尾问题大多体现在蛮力上。

对,结合了大数据,自然是另一个风景。

白:
绑架的动作不用都人工完成,可以借力。

李:
那是,lexicon acquisition,说的就是一种。基本是无监督学习。其实就弄成一个流水作业,ngram不断去学,不仅进入领域数据需要学领域词典。而且时间维度上,要不断从动态数据去学习,以对付流行词汇和新词。然后让人过一遍,把把关。把这个过程变成系统维护的常规作业。

对NLP总体乐观,一直有十足信心这是可以搞定的事儿。这个信心就建立在,自然语言的规律性部分,至少对于某些“砖家”,总体是路线清晰的,句法有很多上帝赋予universal的基因,而例外表面上没完没了,屁股擦不完,但本质是有限的。词典有如饿虎,永远吃不饱,特别好例外这一口。想不乐观都找不到理由。

白:
学习也有lazy和active两种策略。lazy是parser首次碰到了才启动,active是闲时准备忙时用。

李:
正是。一般而言,系统总是要鲁棒,就是说lazy是设计时候已经尽量考量的。开始做系统的时候,可以有意避免上大辞典,少用绑架。一个个OOV(out-of-vocabulary)就成为鲁棒性测试点,然后看对付例外,有没有一个合理的鲁棒机制在。譬如汉语的合成词的应对。系统越来越成熟,这时候lazy的策略逐渐被active的作业方式取代,就可以大肆扩张词典的绑架。哪怕句法可能搞定的现象,如果来不及测试,或为了力求保险,扔进词典最心安。

甚至可以设想,将来的NLP实用系统,所有的ngrams短语全部进词典。可以把n设置成4或5,词典出来的短语都是预制板、标准件,句法三下五除二把它们搭成积木。至于这4-grams内部有啥,理论上词典都可以绑架,而且很多时候也无碍大局。

白:
可看穿的词条(白盒)和不可看穿的词条(黑盒),用起来待遇还是很不相同的。有构词法垫底,一定数量的白盒词条对于休眠唤醒和拆零复用大有好处。

李:
百盒词条的本质就是小句法。不过是优先级高而已。因为优先级高,做出被绑架的黑盒子的样子。但里面埋下了种子,什么时候要唤醒就唤醒了。这种策略,先绑架后(反悔)释放,非常经济合理。因为绑架满足了95%以上的场景需求,反悔释放则满足了不到5%的特殊需求。断断没有为了不到5%的场景,让全局一路受累。总是到了某个点,trigger 这个反悔机制才妥。

"开始做系统的时候,可以有意避免上大辞典",说的就是knowledge poor development to start with。knowledge poor 才可以打好鲁棒的基础,而鲁棒性是一个NL系统的关键指标之一。这个小词典开发策略 也包括开始不要有太多 features or subcats, 不要有本体知识库 (ontology)。这些东西都是精细的活儿,是鲁棒的另一面。鲁棒的本义就是凑合事儿,但不要离谱。

 

【相关】

【立委科普:结构歧义的休眠唤醒演义】 

【立委科普:歧义parsing的休眠唤醒机制再探】 

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白之45:从变性谈到模糊与歧义的不同】

李:
尼:罗素说科学够不着的哲学,哲学够不着的宗教。

[科学够不着的] [哲学],[哲学够不着的] [宗教]。

两个主谓结构哎!

哲学、宗教这样的名词也可以做谓语,而且是在“的”字后面,简直是开了眼了。以前琢磨过英语的“银行”(bank),经常做动词谓语用,觉得顺理成章,但汉语的对等物却不行。

白:
儿子挖不完的孙子(接着挖)。

李:
(感觉汉语“银行”的构词法可能在捣乱,silver-bank, 听着就是一个守财奴的物理存在,与金融行为不大兼容?)

白:
硬通货的物流调配。怎么就是“守”了呢。

李:
* 你银行了吗?
老哥,我忘了,对不起。

白:
很行了

李:
* 我明儿一定银行。
我难以接受这种说法。

白:
王天下
四海一
这种用法中文是老祖宗,但是新派词汇不在其列。

李:
为啥?词性活用现代汉语为啥减弱?

白:
不是一个系列的

李:
“我昨天二锅头,今天决定茅台一下。不茅台白不茅台,人一辈子,图啥?”

白:
数数,单字名词活用为动词,可以有声调变化,略等价于形态变化。多字名词没这个招儿了。

李:
“今天床得早,决定微信一下。电脑了半天,微信出不来。”

白:
北京话也就“孙子”做谓词坐稳了。其他都充满临时性和造作。

李:
“现代汉语名词不动词,动词不名词,不如古代汉语,名亦动,动亦名。”

单字词 可以声调变化来反映词性变化,这是一种(蛮新鲜也有理的)说法。
双音词,由于内部的定中的构词结构太透明,干扰了其变性的可能性,也是一种说法。譬如 “红花”、“臭豆腐”、“高楼”。很难想象这么透明如句法的词结构,会忽然变性。不过,如今这社会,再难想象的变性(trans-gender),也是可能发生的。美国的变性人已然成为一个不小的社区了。

“这家伙在北上广,高楼了10多幢,全国劳模会上一样红花,回到胡同与老哥们一起臭豆腐,这是怎样精彩的腐败人生。”

所以说,语言学家不足采信。啥不可能都整出可能来。

白:
这些一看就是匆匆披了件别人的外套

白:
尼:罗素说科学够不着的哲学,哲学够不着的宗教。可解释为省略了重复的“够”。不知尼克尊意如何?“这道题,张三做不出来李四,李四做不出来王五。”意思是:“这道题,张三做不出来李四(做),李四做不出来王五(做)。” 跟名词动词化真心没啥关系。
“前卫顶不住了后卫(顶),后卫顶不住了守门员(顶)” 同理。

李:
读起来很顺 没觉得需要补充什么。虽然说省略也不能说错。但语感觉得已经完整。因此 我倾向于这是名词坐稳了谓语宝座。叫不叫名词变性另说。而且真要补充 我不大会补充 “够” 而是补充其他更合适的动词:

科学够不着的 哲学上
哲学够不着的 宗教来。

“冲”、“上”、“来” 都比 “够” 贴切。说省略了 “够” 太勉强。最大的兴趣点还是,怎么名词谓语出现在 “的” 后面 居然感觉妥妥的呢。“科学够不着的哲学 从来都是高高在上 只是到了近代 哲学的权威才急剧下降。” 这个才是标配结构。冲破标配估计是一靠排比句式;二靠小句在的字结构后面无其他谓词 ;三靠【的字结构】的多变性。的字结构指代实体 一点也不罕见, 频率差不多可匹敌做修饰语。所以听话人心理随时准备从修饰语角色反悔或回溯到实体名词的角色。

尼:
我原意就是图这种语感,其实确有歧义,还一种解释可以是philosophy lies where science is trying to approach

李:
科学够不着的有哲学(在)。

尼:
可能稍显牵强,不如白老师解释的那个更solid。两种都有点。

李:
没关系 关键是 unspecified,比认为省略了一个特定动词值更合适。

严格说 unspecified 不算歧义,而是模糊。模糊在思维及其语言表达中 都有地位 不应该简单归为歧义。

尼:
可以说是模糊

李:
歧义应该是已经有预定答案值的现象,hence 消歧的任务。没有标准答案的所谓歧义 其实是模糊。

梁:
我理解是 ”科学够不着的(地方)哲学(够)。“ Where science is out of reach, is philosophy's domain.

李:
可以算解读之一。

梁:
第一次听说“歧义是已经有预定答案值的现象”,不知道是不是业界所有人都 share 这个定义?

李:
否则消歧往何处去?有两种歧义,一个是关于 node,一个是 arc, 譬如:

WSD bank: value1. 银行;value2. 河岸
PP-attachement: V NP PP: value1. V [NP PP]; value2. [[V NP] PP]。

看下组句子:

1. 我吃了午饭了。
2. 我不久前吃了午饭了。
3. 我几分钟前吃了午饭了。
4. 我约3分钟前吃了午饭了。
5. 我3分零5秒前吃了午饭了。

这些句子里面的动作,与所有事件一样,肯定发生在(空间和)时间之内。只有第5句,给定了精确时间,精确到秒。其他句子给的都是模糊时间,或没有给时间(等价于给了一个到说话为止的开放区间)。这就叫模糊。如果硬要在模糊的时间表达中去“消歧”,精确到秒,前四个句子无解。

unspecified 在自然语言中是普遍存在的。最多的时候,它是以零形式而存在(譬如句子1)。也有很多时候是以词义的模糊或结构的模糊来表达。这种词义的模糊或结构的模糊,不能认为是歧义,至少不是语义计算的目标,因为根本就没有目标。我们做过信息抽取(information extraction)和信息融合(information fusion)来构建知识图谱(knowledge graph)的,体会很深。其实人用语言表达出来的关系,事件或情感,只是整个语义之网的一个零星的局部。再加上每一句话的语言学制约(譬如 args 不过三的语言学subcat原则),每次只能表达几个点的信息,因此语义之网的大部都是 unspecified。如果面对的是大数据,这些语句所代表的碎片化信息,通过信息融合(如果是unification系统,信息融合用合一操作),慢慢丰富起来,但最终还是存在很多模糊地带。

白:
话说,模糊和笼统还是不一样的。歧义是集合明确、元素糊涂;模糊是集合明确、子集糊涂;笼统是集合糊涂、超集明确。

李:
这个要得。
wait, 我要说的是:(严格意义的)歧义是集合明确,元素也明确(元素就是 value,是标注)。人和机器就是要按照元素指向去标注,来消歧。如果我说“吃肉”,你非要消歧,说这肉是猪肉还是牛肉,那就不对了。因为我的语言是模糊的,没有留下消歧的空间。

白:
元素糊涂,说的是不知道是哪一个标注,集合明确,说的是知道哪些是可能的标注。

李:
我以为集合是定义 how many (the scope) in a set,元素是 the list of members.  Anyway, 歧义是元素明确:知道答案,看谁的算法牛了。如果不知道答案(元素模糊),那就是语义模糊了:这里面还可以再分为,语义模糊,但是边界清楚。就是白老师的子集的意思吧。从常识、本体知识带来的边界不算,那个是“元”层次给定的,没有语言什么事儿。

“我吃了午饭。” 时间的边界是到说话为止:这个边界是语言学的,是时体小词“了”所传达的。

“我吃肉” 常识说,不外呼是牛猪羊鸡...肉。不会是人肉(饥荒年代不算)。这个边界就不是语言学的。

白:
外媒:区块链战略上的延迟 将是公司的“灭顶之灾”
这个标题有歧义。一个意思是,一个公司,如果在区块链这件事上不做战略布局,将会面临灭顶之灾。另一个意思是,区块链这股力量,如果在战略上动作迟缓,将使相关公司面临灭顶之灾。

我:
多数人、一般人感觉不到、读不出也不在意这种歧义。因此,即便通过语法的细化和逻辑的分析慢慢能够区别两种路径,最终还是要研究怎么回到普通人的理解,或模糊语义去,除非对于某一个特定的应用,这种区别有重大意义。后者也是有的。譬如昨天说的,限定性与非限定性定语的区别,其中有不小的一块灰色地带,大部分人也搞不清限定还是非限定,也不在意这种区别,就是这么糊里糊涂地表达,糊里糊涂地理解。可是这个区分对于 sentiment 意义重大,因此 sentiment 做到一定火候,就不能不着手对付它,尽管有灰色地带,也还是要尽量把不是灰色的部分模型好,而不是糊涂混日子。

自然语言的表达与理解-董老师说过这个意思,很多时候是包容歧义的,听者说者都不在意那个歧义,甚至大多时候根本就无感,虽然细究起来歧义的确存在。人类有这个模糊的本事,直到某个关节点,那个歧义模糊不下去了,人的对话才会就模糊点予以澄清。通常,大家都是在一知半解中彼此理解的。

例外是法律文书,专利文书,技术手册(波音的受限语言的说明书),这些东西通常经过反复打磨,有特别的手段在表达的时候就把歧义降低到最低限度,堵死误解出差错的可能。但是日常会话,包括谈恋爱,大家都在将就模糊着,也没觉得缺了啥,误会发生的概率也很低。

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白宋53:聪明的一休与睿智的立委】

宋:
“禁止违规游泳”(1)凡游泳皆违规,禁止游泳。(估计这是标语牌的本意)(2)游泳还是可以的,但不得违反相关规定。(相关规定是什么,并不知道)

蕫:
宋老师,是的,应该是'在此处游泳均属违规"。我还见过“禁止野浴”。

李:
“禁止违规游泳”这个问题蛮典型 就是修饰语的限定性还是非限定性的问题。所有游泳违规 均在禁止之列,这个解读是非限定性的。限定性的有:

“欢迎持照游泳 禁止违规游泳。”

“以下游泳行为一律视为违规 本游泳池有权禁止入内或强制驱逐:
1 不穿泳裤者:便裤 普通内裤不得入内。裸泳绝对禁止。
2 传染病患者
3 无会员证者”

汉语句法 前修饰语默认为限定性。就是说 有修饰语 集合就变小了 成了原概念的真子集。而非限定的修饰语解读属于例外,是值得具体研究的现象。

白:
“聪明的一休”,还有不聪明的一休木有?

李:
聪明的一休很典型。再如 吾党的伟光正:伟大光荣正确的某某党。语言学认为默认为限定,吾党认为是非限定。这是自封的本性 不改变集合的外延。如果抠字眼,可以说:
“伟光正的党万岁 不伟光正的党必亡。” 搁在文革,这就是恶毒的反标,现行反革命,要坐牢的。

如果非限定性有句法形式的区分手段 那就好说。譬如英语非限定定语从句,前面加逗号 不允许用 that 作为连接小词。这些都是句法形式的规定 与语义相呼应:

限定: “I like the guy that just won the Math Olympic modal ”
非限定: “I like the guy, who just won the Math Olympic modal ”
==  “I like the guy, and he just won the Math Olympic modal ”

但是如果没有形式区分 就是一个特别值得探究的现象 究竟是如何出现的 什么因素决定了非限定。我觉得非限定修饰语的产生就是语言表达的偷懒,或discourse意义上的降格。偷懒表现在 本来应该是独立子句表达的语义 被凝缩或降格为前一句内部的修饰语了,做了小三,但表达的却是原配。除了偷懒 造成可能的困惑外 还有轻视或侮慢原来语义 顺带一提的语用或风格的因素。

白:
这个和反事实条件句有得一拼。汉语不太看重程序正义,如果你知我知没有不聪明的一休,那聪明的一休就是非限定的。

李:
“朦胧的月光”,是非限定。“火热的太阳”,却是限定性的,因为“惨淡的太阳”、“昏黄的太阳”也是存在的。"Stupid me", 这个是非限定的。 它等价于 “I m stupid”, 虽然严格说 我应该也有 intelligent 的时候。逻辑与语言的不一致就在这儿。

白:
哲学上较真儿起来,没有绝对的同一性。上一分钟stupid,这一分钟不stupid完全可能。所以非限定就是一主观的“锁定”。让你不游动,定格在某个特定的属性上。

李:
对。
可是怎么在说者与听者之间达成这个锁定,使得理解无误呢。“伟光正”的锁定是洗脑的结果。“聪明的一休”在狭窄的domain,是新造的脸谱化人物,也是绑架的。“美丽的西施”是历史的共识,还有 “睿智的诸葛亮”。如果说 “睿智的立委”,那就是恭维 拍马 或 嘲讽了,虽然也是锁定,因为说这句话的时候 是没有假设存在一个愚笨的立委 作为对照的。但是,可以说:“睿智的立法委员肯定不会投票赞成这个法案的,少数愚蠢的立法委员除外。” 这就是限定性了 。当然,立委与立委不同,专有名词从集合论上说只是一个元素,排除时间维度可能的变化以后,这个元素是不可割裂的。普通名词常表示类别,所指是一个集合,于是给子集的限定性留下了余地。

白:
先有脸谱,锁定才成为可能。与脸谱不符,那是高级黑。

李:
这里 脸谱 就是英语的 stereotype,带有默认属性的实体,当默认属性成为修饰语 那就是非限定。默认以外的属性作为修饰语, 就是限定性 因为这增加了信息量。伟光正的信息量为零。作为修饰语 不是为了传达信息,而是为了宣传或气势压人。把默认属性提出来作为修饰语虽然没有增加信息量,但可能有强调或比照的语用效果。如果我们知道隔壁老张是个矮个子,然后说:“小个子的老张摔跤大赛中得了冠军”,这个已知内容的非限定性修饰语加强了意外成就的效果:see,大家都知道老张是个小个子,可是他虽然个子小,本应处于不利,他却赢了。

宋:
一般情况下,对于个体的修饰,通常是描述性的。对于多个体的集合的修饰,就有两种解读了。刚才说的是定语。如果是状语,则往往是描述性而非限定性的,因为通常是叙述一个特定的时刻特定对象发生的行为。如“他违规使用电器”。但是,在“禁止”、“提倡”、“要求”这类语境中,状语往往是限定性的。

白:
刚转了一篇关于陆奇的采访,用的称呼是“微软最有权势的华人”。且不说他是不是适合这顶帽子,这里涉及到定语的限定性用法和非限定性用法。如果中心语是集合,那么定语可以筛出一个子集。如果定语是一个个体,it depends。

“原来的我”,实际上把一个个体在时间维度上分片了,筛出一个时间段。而“聪明的一休”则根本没有任何限定。“假马克思主义者”则针对原来的集合在其外面构造了个集合。

李:
这个限定还是非限定的问题 在做 sentiment 时候挑战可大了。选定的定语有褒贬的话 对于被限定的实体 是直接影响。非限定则不然 根本就不存在褒贬评价 只是把对象用褒贬的维度 做了客观的分类说明而已。可惜二者的形式区分很微妙 不好区分。“道德败坏的四人帮" 是贬四人帮,"道德败坏的人 是环境使然 还是也有遗传因素呢 仍然有争议" 谈的不过是人类的一种,是在“人”这个集合里面限定一个子类,语义议论,并非针对“人”做否定性的价值判断。

白:
“道德败坏的人”两个意思。限定用法,指人类中道德败坏的那部分。非限定用法,指人这个物种就具有道德败坏的属性。

梁:
白老师是说,限定性把概念的外延限定变小了。“聪明的一休”没有"限定“一休,只是说一休有”聪明“的属性。

白:
是啊,正是。所以“丑陋的中国人”其实也有歧义的,只不过作者毫不隐讳他说的就是非限定性的意思。

宋:
英语的关系从句也有这两种(全体元素具有该属性,或抽取出具有该属性的那一部分元素),它们的区分有无形式标记?

白:
感觉:1、后置定语往往是限定性的;2。分词做定语往往是限定性的;3、有定形式(比如受定冠词管辖)往往是非限定性的。

我:
限定 非限定可讨厌了,有没有形式痕迹?有,英语中,我们尝试发现蛛丝马迹,也的确发现一些,类似白老师说的。但是非常微妙,稍不留神就 overkill,这个问题对 sentiment 非常重要,除非牺牲 recall,对定语一律不抓。如果想要那个 recall,precision 就会影响,如果这个问题不细心的话。烦死啦。

利用句法和pattern 都这么难缠,没有结构帮助,这个 sentiment 怎么弄,是不是就是瞎蒙。By the way, 英语中的术语 限定性(restrictive)与非限定性 似乎正好与白老师说的意思相反。教科书上,英语中最典型的区别和说法是,限定性定语从句前面不能有逗号,用 that 或 who、which,非限定性定语从句有逗号,不能用 that。因此,非限定性定语从句与另起一句差不多,是对NP的整体做进一步讲解,而不是对 NP 做限定性分类。但实际的情形复杂多了,这与 NP 是不是专名,NP 前面是定冠词还是不定,是不是复数,等等微妙条件的组合效应有关。

Case by case,人大致可以判断是哪一类,或是是不是歧义(或两类都有),但从这些语感中总结出一组可靠的条件,颇费功夫,要不断到数据去求证,才逐渐感觉有个眉目,这里面结构是必需但不是充分的因素(没有结构,是不是定语都不见得摸得门,就更甭提区分两种定语了)。应该算 NLP 难点之一。看哪家系统,用什么招,可以成熟一些。迄今所见所闻的学习出来的 sentiment 系统,对这个挑战似乎束手无策。

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白之43:谈谈绑定和回指】

白:

him为啥指he而不是the police officer?按照“最近提及原则”,the police officer在栈顶,“he”在次栈顶。但,语境(图片)表明,“he”在牢狱中,事理指向出狱(go)。事理决定了police officer可以决定he是否go,bribe可以左右police officer的决定。这些事理指向,一旦达到边界强度,可以压制最近提及原则的标配结果。

李:
"He bribed the police officer to let him go" is like "He requested the officer to find him". "him" cannot refer to "the officer", it has to be somebody else, either "He" or someone else.

cf: "He requested the officer to find himself"

"himself" refers to "the officer".

白老师的道理是说语境(事理)可以突破 heuristic。凡是 heuristic 都只是一种趋向,一种原则,也都有例外,都有被其他因素override 的可能。这个道理是对的。但这个案例,却不需要语境出场,这是句法绑定(binding)本身就决定了的。

"bribe" 的subcat 是:bribe sb to do sth, so "sb" is the (logical) subject of "to do",
the object of "to do" cannot refer back to the subject unless "self" is used following the Binding Theory.  So in the coreference list, "the police officer" is not even registered as a possible candidate.

句法就排除了这种可能,因此也就没有什么就近原则与语境发生冲突的故事了。这是乔姆斯基的绑定理论的一个典型表现。不确定绑定的是谁,而是确定不能绑定的是谁。

白:
穿透了

李:
显示了句法的有限但是有效的作用。

"She bribed the police officer to let him go", now the subject is "She", still "him" cannot refer to "the police officer". It has to be somebody else.

白:
him就是第三者,非反身性。

“John asked Bob to wash himself.”
“John promised Bob to wash himself.”

当年德国老师讲过这两个例子

李:
right.
this diff lies in the diff in subcat patterns. "promise" is not associated with the standard subcat "promise sb to do sth" when "sb" is the logical subjecct of "to do", it is instead associated with another subcat "promise to sb to do sth" when the logical subject of "to do" is the same as the subject of "promise".

所以句型不仅仅是形式序列: Input 形式背后作为output的逻辑语义也是句型的一个必要成分。上述两个形式相同的序列,在句型上被认为是两个。分别用不同的subcats 在词典里面标识。可见,subcat 虽然是一个句法范畴,里面却藏着通向语义的钥匙。

语言学里的subcat 差不多是大半部句法了,是极为重要的概念。词典主义被公认为最有效的自然语言策略就是基于subcat。这是语言学隐性形式手段的最漂亮的体现,是上帝的杰作。

白:
“我答应你离开他”,“我要求你离开他”。前者是“我”离开,后者是“你”离开。在“答应”和“离开”进行“合并”操作的时候,“离开”没有饱和的坑向“答应”的逻辑主语开放复用。在“要求”和“离开”进行“合并”操作的时候,“离开”没有饱和的坑向“要求”的逻辑宾语开放复用。这种在合并时可以对复用指向提出要求的禀赋,潜藏在词典里。平时看不见,合并时露峥嵘。

李:
正是。这是语言(学)的奇妙。由于subcat是一种词典分类或标注,是隐性形式,这似乎是创造语言的上帝给人类理解语言出了一个小小的难题。在人类(语言学家)没有发现subcat或自主利用subcat机制之前,语言处理注定是混沌的、粗线条的。但无论发现还是没发现,人类千百年来一直在潜意识里利用它,无障碍地交流。

白:
“面包我答应你吃掉了,牛奶你就别逼我喝了。” 即使填后面动词坑的萝卜移位到前面,这个关系依然成立。即使“你吃掉了”这么天衣无缝也不许结合。

李:
这个句子很妙。

白:
binding在汉语里会有更广阔的发挥空间,而且和“词负载结构”的理念是如此之契合。残坑就是一种变相的指代。

李:
但是,coreference主体是discourse范畴,binding不过是想利用句法提供一点帮助,它还是局限于句法本身的范围,句内。句内能搞定的只有self, 句内不能搞定但是可以排除句内candidate的,句法也有一些助益。再多,binding 就无能为力了。Coreference在 binding 之外,仍然有很多 discourse 的挑战。是一个公认的 NLP 难题了。

白:
“你我不允许走,他么可以商量。”---如果后面的动词是不及物的,即使逻辑宾语提前了仍然受到与在原位同样的约束。

李:
什么约束?

白:
走的不是我,虽然离得近。

“一个嫌犯我们也不允许放过”,“我们”似乎要通吃呀…… 难道“允许”是个双性恋?

李:
句型纠缠? 一个也不 Vt == 一个也不【被】Vt
“一个也不(被)买”,“一个嫌犯也不(被)放过。”

“一个嫌犯我们也不允许放过”
==“我们不允许放过一个嫌犯”
== “我们不允许【human】放过一个嫌犯”
== “我们不允许一个嫌犯(被)放过”

这个【human】是谁,不知道,也不必知道。这是一种命令,常识上这个【human】可以是任何人(在domain里可能指某些“手下”)。任何人也就可以包括“我们”自己,但这不是严格的回指,而是包含。

“我们也不允许自己或任何其他人放过一个嫌犯。”
“我们也不允许任何人包括我们自己放过一个嫌犯。”

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

【李白之42:谈谈工具格的语言形式】

白:

“张三踢李四的两脚李四一直惦记着啥时候提回来呢。”

如果“两脚”填的不是标配的坑,这定语从句的反填就成了问题。目前我是把“两脚”这种动量词先处理成N,再升格成为+S,可以理解为一个自带宾语的虚拟后置修饰语。当对“两脚”使用定语从句修饰的时候,可以认为自带的宾语“两脚”与作为其母体的虚拟后置修饰语进行了某种分离:虚拟后置修饰语“+S/N”留在了定语从句内部,而它自带的宾语“N”则被甩到定语从句的外边,被修饰且可以反填残坑“/N”。同理,在“武松打死老虎的那三拳力道大得惊人”中,“三拳”也填不了“打”的标配的坑,只能理解为自带宾语的前置虚拟修饰成分(“打死”已经是述补结构不再能后置只修饰“打”的动量修饰成分,从而必须往“打”前面放)S+/N和动量结构N分离了。就是说,被定语从句修饰的动量词N,无法简单地升格为+S或S+,而必须要还原出一个带宾语坑虚拟修饰语+S/N或S+/N,把它推入定语从句。这恰恰才是N升格为+S或S+的本质。如果不是反填定语从句的要求苦苦相逼,这个本质差点儿被掩盖了。可以理解为先有“武松(凭借)三拳打死老虎”,而后有“武松(凭借)打死老虎的那三拳”,最后变成了“武松打死老虎的那三拳”。

说到“凭借”,想到了“借以”。后者是中间抽空了介词宾语的合成词。“武松借以打死老虎的那三拳”是“武松借(那三拳)以打死老虎”的定语从句形式。反填的坑,就在“借”和“以”之间。

李:
工具格,或 所凭借。

白:
有的时候,这个坑会显性化,“借之以”。
砍、剁、刺、砸等动作,工具格是标配。打、抢,工具格不是标配。非标配又不显性带介词的工具格,必须借升格处理之。

李:
工具格有搭配性与非搭配性两种:搭配性工具 因为其搭配 常常省略显性小词 如“凭借”、“用” 等。“打 两拳” 是搭配,“两拳”是工具。“用板凳 打”,则是非搭配性工具。

白:
“他抢银行的那把玩具枪”
意思是“他(用以)抢银行的那把玩具枪”

李:
“他抢银行的那个案底”

白:
“案底”是N/X,不需要反填,是动词填X。

李:
“他抢银行的那个同伙”

白:
“同伙”是N/N

李:

“他抢银行的那幢大楼”
“他抢银行的那个时间”
“他抢银行的那个缘由”
“他抢银行的那个后果”

白:
缘由、后果也是N/X。大楼、时间不是,但内置虚拟修饰语。必要时就分离出来,塞回定语从句。同伙、缘由、后果、案底,都带坑。时间、大楼、动量,则是内置一个随时可以分离的坑。或者叫虚拟小词。

李:
“他抢银行的那个x”
对于非搭配性(标配)的工具,也分为两种,一种是这个实体本身具有比较典型和普适的工具性。算是一个名词子类吧。另一个是不在这个子类的名词。对于后者 如果想表达工具这个逻辑语义,就必须用小词。否则它就没有证据或痕迹显示自己的工具角色。“他用希特勒主义去抢银行”。这个 “用” 不能省。因为 “希特勒主义” 第一不与 “抢银行” 有搭配,第二它自己也不属于工具子类。语言必须要用显性形式,譬如次动词“用”,或者俄语的工具格的词尾形式,来标记其逻辑语义,否则心里的语义无以传达。

白:
“抢银行”换成“治理国家”,“用”就可以省了。

李:
那是因为 “主义” 与 “治理” 有某种搭配的呼应。

白:
且不说逻辑语义,统计就支持这样的搭配

李:
没有统计的搭配不存在 除非说的不是大数据。

白:
不说“主义”,就说“那一套”,也可以省掉“用”,因为“希特勒”已经是足够强的搭配因素了。

李:
“他用那一套糊弄谁呀”
“是啊 那一套糊弄谁呀”

白:
“那一套”隐含“方法/无形工具”
所以,对于从名词反推虚拟修饰语的“升格-分离-反填”机制,形式规则只提供可能性,统计搭配才提供现实性。

上面说错了,“升格”都应改为“降格”。降格虽是普适的机制,但只能紧邻被修饰语使用。分离是受统计显著性搭配条件才激活的,只有成功分离,才能在后续纳入正常的反填渠道处理。

被定语从句修饰的中心语,N/N与N/X的区别。前者从N栈依次寻找搭配的词语填坑。后者从N和S混合栈里的依次寻找搭配的词语。二者都服从“最近提及原则(last mentioned principle)”,但针对的栈不同。因为都在定语从句辖域内,这些填坑的萝卜都是使用的免费额度,无论S还是N。

李:
在我的体系里,arg 降格为 mod,【工具主语】 降格为 【工具状语】。如果 topic 是人,subject 是工具,topic 可升格为逻辑主语 arg,工具 subject 则降格为状语 mod. “他一巴掌打了她”,“他”是逻辑主语,“一巴掌”是工具状语。

总之,逻辑语义虽然放之四海而皆准,自然语言却老在升格降格、显性隐性形式中变化多端。语言世界因此诡异而多彩。

白:
话头是宋老师“达成的一致”引发的。“一致”在宋老师的例子里确实是“升格”,但后续关于动量词的例子里,讨论的都是“降格”。N+到N、S+到S是升格;N、S到N+、S+或+N、+S是降格。一个是萝卜皮变成萝卜,一个是萝卜变成萝卜皮。

李:
“达成的一致” 就是 “洗的澡”

白:
?学的习
?高的考

李:
不好
有如 * “浏的览”

白:
洗的澡是自指,达成的一致是转指。

?收获的丰硕
?贪污的巨额

最后一个接近于能说。

取得的圆满

这个就完全没问题了。“圆满”基本可以类比宋老师例子里的“一致”。

赶过的时髦

“时髦”比“圆满、一致”还顺溜。几乎不是临时借用N而是固化的N了。

 

【相关】

【语义计算:李白对话录系列】

《朝华午拾》总目录

《李白之零:NLP 骨灰级砖家一席谈,关于伪歧义》

题记:此地有金八百两,隔壁RNN不曾偷。

李:今天我们可以讨论伪句法歧义(pseudo-parses)的问题。我说过,多层 FSA 的 deep parser 不受伪歧义的困扰,虽然这是事实,但也还是需要一个阐释。这个问题是革命的根本问题,虽然文献中很少讲述。

第一章,事实篇。

话说某年某月某日,立委与白老师在微博狭路相逢。其时,立委正海吹深度分析(deep parsing)乃是自然语言之核武器,批评主流只在浅层做文章,摘下的不过是低枝果实(low-hanging fruit)。白老师当时插话说(大意): 你们搞深度分析的不算,你们也有自己的挑战,譬如伪歧义问题。最后留下三个字:你懂的。

各位看官网虫,大凡社会媒体,只要留下这三个字,那就是宣告对手的不上档次,不值得一辩,叫你无还手之力,无掐架之勇,先灭了你的志气。此前,与白老师未有私人交往,更无卡拉ok,江湖上下,白老师乃神人也,天下谁人不知,况青年偶像,粉丝无数。立委见势不妙,战战兢兢,唯唯诺诺:“那自然”。我懂的。心里却颇不以为然:伪歧义其实不是一切深度分析的命门,它只是单层分析的挑战,特别是 CFG (Context-Free Grammar)类 parsers 的困扰。

这是第一章第一节,是锲子。

虽然心里不以为然,但是“我懂的”,却是有丰富的事实依据。骨灰级老革命有一个好处,就是碰壁。无数的碰壁。革命,碰壁,再革命,再碰壁,直至百毒不侵,火眼金睛。老革命可能还有一个好处,就是走运,走狗屎运(譬如赶上上世纪末的网络泡沫,米国的科技大跃进,天上掉馅饼),直至反潮流也没被杀头,硕果仅存。

话说自上世纪80年代社科院出道以来, 就开始做deep parsing, 跟着两位导师,中国NLP的开山前辈,中国MT之父刘先生。他们的几十年的机器翻译积累,在分析这块的传承就是多层模式匹配(multi-level pattern matching)。用 CL术语,就是 multi-level FSA (finate state automata)或 cascaded FSA,有限状态的。我是苦力、主力,新毕业生嘛,为 deep parsing 写了无数个性的词典规则和反复调试精益求精的600条抽象句法规则。埋头拉车,无需抬头看路。从来就没有碰到过什么伪歧义的问题。这是事实一。

事实二发生在我做博士的时候,90年代中期。在风景如画的SFU山头上。当时我的两位导师,电脑系的 Fred 和 语言系的 Paul 合作开了一个自然语言实验室。这两位博导虽也绝顶聪明,但毕竟还年轻。在 NLP 场面上,需要站到一条线上,才好深入。实际上,他们是加拿大 NLP 的代表人物。他们于是选择了当时流行的 unification grammar school (合一文法学派)之一种,就是继 Prolog 以后,开始火起来的合一文法中的后起之秀,名叫 HPSG (Head-driven Phrase Structure Grammar)。这一个小流派,斯坦福是主打,欧洲有一些推崇和践行者,在北美,闹出动静的也包括我的导师的实验室。HPSG 说到底还是 CFG 框架,不过在细节上处处与乔老爷(Chomsky)过不去,但又处处离不开乔老爷。理论上有点像争宠的小妾,生怕得不到主流语言学界乔老爷的正视。

白: 还没进正题

李:白老师嫌拖沓了??现在还在事实篇内。不讲道理。

HPSG 推崇者不少,真懂的怕不多,特别是把 HPSG 用于中文 parsing 方面。看过一些国人不着边际的 HPSG 论,造成了这个印象。这玩意儿得跳进去,才知优劣深浅。当然没跳的也不必跳了,合一(unification)这一路没成气候,现在跳进去也是白跳,浪费时间。HPSG 有一个好处,就是它的词典主义,它实际上就是此前流行的 GPSG 的词典主义版本。NLP 领域各路英豪你争我斗,但有一个很大的共识,就是词典主义,lexicalist approach or lexicalist grammar。这也反映在 HPSG,LFG 等风行一时的文法派中。

我呢,有奶便是娘。本来嘛,导师做什么,学生就要做什么,这才是学位正道。于是,我在HPSG里面爬滚了几年。照猫画虎,写了一个 CPSG,就是 Chinese 版本的 HPSG。用它与实验室的英文 HPSG 对接,来做一个英汉双向机器翻译的实验,当然是玩具系统。这是我博士论文的实验部分。

为什么双向?这正是 Prolog 和所有 unification grammars (又称 constraints based grammars)所骄傲的地方:文法无需改变,文法就是对语言事实的描述,文法没有方向。无论做分析(parsing),还是做生成(generation),原则上,规则都是一样的,不过是执行层面的方向不同而已。理论听上去高大上,看上去也很美,一度让我入迷。我也确实完成了双向的实验,测试了几百个句子的双向翻译,得到了想要的结果。细节就不谈了,只谈相关的一点,就是,伪句法歧义在这些实验中是一个 huge problem。这个 HPSG parsing 中,伪歧义的事实有多严重呢?可以说是严重到令人窒息。当时用PC终端通过电话线连接到实验室的server上做实验,一个简单的句子在里面绕啊绕,可以绕出来上百条 parses。当然,可以设置成只输出一条 parse 来。有时忍不住好奇心,就耐心等待所有的 parses 出来,然后细细察看,究竟哪个 parse 对。

额的神!

乍看全长得差不多,细看也还是差不多。拿着放大镜看,才看出某个 feature value 的赋值不同,导致了 parses 之间的区别。可这种不同基本上没有语义的区别性价值,是为 pseudo parses 之谓也。要都是伪歧义也好,那就随机选一个parse 好了,问题出在,这百来条 parses 里面有时候会混杂一两条真的歧义,即语义上有区别性价值的 parses,这时候,选此废彼就具有了操作层面的价值取向。否则就是以一派压制另一派,反对党永无出头之日。

这个问题困扰了整个 HPSG community(其实是整个 CFG 框架下的 community)。记得在 HPSG 内部邮件组的讨论中,怨声鼎沸,也没人能找出一个理论上和实践上合理的解决途径来。

白: 简单说就是时间复杂性上去了,结果复杂性没下来。折了兵,真假夫人还混在一起不知道赔谁合适。

李:这就是为什么当时你那么肯定地指出我作为深度分析语言工作者所面临的挑战,您老是把我归到主流语言学乔老爷 CFG 的框架里说的。

在第一章事实篇结束前,简单说一下实践中的对策。后来我的导师与本省工业界合作,利用 HPSG MT 帮助翻译电视字幕。在真实应用中,他们只好选择了第一条成功的 parse 路径,完全忽略其他的 parses。这也是没有办法的办法。质量自然受损,但因为无区别意义的 pseudo-parses 占压倒多数,随机选第一条,在多数场合也还是可以的。

第一章小结:骨灰级老革命在没有理论探索的情况下,就在 deep parsing 的 field work 中经历了两种事实:一种是不受困扰的多层 parser,一种是深陷其中的单层 parser。因此,当白老师一口咬定深度分析的这个挑战的时候,我觉得一脑门道理,但就是有理说不清。至少一句两句说不清,只好选择逃遁。

对于绝大多数主流NLP-ers,NL的文法只有一派,那就是 CFG,无论多少变种。算法也基本上大同小异,chart-parsing 的某种。这个看法是压倒性的。而多层的有限状态文法做 parsing,虽然已经有半个多世纪的历史,却一直被无视。先是被乔姆斯基主流语言学派忽视,因为有限状态(FSA)的名字就不好听(多层不多层就懒得细究了),太低端小气下位了。由于语言学内部就忽视了它,自然不能指望统计派主流对它有重视,他们甚至对这路parsing没有啥印象(搞个浅层的模式匹配可以,做个 NE tagging 啥的,难以想象其深度parsing的潜力),尽管从有限状态这一点,其实统计派与FSA语言派本是同根生,二者都是乔老爷居高临下批判的对象,理论上似乎无招架还手之力。

白: 概率自动机和马尔可夫过程的关系

李:但是,多层 FSA 的精髓不在有限状态, 而是在多层(就好比 deep learning 的精髓也在多层,突破的是传统神经网络很多年停滞不前的单层)。这就是那天我说,我一手批判统计派,包括所有的统计,单层的多层的,只要他们不利用句法关系,都在横扫之列。因为这一点上还是乔老爷看得准,没有句法就没有理解, ngram 不过是句法的拙劣模仿,你的成功永远是浅层的成功, 你摘下的不过是低枝果实。不过恰好这种果子很多,造成一种虚假繁荣罢了。

另一方面,我又站在统计派一边,批判乔姆斯基的蛮横。实践中不用说了,管用的几乎都是有限状态。乔老爷要打死单层的有限状态,我没有意见。统计派的几乎所有模型(在 deep learning 火起来之前)都是单层,他们在单层里耗太久了不思长进,死不足惜,:)。 蛮横之处在于乔老爷对有限状态和ngam多样性的忽视,一竿子打翻了一船人。

白: RNN可以完美模拟FSA, 但是现在的人都把RNN当做统计派的功劳。

李:但是他老人家忘记了, 我只要叠加 FSA 就可以比他所谓的 more powerful 的 CFG 做得深透,而且合体(特别适合白老师说的自然语言的毛毛虫体型)。他对有限状态的批判是那么的无视事实和缺乏理性。他是高高在上的神,不食人间烟火的,我们各路NLP实践派对他都敬而远之,基本没有人跟他走。在他本应发挥影响的领域,他其实缺乏起码的影响力。倒是语言学内部被他控制了,语言的形式化研究跟着他亦步亦趋走了半个多世纪,离作为其应用场景的 NLP 却渐行渐远。这是一个十分滑稽的领域怪相。

白: RNN加层、计数器、加栈、加长时记忆,本质上都在突破单层FSA的计算能力

李:好了,咱们接着聊第二章:为什么多层系统,尤其是 多层 FSAs ,不受伪歧义的困扰?

白: 只要证明毛毛虫以外不是人话,就只管放心玩毛毛虫好了。伪歧义跟规则的递归形式无关,跟规则的词例化水平和压制机制有关。但是,要hold住十万百万量级的规则,CFG一开始就必须被排除在外。

李:对。

说到底是规则的个性与共性关系的处理,这是关键。这个不是我的发现,我的导师刘倬先生早年就一再强调这个。刘老师的系统命名为 专家词典(expert lexicon )系统,就是因为我们把个性的词典规则与共性的句法规则分开了,并且在个性与共性之间建立了一种有机的转换机制。

白老师说得对,单层的 CFG 基本是死路。眉毛胡子一把抓,甚至所谓词典主义的 CFG 流派,譬如 HPSG 也不能幸免,不出伪歧义才怪呢。如果规则量小,做一个玩具,问题不严重。如果面对真实自然语言,要应对不同抽象度的种种语言现象,单层的一锅炒的parsing,没有办法避免这种困扰。

白: HPSG 之类可以依托树做语义信息整合,但是在树本身的选择数目都在爆炸时,这种整合是不能指望的。

李:可以说得具体一点来阐释其中道理。分两个小节来谈,第一节谈多层系统中,单层内部的伪歧义问题。第二节谈多层之间的伪歧义问题。

白: 但是仍然困惑的是某种结构化的压制,比如“美国和中国的经济”’。“张三和李四的媳妇”

李:如果这两种伪歧义都有自然的应对方式,那么伪歧义不是困扰就理所当然了。待会儿就讲解白老师的例子。我这人啰嗦,学文科的,生存下来不容易,各位包涵了。

白: 抽象的并列,天然优越于抽象的长短不齐。似乎并不关乎词例,词例化的、次范畴化的规则,都好理解。抽象的结构化压制,处于什么地位呢?

李:但是难得大家围坐在一起,忍不住借题发挥一下,顺带进一步阐释了上次“上海会面”上的论点:我对乔老爷既爱且恨,爱他批判单层统计派的一针见血;恨他一竿子打翻一船人,敌我不分,重理论轻事实。

白: 是因爱成恨好吧

李:我们实际上半条身子在统计派的船上,大家都是有限状态;半条身子在语言派船上,毕竟我们不是单层的有限状态。统计派的有限状态的典型表现 ngram 实际上是 n-word,而我们的有限状态是真正的 ngram,这个“gram” 就是刘老师当年一再强调的 “句素”,是一个动态的句法单位,可以是词、短语或者小句,随 parsing 的阶段而定。这样的 ngram 是统计派难以企及的,因为它反映的是真正的语言学,多数统计学家天然不懂。

白: 世界上只有深层派和浅层派,这是复旦美女教授教导的。我认为只要touch深层,无论什么派都会殊途同归。

李:先说单层内部的伪歧义。这个白老师心里应该没有疑问了,不过为了完整还是先讲它。单层的有限状态说到底就是一个 regex (正则表达式),只不过面对的单位根据语言层次的不同而不同而已。如果是 POS tagging 这种浅层,面对的单位就是 words (or tokens)。如果是句法关系的解析层,面对的单位就是短语(可以看作是头词,它代表了整个短语,“吃掉”了前后修饰语)。

对于单层,有两种结构歧义,一种是伪歧义,占多数;一种是真歧义,占少数,但存在。单层系统里面的每一条规则都是一个 pattern,一个缩小版的局部 parser (mini-parsing),试图模式匹配句子中的一个字符子串(sub-string)。歧义的发生就是 n 个 patterns 对相同的输入文句的字符子串都成功了。这是难免的:因为描述语言现象的规则条件总是依据不同的侧面来描述,每条规则涵盖的集合可能与其他规则涵盖的集合相交。规则越多,相交面越大。每条规则的真正价值在于其与其他规则不相交的那个部分,是那个部分使得 parsing 越来越强大,涵盖的现象越来越多。至于相交的部分,结论一致的规则有可能表现为伪歧义(结论完全一致是异曲同工,没有歧义,但设置一个系统的内部表达,难免涉及细节的不同),这是多数情形。结论不一致的规则如果相交则是真歧义。这时候,需要一种规则的优先机制,让语言学家来定,哪条规则优于其他规则:规则成为一个有不同优先度的层级体系(hierarchy)。

白: 在线?

李:FSA Compiler 事先编译好,是 FSA Runner 在线做选择。

白: 那要隐含规则的优先关系,不能初一十五不一样。

李:个性的现象优先度最高。共性的现象是默认,优先度最低。这个很自然。一般来说,语言学家大多有这个起码的悟性,什么是个性现象,什么是共性。

白: “张三的女儿和李四的儿子的婚事”

李:如果优先语感不够,那么在调试规则过程中,语言数据和bugs会提请语言工作者的注意,使得他们对规则做有意义的优先区分,所谓数据制导 (data-driven) 的开发。

白: specificity决定priotity,这是个铁律。在非单调推理中也是如此。

李:这个优先权机制是所有实用系统的题中应有之意。优先级别太多太繁,人也受不了。实际情形是,根本不用太多的优先级别区分,每一层分析里只要三五个级别、最多八九个优先级别的区分就足够了(因为多层次序本身也是优先,是更蛮横的绝对优先)。

白: 我还是觉得优先级初一十五不一样的时候一定会发生,而且统计会在这里派上用处。

李:一切是数据制导,开发和调试的过程自然做到了这种区分。而更多的是不做优先区分的歧义,恰好就落在了原来的伪歧义的区间里面。这时候,虽然有n条规则都产生了 local parses,他们之间没有优先,那就随机选取好了,因为他们之间其实没有核心 semantic 的区别价值(尽管在表达层面可能有细微区别,hence 伪歧义)。换句话说,真歧义,归优先级别控制,是数据制导的、intuitive 的。关涉伪歧义困扰的,则变成随机选取。这一切是如此自然,以至于用FSA做parsing的从业者根本就没有真正意识到这种事情可能成为困扰。关于初一15的问题,以及白老师的具体实例,等到我们简单阐释第二节多层之间的伪歧义的应对以后,可以演示。

第二章第二节,多层之间可能的真伪歧义之区分应对。

对多层之间的真歧义,不外是围追堵截,这样的应对策略在开发过程中也是自然的、intuitive 的,数据制导,顺风顺水。围追堵截从多层上讲,可以在前,也可以在后。在前的是,先扫掉例外,再用通则。在后的是先做默认,然后再做修补(改正、patching)。道理都是一样的,就是处理好个性和共性的关系。如果系统再考究一点,还可以在个性中调用共性,这个发明曾经是刘老师 Expert Lexicon 设计中最得意的创新之一。个性里面可以包括专业知识,甚至常识(根据应用需要),共性里面就是句法模型之间的变式。

好,理论上的阐释就到此了,接下去可以看实例,接点地气。白老师,你要从哪个实例说起?我要求实例,加问题的解释。

白: “中国和美国的经济”。这就是我说的初一十五不一样。

李:这是真的结构歧义,Conjoin (联合结构)歧义 。在语言外知识没带入前,就好比西方语言中的 PP attachement 歧义。结构歧义是NLP的主要难题之一。Conjoin 歧义是典型的结构歧义,其他的还有 “的”字结构的歧义。这些歧义在句法层无解,纯粹的句法应该是允许二者的共存(输出 non-deterministic parses),理论上如此。句法的目标只是区分出这是(真)歧义(而这一点在不受伪歧义困扰的多层系统中不难),然后由语义模块来消歧。理论上,句法和语义/知识是这么分工的。但是实践中,我们是把零散的语义和知识暗渡陈仓地代入句法,以便在 parsing 中一举消歧。

白: 一个不杀当然省事。但是应该有个缺省优先的。

李:缺省优先由“大数据”定,原则上。统计可以提供启发(heuristics)。

白: 有次范畴就能做出缺省优先。不需要数据。

李:当然。次范畴就是小规则,小规则优先于大规则。语言规则中,大类的规则(POS-based rules)最粗线条,是默认规则,不涉及具体的次范畴(广义的subcat)。subcat based 的其次。sub-subcat 再其次。一路下推,可以到利用直接量(词驱动)的规则,那是最优先最具体的,包括成语和固定搭配。

白: 次范畴对齐的优先于不对齐的,就联合结构而言。但是,about 次范畴,理论上有太多的层。

李:那是,联合结构消歧中的次范畴不是很好用,因为这涉及词的语义类的层级体系。不管是 WordNet 还是董老师的 HowNet,里面的 taxonomy 可以很深,统统用来作为次范畴,不太现实。但理论上是这样使用的。

白: 再一个,“张三的女儿和李四的儿子的婚事”。这个也是真歧义吗?

李:上例的问题和难点,白老师请说明。"的"字结构的 scope歧义加上联合结构的歧义的叠加现象?

白: 上例是处理深度的问题,各自理解即可。歧义叠加,只有更加歧义了。可是实际相反,叠加限制了歧义。

李:在分层处理中,我们是这样做的:

(1)Basic NP, 最基本NP层的结果是:NP【张三】 的 NP【女儿】 和 NP【李四】 的NP【儿子】 的 NP【婚事】

(2)Basic XandY, 最基本的联合结构层:在这个层次,如果条件宽,就可能发生联合错误,错把 【女儿 和 李四】 联合起来。这个条件可以是 HUMAN,二者都符合。而且在 95% 的现象中,这个条件是合适的。如果条件严的话,譬如用 RELATIVES 这个语义次范畴(HUMAN的下位概念),而不是 HUMAN 来限定的话,这个句子在这一层的错误就避免了。

那么具体开发中到底如何掌握呢,这实际上决定于设定的目标,没有一定之规。做细总是可以做到更好质量,大不了多加几层 NP 和 XandY 的模块(FSAs),但还是增加了开发和维护的负担。如果做粗一点,只要所造成的 parsing 质量上的后果能控制在应用可接受的范围,那也未尝不可,因为说到底,世界上没有完美的系统。上帝允许人类的不完美。

白: 把这个换成“AB的中点与AC的中点的连线”?同样的结构。

李:另一个思路,就是多层协调中的修补。对于上述两个例子,修补的办法似乎更好。与其分多层,代入各种繁琐的语义条件来消歧,不如任他出错,然后根据pattern的平行因素加以修正。在多层系统中,这个常常是有效的策略,也符合开发的总体规划。先把系统大体弄得work了,可以对付多数现象,然后有时间和余力了,后面可以 patching。前提是,错误是 consistent 和 predictable 的。对于多层管式系统(pipeline system),错误并不可怕,只要这种错误 consistent 有迹可循,后面总可以把它们修正。

多层管式系统常常被批评存在一个 error propagation(错误放大)的难题。其实,多层系统也可以做到负负得正(矫枉过正是也)。一个好的系统设计,是后者,通过 data-driven,可以做到把错误放大控制到最低限度,并发扬负负得正来得到最终正确的结果。

白: 伟哥的诀窍其实是把握一个适中的词例化-次范畴化水平问题。太粗则伪歧义盛行,太细则边际效益大减。

李:上例中 “中点与AC” 可以联合,不过是一个暂时的内部错误而已,后面可以修正。总之,这些都不是根本的 challenge,想做就可以做,实际操作上,也可以选择不做。问题大了,就做;用户发飙了,就做;否则就无视。很少有歧义是做不出来的,功夫和细节而已。最终决定于值得不值得花这份力气,有没有这样的开发时间和资源。

白: 做与不做,有可能影响架构选择。补丁有好处也有后遗症。

李:NLP 可以做一辈子,在基本机制(优先机制,修正机制,范畴、次范畴机制,专家词典等)由平台实现提供以后,慢慢磨到最后就是 diminishing return,与爬山类似,这决定了我们何时罢手。如果85%的精度作为parsing的目标,那么系统会选择不做一些稀有的现象。有了这个 85%,已经可以满足很多应用的要求了。

有了 85% 做底, 还可以让机器变得智能起来,自动地自我提高,所谓 self-learning,这是研究课题了,但是是可以实现的。实际上在我指导的实习生实验中已经实现,不过就是在线开销太大而已。

白: 再看“馒头吃光了”?

李:这个例子更容易讲清楚。在系统的某一层,可以有个规则 把某种 “V+光" parse 成为动补结构,这个V的限制可以调试出合适的子范畴来。

白: “光”词例化肯定是可以的。

李:好,这就解决了95%以上这类以“光”收尾的现象。如果遇到了反例,譬如,“黑洞吃光了”, 那么或者修正它,或者作为个体知识的规则前置。围追堵截是也。总是可以把零碎的专业知识做成规则,如果需要的话。至于这么做值得不值得,那是应用层面的决定。很多时候是不必要的。错了就错了,不过是显得系统缺乏专家的知识,so what?我们普罗 native speakers 也都不是每一行的专家,也并不是每句话都听懂,不也一样没觉得交流困难。就此例来说,决定于听者的知识面,小学生和文盲一般不能正确 parse 理解 “黑洞吃光” 的动宾语义来。动宾的语义是需要语言外知识在语言内非优先的潜在结构上作用才能得出。而动补结构则不需要,那是语言内的句法知识(最多说是句法子范畴或小规则,但不涉及专业知识),是所有国人的默认理解。

白: 这一点非常重要。一个开放,一个封闭。一个外部,一个内部。外部的事儿,就算没有专业知识,也可以大数据招呼。

李:今天似乎可以结束了,说到底,就是:

一,平台需要提供一些基本机制来处理共性与个性的关系,从而应对歧义,这些在 FSA formalism 的教科书定义中可能不存在,或被忽略,但却是实用系统不可或缺的。

二,NLP 的确是个力气活,有无限的可能深入。当然,我们可以选择不深入,可以选择何时罢手。

至于大数据招呼,那个在前述的自学习上也必须用到。我们教授机器做到 85%,大数据基础的自学习可以让它自行提高到 90%,这个是部分证实了的,可惜还没有发表出来,以前说过,懒得成文。都骨灰级老革命了,谁在乎那个。我说的大数据是指与大语料库对应的 grammar trees 自动形成的 forest,比 PennTree 大好几个量级。

这次神侃算不算基本回答了疑惑,可以得出“伪歧义在多层系统中不是困扰”这个结论?

白: @wei 是,非常感谢。

李:不过,我们一方面实用制导,一方面没有忘记基本面和大局。与纯粹的实用主义,头痛医头,脚痛医脚,还是不同。这种积一辈子挖煤的经验之谈,正式论文中罕见,也算一件功德。难得的是白老师还有雷司令身为主流精英,居然能一开始就高于主流,不排斥异端或少数派。所以上次上海聚会,我就说,火药味的架掐不起来的, 因为相互的理解和欣赏多于分歧。但我知道也有很多统计死硬派,甚至大牛,是不尿这壶的。

白: 只要聚焦于深层,一定会殊途同归。RNN记在统计账上,但已经是深层了。

可以再关心一下NLP的商业模式,怎么能讲一个好故事。我们说fsa也好分层也好,资本都是不感冒的。

李:滑稽的是发现有些死硬派做了n年NLP,却真地不懂语言学,有个别大牛连常识都不懂,让人跌破眼镜。当然这个只能内部说说,不能博客的。所以往往是互相地不尿对方那一壶,与宗教之战类似。

RNN 我不敢发言, 不过从白老师零星的介绍来看, 很可能殊途同归。不过 FSA 这套 deep parsing 是已经稳定成熟的技术。RNN 的工业成熟度如何,我不知道。可能都是核弹, 不过是原子弹氢弹区别而已。

白: Ngram说不定变出个什么花样来,也殊途同归。

李:其实 多层 FSAs 本质上就是 ngram 的花样,不过 gram 不再仅仅是词了,而是等于或大于词的句素。能以动态句素作为 ngram 的对象,是因为多层的原因,跟剥笋子一样,层层扒皮,gram 当然就是动态的了。这一点很关键,是乔姆斯基都没想到的 power。

白: 对,边扫描边归约,边抛出句素。

李:这里面最 tricky 的不是机制而是细节。魔鬼在细节,就是指的这个。FSA 是“古老”简单的机制了,细节就是玩平衡,玩模块之间的协调。玩得好的就好比中餐的大厨,可以做出满汉全席来,玩不好的还不如麦当劳、keywords。到这一步,经验因素开始起作用。没碰过n次壁,甚至几万小时的炼狱,这个火候掌握不好。这类系统很难做得表面上漂亮光洁,总是在混沌中前行,要忍受不完美。这方面的忍受,数学家不如语言学家。数学家天生追求简洁完美,不愿意将就。

白: 句素的个头大,影响范围就大,相当于抛得就远。可以进入远距离的滑动窗口,伟哥说的Ngram的缺点就不存在了。

dirty是必然的。

李:ngram 的缺点是主流的缺点,不是语言多层派的缺点。恰好相反, ngram 多层以后,很容易比任何 CFG 做得细致深入,以至于,想怎么深入就怎么深入, 如果持续开发的话。

CFG 那套单层范式,无论统计模型还是传统文法加以实现,真地深入不下去,是框框决定的。两边都玩过,这种对比太强烈了。我对我的博导说过, HPSG 真地不好用,那边费那么大劲的事儿,在我这儿是小菜。说拿的是牛刀,可对象不是牛,而是鸡。不如我剪刀和匕首好宰鸡。

白: 我一个学生搞蛋白质折叠的分析。蛋白质大分子折叠的点恰好是若干局部的代表(相当于语言的head中心词)之间发生全局相互作用的地方。真是神了。

李:今天到此,特别谢谢白老师的互动和精彩的及时点评。

原载:
科学网—泥沙龙笔记:真伪结构歧义的对策(1/2) 
骨灰级砖家一席谈,真伪结构歧义的对策(2/2) 

 

【相关】

乔姆斯基批判

【立委科普:管式系统是错误放大还是负负得正?】

关于NLP方法论以及两条路线之争

[转载]【白硕 – 穿越乔家大院寻找“毛毛虫”】

【白硕 – 打回原形】

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【从 sparse data 再论parsing对信息抽取的核心作用】

parsing关键是它节省了语用层面的开发。没有parsing,抽取是在表层进行,存在的困境是 sparse data 和长尾问题。表层的东西学不胜学,而有了 deep parsing  的支持,抽取规则可以以一当百,至少从规则量上看,这绝不是夸张。这是其一。

其二,deep parsing 使得领域移植性增强太多。

没有 parsing 抽取任务变了,一切须推到重来。

对于规则体系,有了 deep parsing,抽取任务随领域变了就不需要那么大的返工。parsing 吃掉了约 90% 的重复劳动(语言知识和结构本质上是跨领域的),返工的部分不到 10%。

parsing 意义之重大 正在于此。

对于机器学习,NLP应用的知识瓶颈在 (1)sparse data;(2) 任务变,训练库必须重新标注:前一个任务的标注对后续任务基本没有可重复使用的可能,因为标注是在语用层进行的。

如果有 parsing support,理论上讲,机器学习可以更好地克服 sparse data,但实践上,到目前为止,结合 structure features 和 keywords 在机器学习中一锅煮,目前还处于探索研究阶段,没有多少成熟的案例。我们以前尝试过这种探索,似乎parsing的参与有推进系统质量的潜力,但是还是很难缠,模型复杂了,features 混杂了,协调好不是一件容易的事儿。

事实上,规则体系做抽取,没有 parsing 差不多有寸步难行的感觉。因为人的大脑要在语言表层写规则,数量太大,写不过来。只有机器学习,才可以绕开parsing去学那数量巨大的抽取规则或模型,但前提是有海量标注的训练集。否则面对的是 sparse data 的严重困扰。

sparse data 远远不是单指表层的出现频率低的 ngrams (习惯用法、成语等)的累积,那种 sparse data 相对单纯,可以当做专家词典一样一条一条编写,愚公或可移山。如果训练数据量巨大,譬如机器翻译,那么这类 sparse data 对于机器学习也有迹可循。当然大多数场景,标注的训练集始终大不起来,这个知识瓶颈 is killing ML。

更重要的 sparse data 是由于缺乏结构造成的,这种 sparse data 没有parsing就几乎无计可施。表层的千变万化,一般遵循一个正态分布,长尾问题在结构化之前是没有办法有效捕捉的。而表层的变化被 parsing 规整了以后,表层的 sparse 现象就不再 sparse,在结构层面,sparse patterns 被 normalize 了。这是 parsing 之所以可以称为NLP应用之核武器的根本。

没有 parsing,结构性 sparse data 就玩不转。

乔姆斯基纵有一万个不是,一千个误导,但他老人家提出的表层结构和深层结构的思想是不朽的。parsing 就是吃掉各种表层结构,生成一个逻辑化的深层结构。在这种深层结构上做抽取或其他语义语用方面的应用型工作,事半功倍。

Deep parsing consumes variations of surface patterns, that's why it is as powerful as nuclear bombs in NLP。

别说自然语言的语句的表层多样化,咱们就是看一些简单的语言子任务,譬如 data entity 的自动标注任务,就可以知道表层的 sparse data 会多么麻烦:如 “时间”的表达法,再如“邮件地址”的表达法,等等。这些可以用正则表达式 parse 涵盖的现象,如果在表层去用 ngram 学习,那个长尾问题就是灾难。

自然语言文句之需要 parsing,与标注 data entity,正则表达式优于 ngram 学习, 其道理是相通的。

原载:《泥沙龙笔记:从 sparse data 再论parsing乃是NLP应用的核武器

《立委科普:关键词革命》 

《李白毛铿锵行: 漫谈中文NLP和数据流》

【自然语言parsers是揭示语言奥秘的LIGO式探测仪】 

创新,失败,再创新,再失败,直至看上去没失败 》

科学网—乔姆斯基批判

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

【泥沙龙铿锵行:再论NLP与搜索】

李:上次提过,先搜后parse,是可行的。

早在十几年前,AskJeeves 被华尔街追捧。这里面也有很多IT掌故我专门写过博文( 【问答系统的前生今世】【 金点子起家的 AskJeeves 】)。 当时NLP (Natural Language Processing) 红透半边天,下一代 Google 呼之欲出的架势,尽管AskJeeves其实NLP含量很低。他们不过利用了一点NLP浅层对付问题的分析。这才有我们后来做真正基于NLP的问答系统的空间。

就在AskJeeves上市的当天,我与另一位NLP老革命 Dr. Guo,一边注视着股市,一边在网上谈先search后parse的可行性。此后不久我的团队就证实了其可行,并做出了问答系统的prototype,可以通过无线连接,做掌式demo给投资人现场测试。当年还没有 smart phone 呢,这个demo有wow的效果,可以想见投资人的想象被激发,因此我们顺顺当当拿到了第一轮一千万的华尔街风投(这个故事写在《朝华午拾:创业之路》)。

问答系统有两类。一类是针对可以预料的问题,事先做信息抽取,然后index到库里去支持问答。这类 recall 好,精度也高,但是没有 real time search 的灵活性和以不变应万变。

洪:文本信息抽取和理解,全靠nlp

李:另一类问答系统就是对通用搜索的直接延伸。利用关键词索引先过滤,把搜罗来的相关网页,在线parse,on the fly, 深度分析后找到答案。这个路子技术上是可行的。应对所谓factoid 问题:何时、何地、谁这样的问题是有效的。(但是复杂问题如 how、why,还是要走第一类的路线。)为什么可行?因为我们的深度 parsing 是 linear 的效率,在线 parsing 在现代的硬件条件下根本不是问题,瓶颈不在 parsing,无论多 deep,比起相关接口之间的延误,parsing 其实是小头。 总之,技术上可以做到立等可取。

对于常见的问题,互联网在线问答系统的 recall 较差根本就不是问题,这是因为网上的冗余信息太多。无论多不堪的 recall,也不是问题。比如,问2014年诺贝尔物理奖得主是谁。这类问题,网上有上百万个答案在。如果关键词过滤了一个子集,里面有几十万答案,少了一个量级,也没问题。假设在线 nlp 只捞到了其中的十分之一,又少了一个量级,那还有几万个instances,这足以满足统计的要求,来坐实NLP得来的答案,可以弥补精度上可能的偏差(假设精度有十个百分点的误差)。

IBM 花生机器在智力竞赛上 beat 人, 听上去很神奇, 里面会有很多细节的因应之道,但从宏观上看,一点也不神奇。因为那些个竞赛问题,大多属于 factoid 问题,人受到记忆力有限的挑战,肯定玩不过机器。

雷:@wei 为什么说事先对材料进行deep parsing的搜索不灵活?

李:事先(pre-parsing)更好。我是主张建立一个超级句法树库的,资源耗费大。但急于成事的工程师觉得也没必要。在线做的好处是,内容源可以动态决定。

雷:假设一下,我们把谷歌拥有的材料通通进行了deep parsing,那么这个搜索会是什么样的? 再辅佐以人工的高级加工

李:nlp parsing 比关键词索引还是 costs 太大。

雷:是,但是现在硬件的条件下,还是可行的吧?那就是把信息转化为了fact的知识

李:是的,哪怕只是把 Google 网页里面的百分之一parse 一遍那也有不得了的威力。那是核武器。就是 Powerset Ron 他们当年绘制的图景。可是这种大规模运用NLP不是我们可定的,成本是一个大因素,还有就是观念和眼光,那是 norvig 这样的人,或其上司才能拍板的。

雷: 暂时局限在一个领域呢?

Nick可以先小规模吗,如wiki等?

破坏google的力量是semantic web. 如果每个网站使用的是semantic web,who needs google, 但是现在的问题是把一个web2.0的site转化为web3.0的成本

李:Wiki已经可行,Powerset 当年就是拿它展示的。但市场切入点呢? Wiki其实是小菜,比起我们目前应对的 social media, 无论是量,还是语言的难度。

Nick:但wiki有结构

李:做wiki技术上没有任何问题。问题在产品和businesd model.

Nick:做一个wiki的语法树,再叠加wiki的结构,已经很有用了。

wiki 到 dbpedia 还是只有很低的percentage吧?

李:Ron 当年游说你们和微软,不就是wiki么,其实他们的demo,纯粹从技术的角度完全可以通过 due diligence。

大家都知道知识挖掘,在大数据时代有巨大潜力,这是宏观上的认识,永远正确。微观层面,还是要有人在知识基础上做出可挣钱的产品来。微软买Powerset的时候,肯定也是基于这种宏观认识。但没有后续的产品化,买来的技术就是个负担。

RW:Google 是靠se抓流量,然后ads赚钱,Se技术本身不变现

Nick:@wei powerset我看过,not impressive at all

李:那是因为,你的角度不同。他们没有把那种结构的威力,用通俗的方式,做成投资人容易看懂的形式。我也玩过 Powerset,它的核心能力,其实是有展现的。不过要绕几道弯,才能发现和体会。方向上他们没错。

当然我不是为 Ron 唱赞歌,他再牛,再有名气,他的parser比我的还是差远了。这个世界上 yours truly 是第三 -- 如果上帝是第一,在下的下一个系统是第二的话。

当然吹这种牛是得罪人的,不妨当笑话看。

呵呵,不用上税,无妨的

Nick: 你的不好意思不得罪人

李:Jobs不是说过,只有疯狂到以为自己可以改变世界的,才能在雪地里撒尿,并留下一些味道或痕迹。我们是毛时代生人,自小有一种精英意识。天将降大任于斯人也,自己吃不饱,也要胸怀世界,解放全人类。老子天下第一的心态就是那种legacy。

Chris Manning前两年就跟database/information retrieval的辩论说,别啥啥fact db和information extraction,直接deep parsing齐活。

:@洪 我农民,东西放哪里啊

李:Parsing real time 的应用场景,东西放内存就可以了,用完就扔,用时再来,现炒现卖。当然那个做不了真正意义上的text mining,只见树木,难见森林。但可以应对搜索引擎对付不了的简单问题。

哇哈,不得了。改不改变世界且不说,我的作息时间先被改变了。

我以为做机器学习的人在在豪气冲天,原来@wei也是!

@雷 一个爱在雪地……

@雷 Chris Manning的意思是,all information is in deep parsed text

facts不就是来源于deep parsed text吗

facts are usually triples extracted from text with consensus。

: under a set of ontologies, these facts form a network, that is, linguistic factors are removed。

db & ir people dont really believe nlp is a must path for retrieval tasks

you are right. This is why wei made such big efforts here to point out the problems of those guys.

linguistic info is transparent to native human speaker , but I don't think it's transparent to computer. So, I believe in communicating with machine, or communicating with people through computer, simpler language in query or logic form should be better. Why do we want to make computer understand human language? It doesn'tmake sense at all.

李:洪爷说的是哪国话? 本来就不存在机器理解语言, 那个 NLU 只是一个比喻。其实也不存在人工智能,那也是个比喻。

现在大多数人可不把ai/nlu当比喻

李:所谓机器理解语言不过是我们模拟分解了分析理解的过程达到某种表达 representations,这种表达是达到最终任务的一个方便的桥梁,如此而已。

按你的说法,机器人过不了turing test 这一关

李:我是回应你为什么要让机器理解语言。回答是,从来就不需要它去理解。而是因为在人类从形式到内容的映射过程中,我们找到一些路径,沿着这个路径我们对人类的理解,似乎有一个说得过去的解释。

当然,那位IR仁兄说的其实是一个具体环节, 指的是搜索框,他说好好的搜索框,给几个关键词就可以查询,既快又好又简单,为什么要把搜索框变成一个自然语言接口,像以前的AskJeeves那样,让人用自然语言提问,然后逼迫机器去理解?从他的角度,这完全不make sense,这种感觉不无道理。明明不用自然语言,多数搜索任务都可以完成得很好,没有道理硬要与机器说“人话”,增加overhead, 还有机器理解过程中的误差。关键词蛮好。互联网搜索这么多年,我们用户其实也被培养出来了,也都习惯了用尽可能少的关键词,以及怎样用关键词的不同组合,容易找到较理想的结果。自然语言接口似乎没有出场的必要。

可是,这只是问题的一个方面。问题是关键词搜索也许可以解决80% 乃至 90% 的基本信息需求(只是基本,因为心中问题的答案还是需要人在搜索结果中去用人脑parse来确定,这个过程不总是容易轻松的)。但还有相当一部分问题,我们或者难以用关键词找到线索,或者找出来的所谓相关网页需要太多的人肉阅读还不能搞定。这时候,我们可能就会想,要是有个懂人话的机器,自动解答我们的信息问题多好啊。自然语言接口终究会以某种形式重回台面,增强而不是取代关键词的接口。

:理解就是 1.能在人与人之间当二传手;2.能根据自己存储的知识和具备的行动能力做出人所认可的反应

李:说白了,就是从线性的言语形式到语法树的映射。这是人类迄今最伟大的发现,或发明,或理论属于最高天机。人类还没有更好的理论来解释这个理解过程。这个建树的过程,赶巧可以程序化来模拟,于是诞生了 NLU

:在图灵测试中,我们是把机器看成黑盒子。但是要让机器通过图灵测试,它就得理解人的语言才能作出反应。 两位大侠,能否推荐几本书看看?最好是科普类的,看着不吃力。

李:洪爷,不能因为在某些语言任务上,没有语言分析,也做到了,就来否定语言分析的核武器性质。LSA根本就没有语言分析,但它用到给中学生自动评判作文方面,效果也不错。

最近重读了几本认知方面的旧书,我倾向于认为人的内部表征是一种imaginary的多维图式表征,linguistic system只是个人际交流的接口。把多维信息压到线性。让计算机理解小说诗歌,估计永远做不到,因为计算机没有人那么强大的imaginary内部表征。@毛 wei和我一起来推荐几本nlp方面的书,就像PDP一样经典

:@wei 句子的语意理解后的表征方式是什么?还是tree吗?

李:逻辑语义,这是董老师的表述。外面叫 logical form,这是从乔老爷那里借来的术语。具体表现细节没必要相同。

那么我们把句子给理解后,tree与logical form并存在记忆中?

李:二者等价。细分可以有:句法树;语义树;语用树。所谓信息抽取,就是建语用树。句法树到语义树,就是乔老爷的表层结构到深层结构的逆向转换。

Chomsky之所以不谈语义啥的,因为实在没啥科学证据。现在我们所讲的语义都不是native的,都是人类的数学逻辑发明,在计算机上热起来的。出口转内销

: 是不是与那时的行为主义为主流有关,因为语意很难有操作定义?

李:这个讨论越来越高大上,也越来越形而上。

:是啊,再往上一点,就到哲学、认识论的层面了。另,跟PDP一样经典的是什么书?

李:乔老爷57年小册子。

: 什么书名?我以前只是从编译的角度了解他在形式语言方面的理论(现在也忘了),却不知道他在自然语言方面的贡献。以前我对自然语言毫不关心,也就是这一阵听你们高论才觉得这东西挺有意思。

: 有关语言学和认知科学的科普书,Steven Pinker写的系列都不错

The Language Instinct (1994) ISBN 978-0-06-097651-4
How the Mind Works (1997) ISBN 978-0-393-31848-7
Words and Rules: The Ingredients of Language (1999) ISBN978-0-465-07269-9
The Blank Slate: The Modern Denial of Human Nature (2002) ISBN978-0-670-03151-1
The Stuff of Thought: Language as a Window into Human Nature(2007) ISBN978-0-670-06327-7

有关NLP:
Dan Jurafsky and James Martin's Speech and Language Processing.

有关基于统计方法的NLP:
Chris Manning and Hinrich Schütze's Foundations of Statistical NaturalLanguage Processing

好像这两本书国内都有影印本

白:总结一下:wei的中心意思,nlp技术在他手里已经很过关了,只是苦于木有好的商业模式,再加上微软谷歌等传统势力的封杀,商业上还不能成大气候。有人建议说回国发展。deep nlp,性能不是问题,可以保证线性online parse,最坏情形回退到搜索。瓶颈在别处。

:元芳你怎么看

李:元芳呢?

谢谢白老师的总结,实际上就是这么回事。决定成败的不是技术,而是产品方向。技术差,可以砸了产品;技术好,不能保证产品在市场的成功。技术增加的是产品的门槛。

: 好的商业模式有两个特点,一个是技术壁垒,一个是侵略性。nlp前者不是问题,问题在后者。需要一张极富侵略性的皮。讯飞也有马失前蹄啊。

: 多讨论,应该能够找到好的方向。讯飞很多年都做得苦逼死了,熬到这两年才爽。现在做一个新的搜索引擎公司不现实。问答类概念已经被用滥了。出门问问也是因为问答不好做,改作智能手表,反而卖的不错。智能家居的语音交互界面,本质上是一个问答系统。

李:对于关键词,语法树就是颠覆。

: 信息服务三个阶段:门户网站,域名成为商品;搜索引擎,关键词成为商品;社交网络,粉丝成为商品。下一个成为商品的是啥?问答只是表象,关键是要回答什么成为商品。分析树也不直接是商品。

李:白老师说的极是。关键是什么是商品,可以来钱,这个确定了,作为后台的技术产品才有门槛,核武器才能发挥威力。

我们还是想想,高精准度的deep nlp服务,把什么作为标的商品,才能具有侵略性。

Philip: 给@wei 的高大上技术找个商业模式

我个人算是比较擅长于设计商业模式的,但是对于NLP的直接应用,还是觉得太偏后端,很难找出一个前端产品,对于用户是可感知的刚需。

不在多而在狠,uber就够狠。

 

原载:《泥沙龙笔记:parsing 是引擎的核武器,再论NLP与搜索》

 

【相关】

从 sparse data 再论parsing乃是NLP应用的核武器

《parsing 可以颠覆关键词吗?》

《立委科普:关键词革命》 

《李白毛铿锵行: 漫谈中文NLP和数据流》

【自然语言parsers是揭示语言奥秘的LIGO式探测仪】 

泥沙龙笔记:创新,失败,再创新,再失败,直至看上去没失败 

【置顶:立委NLP博文一览】

《朝华午拾》总目录

《parsing 可以颠覆关键词吗?》

我: 汉语的裸体准成语:你不理财,财不理你。穿上小词的衣服就是:你(如果)不理财,财(就)不理你:如果 ... 就...。也可以穿戴更多一点:(如果)你不理财(的话),(那么)财(就)不(会)理你:如果 ... 的话 / 如果 ... 那么 ... 等。)穿得越多,越没有歧义,越容易理解,当然也越容易电脑处理。可是国人觉得那样不简约,不能显示我语之性感。

现代汉语的框式结构是非常漂亮的小词结构,漂亮在它不仅给了左括号,也没忘记右括号,这样一来,边界歧义的问题就消弭了。这个框式手段,是比西方语言更高明的显性形式,应予大力推广,以彰显我语严谨的一面。框式结构更多的例子有:因为 ... 所以;虽然 ... 但是;在 ... 中/上/下/间。

顾: 英语也有省略小词: no pain, no gain.

我: 语言是线性表达,因此常常有边界不清晰的问题存在。数学语言(譬如公式)也是线性的,想到的办法就是括号。汉语不知道哪个年代发明的这个框式手段,基本就是括号的意思。这个很高明。

顾: 而且似乎某些高能人群倾向于省略小词。例如华尔街投行和硅谷人士的某些交流中,如果小词太多反而被鄙视,被认为不简洁不性感,这大概是人性,不是中国独有。举一例,出自Liar's Poker, 某trader跳槽,老板以忠诚挽留,他回答,
“You want loyalty, hire a cocker spaniel”

我: 有了框式结构,语言不仅清晰了,而且灵活了。灵活是因为左右括号如此明晰,以致于可以放宽括号内成分的句法条件。

Nick: 可以处理括号的都是什么自动机?我理论忘光了。

我:多层括号需要的是中心递归,就是乔姆斯基的 CFG,有限状态不能对付n层括号。上面的汉语案例大多只使用单层括号,没有用到括号的嵌套("如果...的话" 与 “如果......那么”可以算有了一层嵌套,左括号共用一个小词“如果”,右括号不同,可以放在两个模块层去做),不需要栈结构,不需要递归和回溯。

白: 有限状态加计数器,是毛毛虫,可以对付括号,保证线速。

顾: 注意这里主从句之间是逗号,不是问号。我刚才特定去书里查对了没错。

RW: long time no see 是华尔街英语的典范!

我: 成语不怕,成语都是可枚举的、有限的,就是个存贮记忆问题。成语的极致就是编码,包括密电码,acronyms 如 IBM,ABC 就是密码式成语。成语是NLP中不用讨论的话题。可以讨论的是,产生式“类成语”,譬如“一X就Y”(如 一抓就灵,一放就乱), "不X不Y"(如,不见不散,不服不行)。这个有点讨厌,因为词典对付不了,可是又不符合一般的句法,通常用词驱动小的规则来对付。(小规则是大规则的例外。)

顾: 但某些高能人群,尤其是科学家和教授,尤其是在思辨场合下,小词就少有省略。而汉语在写数学教材时,也多用小词。因此是否用小词跟语言用途也有关,愚以为不能否认汉语追求简洁优美是弱点,也不能认为汉语不善加小词或准确表达概念和逻辑。

我: 还是有个程度吧,汉语小词常可省略,总体上就是一个爱裸奔的东方美女。

顾: 偶爱裸体美女。

我: 偶也爱裸女,东方的尤甚,因为亲切,可是 ...... 欧化句式侵入后,白话文运动以来,可以看到一种加小词的趋向,小词在汉语发展道路上开始产生影响了。是吃了伊甸园的智慧树的果子知羞了?

顾: long time no see 据认为是汉语入侵英语之后产生的,只是大家觉得自然,英美人也用了。这个语句困扰我很久,在网上查了据说是如此,但未必是严肃考证。

我: long time no see 是最直接的展示我东方裸体美女的一个案例。西人突然悟过来,原来语言可以如此简洁,这样地不遮不掩啊。他们觉得可以接受,是因为赶巧这对应了一个常用的语用(pragmatic)场景,朋友见面时候的套话之一,不分中外。在有语用的帮助下,句法可以马虎一些,这也是这类新成语(熟语)形成的背后理由。

RW: 我只在老外和中国人打招呼时听他们说过,没见过他们互相之间用过。因此,我觉得他们没有接受这是一个常规用法。

顾: 另外,我觉得如果要分析理解语言,也不能拘泥于句子结构。句子之间的含义同样重要,如果过于依赖小词,可能难以将句中和句间的关联统一理解。而如果看句子之间的联系理解,英文在句间小词也很少用。

我: 用语义(隐性形式)当然好,但是不容易写一个形式化的系统去 parse 啊。用小词(显性形式)的话,那就好办多了。

白: 伟哥还是说说“我是县长”是怎么hold住的吧。问题的实质是,有限状态自动机没有lookahead 能力,如果语义跟着同步走,有很多构造(合一)会是明显浪费的。

Nick: @wei 白老师问:"我是县长派来的"

我: “的字结构”很讨厌。大体上就是英语的 what-clause 对应的句法形式。但比 what-clause 还难缠,因为该死 “的” 字太 overloaded 了。

雷: 中心嵌套也可以是线性的?

白: 某些可以是,全集不是。比如,a^nb^n,可以线性parse。

我: 当然可以线性,除非嵌套是无限层。如果是无限层,栈也要溢出的,无论memory多大。中心嵌套本质上不是 “人话”,这个我和白老师有共识。乔姆斯基之谬,以此为最。

雷: 问题是有些text有冷不丁的多层。有些国内的新闻稿有。

我: 举例,看是人话还是数学?

雷: 当然我们可以排除这些极少数。有些翻译有。

我: 用递归回溯对付嵌套,不过是理论上的漂亮,没有多少实践的意义。

白: 记得everybody likes somebody转换成否定式很难搞。基本归到不是人话一类。

我: 不是人话,就不理睬它!语言中要抓的现象那么多,什么时候能轮到中心嵌套?

白: “我是县长派来的”,是人话,还没揭锅呢

我: I am the one who was sent by the county mayor,这大体是对应的英语吧。英语的 what-clause 只能用于物,不能用于人。“苹果是县长送来的”,the apple is what the county mayor sent

白: 我的问题不是翻译,是有限状态木有lookahead能力,局部生成“我是县长”的问题咋避免。

我: 避免不难。不过就是加大规则的长度而已。有限状态的规则可以任意加长后条件(post-condition)。至于前条件(precondition)比较麻烦,因为前条件改变了 matching 的起点,容易乱套。

白: 短的规则还在啊。根据哪一条,长的压制短的?

我: 对,叫 longest principle,这是所有matching的基本原则,无论是词典查询还是模式匹配。有两个方法来用后条件:(1)加长后条件,以确保 pattern 本身是要抓取的对象,譬如第一近似就是 check 县长后面不是动词。(2)加长后条件来排除例外:这样的规则是没有结论的规则,就是为了排除例外的。这样一来,下一条短规则就可以成功,而且没有误抓的困恼了。

白: 除非你那已经不是纯FSA了。纯FSA只看当前吃进字符做决策。往后check就相当于LR(k)了。

我: 我的 FSA 从来不是纯的,是 FSA++。这个昨天就说过的,我随时要求我的工程师去对这个 formalism 做各种扩展,直到他们抱怨影响了线性速度为止。

白: 那就不奇怪了。

我: 在做 NLP 平台过程中,会有很多的扩展才好应对自然语言parsing的需要。很多人以为一个标准的 formalism 拿来用就好了,那哪行?也因此,编译器只能是内部自己实现(built in house),而不能使用 off-shelf 的,因为后者你根本无法扩充,也难以优化速度。

雷: LR或RR都是线性的。

白: 对。我还以为发生奇迹了呢。

我: 不是奇迹么?抓到老鼠就是奇迹。

白:套用一句潮话:这不科学呀。

我: 如果标准的 formalism 不能碰的话,那么有经验的设计师与一个新毕业生比,就没有任何优势了。我们说生姜老的辣,就是因为老生姜可以很容易把经验的需要转化成软件的 specs,而新手搞不清如何去定义。白老师,“这不科学啊” 的批评声音我常听到。一个是来自我太太,在日常生活中,她一个本科生经常对我这个首席(科学家)呵斥,你一点不讲科学!另一个是来自我一个短暂时期的老板,这个老板是学界主流,她看我写的 proposal,说这里面缺乏 science。我心里说,邓小平也没有 science,他不是把一个大国也治理了,烹小鲜而已。

白: 白猫黑猫拿到耗子都是科学的,狗拿到耗子就略微那个了点,所以澄清不是狗拿的还是很有必要的。

雷: @wei 白老师追求的是形式美。你的是工程美。两者一直你拖我拉的往前走。

我: 狗啊猫啊,是主观定位,无所谓呀,FSA,还是 FSA++,标签而已。我看自然语言是俯视的,成了习惯。太阳底下没有新鲜事儿,因为见到的语言现象太多了。

白: 总是要交流的呀。

我: 当然,也不能乱来,前提是任何"不科学"的扩展,不能最后引致灾难:一个是速度的灾难。一个是不可维护、不可持续发展的灾难。如果这两点可以掌控,就问题不大了。对速度我很敏感,愿意为此自我束缚手脚,只要证明某个扩展影响了线性速度的本性,我就投降,然后选择折衷方案。

雷: 抛弃中心嵌套,cfg就是线性的。

我: cfg 的痛点还不是中心嵌套导致的速度问题,根本缺陷在单层,眉毛鼻子一把抓,不分共性与个性,这才是致命的。

白: 我天天玩工程,不过我们的工程师如果突然说他使用了某个形式化机制但其实不纯粹,我还是会跟他较真的。狗肉好吃,不能成为挂羊头的理由。

Nick: 赞同白老师。spagetti对大工程不行。

我: 你们是主流,站着说话不腰疼。不挂羊头, 语言学家早死绝了。我17个政府项目全部是挂羊头得到的。

Nick: 伟哥可能有绝活,不愿说。

我: 绝活有,细节不谈,谈原则。原则就是,你要做精算师或工程师的老板,而不是相反。绝大多数语言学家没这个底气,只能打下手,做资料员。

雷: nlp的难点或苦活不在parsing,而是知识工程方面的整合。

白: 上下通气。

雷: 呵呵,形象。

白: 米国股市里有知识工程概念股么?

顾: 这是大数据啊!Data Thinker可以。。。(此处省略一千字)

Nick: 中国有?

白: 木有。讯飞在往这方面发展,但眼下不是。

我: 挂羊头卖狗肉的故事在这里:《在美国写基金申请的酸甜苦辣》。Quote:

说到含金量,其实很多课题,特别是面向应用的课题,并不是什么高精尖的火箭技术(not rocket science),不可能要求一个申请预示某种突破。撰写申请的人是游说方,有责任 highlight 自己的提议里面的亮点,谈方案远景的时候少不了这个突破那个革命的说辞,多少迎合了政府主管部门好大喜功的心态,但实际上很少有多少研究项目会包含那么多闪光的思想和科学研究的革命性转变。(纯科学的研究,突破也不多吧,更何况应用型研究。)应用领域“奇迹”的发生往往植根于细节的积累(所谓 the Devil is in the details),而不是原理上的突破。而对于问题领域的细节,我是有把握的。这是我的长处,也是我提出科研方案比较让人信服的原因。有的时候,不得不有迎合“时尚”的考量,譬如领域里正流行 bootstrapping 等机器自学习的算法,虽然很不成熟,难以解决实际问题,但是基金报告列上它对申请的批准是有益的。不用担心所提议的听上去时尚的方案最后不工作,由于科研的探索性质,最终的解决方案完全可以是另一种路子。说直白了就是,挂羊头卖狗肉不是诚实的科研态度,但是羊头狗头都挂上以后再卖狗肉就没有问题。绝不可以一棵树上吊死。

我: 不挂羊头,必死无疑,生存之道决定的。同意雷司令 parsing 问题解决后,真正的关键在挖掘(知识工程)以及最终建立预测模型。

白:NLP应用场景是很考验想象力的。

我: 非结构数据突然结构化了。面对结构的海洋,传统的数据挖掘需要拓展才好应对。挖掘目前做得很浅,就是 retrieval 里面的一个小东西,凑合事儿。parsing 是见树,mining 才见林。以前没有条件见林子 mining 没有实验基地,限制了它的发展和深入。如今不同了。

昨天与xiaoyun还谈到这个,我们都觉得,哪怕只利用 parsing 的一个部分,譬如只做SVO(主谓宾),理论上也是对所有现存关键词技术所驱动的应用的一个颠覆,因为突然多了一个维度。以前所做的不过是 baseline 而已,如今只要有大数据、大计算、大存储,再加上mining,那么凡是关键词技术生存的地方都可以革命,包括搜索、分类、聚合为基础的等等的应用。这个总体趋向是明晰的,条件也基本成熟,现在是考验想象力的时候,然后就是脚踏实地一个应用一个应用的去做

白: 还是要想新的商业模式,革关键词的命,从商业角度未必成立。关键词是拿来卖的,你把人命革了,卖什么?总要有个替代品吧,总不会卖FSA吧。

我: 革命不是杀头,parsing 对关键词,就是爱因斯坦对牛顿。到了语义语用层,关键词,或者叫驱动词(driving words),也是不可或缺的。

Nick: 卖regex到也不见得不可能。

我: 抽取挖掘搜索,往往需要两条腿,一条是关键词,另一条就是结构。如果 regex 可以卖了,离开直接卖 parse 就不远了。

其实我们的 power users 已经开始要求直接用简化的 parse 去满足他的信息需求了。用户是可以训练出来的。我们整整一代人都被关键词训练过、洗脑过了。以致于当自然语言接口技术刚刚尝试的时候,不少用户抱怨说:关键词多简单,跟机器说话,要自然语言干嘛?Power users 在简单的关键词之上用 boolean query 的很多,有些 query 看上去又臭又长又难看,不也忍受了。也见到过创业者,就是用 domain ontology 加上 keyword boolean 作为技术基础,也满足了一个 niche market 的需求而生存的。

Nick: 这是说的哪家公司?

我: 两年前在北京调研时候遇到的,名字忘记了。他们一点也不保守,把 query 直接给我们看,我心想这是一目了然啊,很容易复制的。可贵的是,他们先一步找到了那个市场需求,定义了那个 niche market,也找到了客户,后去就是那些 queries 的库不断更新维护而已。

我: @Nick 说,spagetti对大工程不行。Google 搜索是大工程吧,看一下里面的 spagetti: http://blog.sciencenet.cn/blog-362400-804469.html

原载:《泥沙龙笔记:铿锵众人行,parsing 可以颠覆关键词吗?

《泥沙龙笔记:铿锵三人行》

【置顶:立委NLP博文一览】

《朝华午拾》总目录

《李白毛55: 漫谈中文NLP和数据流》

立委按:谈笑有鸿儒,泥沙龙写照也。毛白李三剑客,隔洋神交,日颠夜倒,天马行空,人生快事也。语言理解,人工智慧,软体硬件,万言不离其宗也。铿锵三人行,行迹可存,笔记于此,以飨同仁也。

白: 转:《夏洛特烦恼》我以为主角叫夏洛特 。原来男一号叫夏洛 ;接下来会不会有《郭敬明天见》《周立波很大》《吴奇隆胸记》《王宝强奸案》《郭富城会玩》《井柏然并卵》《黄秋生无可恋》《贾乃亮了》《奥巴马上来》《周润发财了》《权志龙虾壳》《金正恩仇录》。

李: 边界之争。夏洛特是词典一方 特+烦恼 是句法一方 作为一般原则 句法认输。所有的边界之争 你总可以找到一种语境 来支持任何一方,但是实际系统中 还是按原则办事(除非某特定语境出现频率大 而且可以形式化被捕捉作为原则的例外)。“郭敬明” 是词典,“明天”或“明天见”也是词典,词典与词典相争。 谁赢呢?要分不同情形。情形对应的是 heuristics。对于此情形,“明天见” 赢。因为有这么一条 heuristic:最少词数胜出。郭敬/明天见, 算两词。郭敬明/天/见 是三词。更深的理由是 音节数量的匀称的 heuristic:3 1 1 不如 2 3 匀称。

白: 无后坐力炮,经常被读成2 3节奏,按构词法,应该是1 3 1。可否不那么早定输赢,都打到上一层。

李:可,keep ambiguity untouched 的办法 也是一招,不过加大了后去 parsing 的搜索空间 也可能不妙。

白: 上层用Ngram也无所谓。看一个滑动窗口激活一个还是两个词袋。

李: 这就是拼积木,难的积木留在最后拼。拼积木ngram比cfg容易,没有爆炸的问题。

白: 正是。

李: 汉语的节奏对称还是很厉害的,举反例总会有,但是实际中发现,音节数的条件,比起其他的条件(词类、子类、语义分类)往往也很好用、可靠。另外一个相关的体会是排比句式,汉语(包括古汉语)排比句式的使用往往可以把本来占有统计劣势的 parse 变得有效起来。不过,至今没想到利用排比句式帮助消歧的好的实现办法。感觉排比的发现和使用是处于另一层,而且排比的 scope 不好事先确定。

毛: 对于汉语NLP, 二位觉得有什么好书可以推荐?不用很深,科普就行。

李: 我很多年不看书了,还是白老师推荐吧。最好的是白老师正在写的,这个无疑问,但你需要等。汉语 NLP 论文献,80% 谈的是切词,全领域走火入魔了,陷入细枝末节和烦琐哲学,很大程度上非常可惜的一种智力浪费。

毛: 等倒没关系,反正暂时也没时间看。其实我不太会有机会用到这方面的知识了,我这是“朝闻道夕死可也”。尼克,Unix的那些Utility,每个都是基于一个while主循环,这就是lambda的语义。Java8让你有一种简洁的方法来表达这种语义,然后它替你生成这样的循环。

白: 自然语言的语义,也有lambda的份儿。

毛: 是,所以我觉得数据流在 NLP 方面可以发挥一些作用。

白: 表函数、表关系、表部件的词(中点、姐夫、抽屉)都是。需要一个带坑的语义结构去定义。坑,就是约束变元。

李: semantic subcat?  Syntactic subcat specifies the form of roles in a frame,correspondingly, semantic subcat specifies the preferred semantic classes for the expected roles of a frame. 语义 subcat 都是必填的,虽然句法上还是可省略。

白: 坑有必填的和可选的两种。

李:如果加上可选的,那就超出了subcat,而进入 cat 了。因为可选的角色一般针对大类,而必填的才针对子类。

白: 这点商榷一下,时间地点等,往往不是必填的。

李: exactly,时间地点等边缘角色针对的是大类。所有的动作、行为都适用。它们都在时间与空间中存在。而一元谓词,还是二元谓词、三元谓词,甚至零元谓词,这些都是子类的区别。天气动词语义上是零元的,虽然句法上可以加一个:“It” is raining 、“老天”下雨了。世界语最接近逻辑,语义的零元,句法也是零元,就不用加这种无意义的主语:Pluvas。

毛: 我觉得最有前景的可能是并行多路的parsing。就如你们刚才说的“无后座力炮”,如果系统能立马分出两个数据流分支,按不同规则加以解析,然后由高一层的规则判断何者为优,那效率就高了。这在NLP方面不是什么新概念,问题在于能否搭出这么灵活而高效的系统。但是NLP所处理的原料不太可能是世界语的文本呀。

李: 只是说明语义和句法之间既对应,又不完全对应的情形。比较不同语言,这些不对应的部分反映了不同语言的应对策略,这是很有意思的对比。

白: 标签化的表达比函数式的表达,应对非必选的东东就灵活多了。

李: 英语用 it,谁知道这 it 是什么东西?汉语比较具体,用的是“老天”。

白: 相反吧,汉语不说。

李: 汉语也可以不说,“下雨了”。如果不说,那就与世界语一样逻辑了,躶体出境。

白: 不说不是省略,是比省略高明的模糊。

李:  这里不是省略,因为逻辑语义上没有这一元的地位。

白: 语义上就有0元谓词,但是句法上没有地位,于是搞了个貌似省略的充数。

李:”老天“ 直译过去就很可笑:The sky is raining, Mother Nature is raining, or, God is raining?

白: 比it还富有想象力.

高: 像黑格尔说的,Was ist Das.

毛: 可以用函数式的方式来处理标签,把二者结合起来。我相信在NLP这一边已经有了许多很好的概念和方法,问题在于怎样搭出好的系统来高效加以实现。所以数据流应该有用武之地。

李: 语言很有意思,可以从三层来看这种“坑”。Filmore 把这个叫做【格语法】,他写过 “Case for case”,许国璋教授翻的,叫《格辩》,得其神韵,很妙。《格辩》是与乔姆斯基唱对台戏,是反乔派中最有分量的历史文献了,高举的是语义大旗。对NLP有深远的影响。所以,“坑”(case)可以分三层来看。第一级是 morphology case,这是“格”的本来用法,主格、宾格、工具格等等的词尾形式所表达的。第二级是 syntactic case,刻画的是 subcat 对语言形式的条件要求,包括具体语言中每个 Role 的词序、介词等的要求。第三级是 semantic case,刻画的是输出框,这是各语言共同的,又叫深层格,是 Filmore 提出的概念,与乔姆斯基的逻辑形式(logical form)对应。要几个元(格)是由谓词的概念子类决定的,它反映的是自然的关系(可以包括本体常识)。可是每个语言在实现这些深层格的时候,会利用不同的句法或词法的形式,于是穿上了句法或词法的外衣。

毛: 好吧,你们先掐。

白: 毛老,函数式和标签式表达,只有一墙之隔。标签其实就是最高抽象类的里面的“准”全局变量,谁都可以继承来塞点私货。不塞也无妨。

毛: 所以,我认为应该重启五代机的研究。有人说现在神经元网络是六代机了,我认为不对,因为说到底总还是“人工智能机”。

李: AI机只是六代机的一个引擎?

毛: 至少是现在,通过图灵测试是计算机的上限,所以不应该有高于AI机的计算机了。

白: 把RNN、多层FSA、多层词袋这些东东做成硬件就是了。

毛: 神经元系统只是一种计算模型,它也要通过编程在计算机上实现。神经元网络的运转说到底还是程序的执行。

白: FPGA实现就很好,能做成NLP协处理器就更棒了,NPU。

毛: 对是对的,但是如果变化太多,硬件实现就太不经济了。另一方面,如果有很多这样的部件,那么如何灵活高效地加以调度,根据具体情况动态搭出合适的系统,这本身就是个问题,这就又要涉及数据流了。我们平时在碰到困难时说要 “换一个思路”, 实际上就是要换一种数据流。

白: 希望NLP能早日成熟到毛老可以对接上的水平。

毛: 我觉得很可能是反过来的, 搞系统的人何时能搭出适合于NLP的系统,NLP Oriented Systems。 问题是搞系统的人一般都不懂NLP。

白: 是NLP这边说不清楚。回头说格。 “把”在汉语里号称是宾格介词,但是遇到“把我累死了”这种例子,又找不到哪个谓词提供宾格的坑。实际上,“累”是“使累”,是一个使动用法。所以顺序很重要,先使动 ,后宾格,一切OK。先宾格,后使动,北都找不着。

毛: “我累” 怎么解析?

白: 主谓啊。但“我累死你”不是。

毛: 哦。那就是“我使你累死”

白:

虚线框内形成一个虚拟谓词(复合然后缩合而成),对于这个虚线框,“你”貌似它的宾语,所以也获得了使用“把”表示宾格的能力。在句法层面,“使”不见了,“把”却在横行。

毛: 那么这种“使动”的属性就作为标签加在“累”这个词上?

李: “累”和“死” 先合成,然后针对宾格的坑就出来了。“累死”这样的算是合成词,不过这种合成词是 productive 的。

白: 气糊涂,饿疯, 都一样, "忙晕", "乐坏".

毛: 累死 应该是 累到死 累到要死的程度 的意思,这个死是补语吧?

白: 是补语,语义上对应一个程度标签,非必选的,所以不算框的正式坑。加标签是随手做,填坑是大动静。所以正规军和游击队,待遇就是不一样。

李: 累死我了 --》 把我累死了。符合正常的位移转换(movement/transformation)方式。【累(V的某种子类)+死】就是一个造词小规则,是产生式合成词的规则。符合这个规则的合成词就带有如下特征:及物,具体说,是使动的及物,并有表示程度的结果(“死”,不是真死)在内。带“把”提前是及物的共性,不用管。只要这个规则成功的时候,subcat 标签加对了,后去就顺理成章,无需特别操作。

毛: 所以呀,面向NLP的系统应该很方便很灵活地让你动态挖个坑,而且是同时挖上好几个坑,可以并行去试试不同的坑。这样才好。

白: “这些馒头把我吃胖了”。这个复杂些,有主有宾,只是虚线框里面拧着,了的时态含义省略了。胖,有一个坑。使和吃,各有两个坑。复合后缩合的虚线框部分,只有两个坑,一主一宾。与“吃”相比,正好颠倒了。所以,这类补语不仅是表程度,而是具体表致使后果的程度。

毛: 期待白老师的科普书早日出来。你的书里会画这些图吗?

白: 会。一个框,本质上就是一个函数定义式,也就是lambda表达式。入矢代表输入(自变量),出矢代表输出(因变量)。复合的时候,正是玩lambda表达式的时候,而且都是带类型的。

毛: 对呀,我在想这些图应该能转化成DAG式的数据流。

白: 每个坑都有类型,譬如,吃,输入类型两个坑分别是有生命、食物,输出类型是事件。

李:对,坑有两个信息:一个是坑本身的类型(what role),一个是坑里面的东西的“格”条件。role 是坑的主人决定的(词典里面的 谓词 subcat 或者规则产出的 谓词 subcat),“格”其实也是  subcat 题中应有之意,规定好的。格是输入匹配条件,roles 是输出事件语义。

毛: 数据流,结合立委的多层 FSA 模型,如果能做成通用的系统,我觉得是个很好的进展。有没有统计过像这样的图大概有多少?(以复盖常用句型为度)

李: 常用句型几十个吧,10-100 的区间。

毛: 哦

李: 看定义的粗细,谓词 subcat 最多只有三元 (所谓 S【V】OC),元里面还可以细分,大体 < 100 可以搞定

毛: 这个就可以用上分层嵌套的方法。

李: 这段对话,毛老、白老师,要我整理出来么?你们定,如果要,我就整理成博文。这次是你们俩主唱,我只是敲边鼓的,纯粹语言学的边鼓。

毛: 那当然好啰,要从尼克提到lambda开始。

白: 没问题啊。

李: 我其实不懂数据流,函数式略懂皮毛。lambda 在学语义学的时候学过一点,但是一直没完全整明白过。

毛: 那是工具性的,NLP本身才是关键。

李: 不过 subcat 在产生式合成词中会有变换,是我在 Morphology 课上学过的,而且学过的案例相当多。复杂案例的变换也不少。白老师的后一个例子是复杂案例之一。语言学家很善于总结这些格框变换的模式。

毛: 尼克最喜欢搞锵锵三人行, 咱就来一下三人行。

李:毛老、白老师,想起一件可能与数据流相关的事来,先写在这里,省得忘了。信息抽取(IE)这个领域刚开创的时候(20年前,由 DARPA 主持推动的 MUC 启动了这个领域,是NLP的实用化努力,非常了不起的一个推动,把NLP从象牙塔拉了出来),主流统计派还没回过味来,因此IE领域中的规则系统并不少,因为规则简单直接好用。其中,规则系统中,比较有影响的是斯坦福研究中心(SRI)推出的所谓 Cascaded FSTs,现在想来就是毛老说的数据流了。虽然后来我领导的小组也一直做多层FSAs,有时也贴上 Cascade 的标签,二者区别是显著的,虽然本质相同。斯坦福做的 Cascaded FSTs(finite state transducers)是把每一层编译的 network 直接用“数据流”串起来的一体化流程,cascade 是编译(或运行?)内部的机制。而我们做的所谓 cascade 就是从外部叠加调用,这是传统软件项目中管式系统(pipeline)的模块化开发,然后在运行的时候,从外部来接口,是大路货的路线。

洪: 看看有没有modern Hadoop实现

李:  总之,昨天我还发懵,搞不清为什么谈多层NLP的时候,毛老非要强调数据流,今天醒过来,原来如此。不过,我个人的感觉是,那种内部数据流的 Cascaded FSTs 后来逐渐淡出视野,一定有它内在的局限或问题。而我走的外部pipeline系统的方法,却得心应手,开花结果了。尽管理论上,数据流的路线应该更容易高效,更容易固化,但是肯定是遇到了什么坎儿过不去。

白:关于数据流,一直感觉NLP涉及的比较细粒度,就算自动机的堆叠或者分层的词袋,仍然粒度过细,一个句子里就可能多次流动,更不要说RNN这种自己转着圈玩的了……把这么细粒度的流动用大数据处理的利器来玩,是不是有点高射炮打蚊子?请毛老指教。但是,自动机堆叠一个实现上重要的架构就是pipelining。底层边吃进输入,边产生阶段性的输出,又变成上一层的输入。这个pipelining的框架如何在系统层面优化实现,很有油水。还有,当数千个自动机协同工作时,它们当中一定有共享的数据结构和计算,如何进行优化,乃至硬件层面的优化,这里面大有文章可做。

毛: 白老师说的对,数据流运用于NLP有许多细节的问题,特别是粒度的问题,还要好好推敲,现在还只是个朦胧的方向。粒度的问题一方面取决于具体的业务逻辑,一方面也跟硬件有密切关系,例如有没有GPU这一点,就对数据流的粒度和形状都会有很大影响。

李: 毛老,这是 SRI 的 work,叫 FASTUS。我在找他们描述 implementation of casaced FSTs 的部分,好像言之不详。以前不求甚解,反正自己已经找到了一条顺风顺水的路子,管人家怎么实现的,用的啥数据流。

毛: 好,谢谢立委。Cascade肯定就是pipelining,这就是一维数据流。

李:这个数据流的概念上没有问题。我是想知道,他们是不是把一个模块的 network 与pipeline 线上的其他 networks 整合成一个 integrated 的 network?我想知道,是不是整个编译全系统,还是像我们一样,每个模块是单单编译,单单调用的?

白: 如果有同步的语义操作,我相信会的。

李: 我的印象是,他们是编译全系统的,所以我们一直承认自己是 external 的 cascade,我们只是外部连接。重点的重点是,里面有一个共同的数据结构,无论 Pipieline 怎么流,不外是对这个数据结构的更新而已。

毛: 所以立委和白老师得要多掐,我就在旁听着,边听边想数据流的事。

李: 唉,还是没看到实现细节,保不定他们所谓的 cascade 与我们的做法一致,不过是利用共同的数据结构作为粘合剂,一个模块一个模块的调用。早年的文献中,最原始最愚蠢的数据结构是 string 进 string 出,然后他们描述怎么在这个一维的string上加各种括号和标签。下一个模块必须在模式匹配的时候要跳过这些人为的括号与标签,才能更新信息,那个愚蠢透顶,不可思议。我还真照文献说的实现过一个prototype,一边做一边骂这帮傻老帽。那个玩意儿根本做不下去,超过两层的处理就焦头烂额了。后来有人(譬如英国著名的NLP平台 GATE)用 XML 作为模块间连接的标准接口,本质上也还是 string,不过是多了一些现成的工具,可以用来 parse 这样的数据成内部结构。当然,在不同系统对接的时候,开发者和使用者是不同的组织,XML 作为标准接口往往是最少扯皮的一种方案,因为内部的数据结构不具有这种传递性。然而对于一个系统内部的各模块,用 XML 做数据传输近乎胡闹。做个 prototype 也许可行,做应用肯定不好。

毛: 立委讲的外部连接和全编译的问题,我理解就是节点间动态局部连接的问题。全编译就是一次性把整个数据流搭好,以后就不变了。所谓外部连接,就是按需要把若干计算节点局部地临时连在一起,灵活可变。当然是后者更好,不过应该是全局框架中的局部变化。我说的要研究怎样根据NLP的特点灵活构筑合适的数据流,就是这个意思。

李: 全局框架的保证就是一个共同的丰富的可扩展的数据结构。只要保证这个数据结构的设计是合理的,一切就好办了。

毛: 昨天群主一声吆喝,立委说话的风格还真的就变了,马雅可夫斯基的调调不见了。

李: 从善如流嘛。
设计一个NLP专项平台,就包括数据结构的设计,NLP语言的设计,该语言的编译和执行,以及数据流流程的配置和优化。这几个环节都是相互联系的,没有丰富的经验根本玩不转。

毛: 在数据流、即函数式程序设计中,不会由多个节点对同一份数据结构进行修改,这就是输入是否immutable和有没有共享变量的问题。不过对于NLP来说这属于实现细节。

李: 为什么不会由多个节点对同一份数据结构进行修改?每个节点都是单向递进的,数据结构因此变得越来越丰富,分析越来越深入,是为 deep parsing。简单的设计允许数据结构信息的增量更新,不允许或者制约了对数据结构的破坏性操作。譬如,推翻一个内部结构,进行重构(因为 patching 的需要)。但是聪明的工程师在实现的时候,不认为破坏一个局部的内部结构有太严重的问题,不过就是实现费劲一点罢了,屁股总是可以擦干净的。所以我说,只有想不到的,没有做不到的,我才不管他内部怎么实现的,只要用起来顺手就好。只有在实现影响了速度的时候,我可以做让步,允许工程师对我的操作做一些限制。

毛: 如果允许,那就有同步等等的问题,不同节点之间就会互相牵制,而且这样的系统是最容易有bug的。而函数式程序设计,其基本的要求就是:每一个计算节点都是数学意义上的函数,都没有副作用,这就要求:1)没有共享变量,2)所有输入都是immutable。把数据流系统设想成一个供水系统,如果水管在一个点上分支,那么在其中的一个分支上投毒,是不会影响另一个分支的。

李: 照这么说,只允许增量式更新是管式系统开发的安全原则?一开始是增量式的,后来是我坚持要多给我一个做 patching 的手段,打破了这个限制。如果不做 patching,我就只剩下一个手段,那就是先扫除例外,后做一般规则。如果允许 patching,我就多了一条路子,先做大路货,然后遇到问题或例外,再做修补。表面上,这两个办法不过就是数据流中个性与共性操作的位置不同而已,但是实践中总是多一条路子,用起来顺手。其实,做破坏性操作,我开始是有担心的,总怕屁股擦不干净。但是,好像还是在可控范围内。

毛: 对,你所说的对工程师们的能力要求,问题就在于那种结构模式本来就是很不可靠的,得要非常高明的人才能对付,所以一般都尽量把同步、互斥这些事情移到操作系统和语言编译器中解决,因为那些都是真正的高手才玩得。但是即使如此,对于复杂的系统,如果不采用函数式即数据流的结构和方法,难度还是很大。

李: 原因可能是,破坏的结构不过是中间的局部结构,还没到要用它的时候,只要最后系统出来的结构是合理的,就似乎没有问题了。

毛: 你挺幸运,手下有几个高明的工程师,要不然恐怕还做不出那么些成果。

李: 因为我是他们的唯一顾客,顾客是上帝。我一直是这么说的。

毛: 端着人的饭碗,就得听人管。

李: 好在我不懂系统,否则可能不敢这么大手大脚。

毛: 但是,这是有限度的,问题再复杂一点,他们可能就会对付不了。这时候就得考虑模式的改变。不走邪路,也不走回头路,咱走正路。

李: 同意这里面有个度。另一方面,系统太漂亮了不顶用。上得厅堂,下得厨房,这个标准对做系统也一样。正路就是厅堂,厨房就是我这样的实用主义,以邓小平思想为指针。

【相关】

【语义计算:李白对话录系列】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【立委科普:漫谈语言形式】

如果有兴趣的话,准备在群里讲一次语言的形式手段的话题,这是语言学的基础。是 hard-core 语言学,不是电脑学。 一觉醒来了,有精神,有三个呼应,就开讲,谈为什么语言掌握得多的人,或语言学受过训练的人,看到的更多是语言共性。

独: 期待
黄: 呼应~
qj: +1
迈: +2

学生算半个。好,三个半了。可惜毛老,洪爷,雷司令,白老师和尼克等没在。不管这些IT达人了,咱们开讲语言学202。

各位都学过电脑语言,也都会自然语言,可以做个比照。作为符号系统,语言说到底就是以形式来反映内容。语言的不同是形式的不同,内容一定是相同的,否则人不可能交流思想,语言的翻译也就失去了基础,这个道理老少咸知。

那么什么是语言形式呢?回答这个问题就进入语言学了。

如果我们要把内容和形式分开来研究(当然是分不开的,但是理论上可以,否则就没有乔姆斯基革命了),什么是语言形式呢?乍一看语言,不就是 string 么?语音流也好,文字串也好。这个回答不算错,但那是太直观的答案。这个string是有单位的,所以至少可以说语言形式是一个 list of items,items 就是词(more precisely 词素)。list 就是词序。

所以,作为第一个抽象,我们至少得出了词序(word order,有时也叫 linear sequence)是一个重要的语言形式(语言的表达手段)。另一个重要的形式就是词,不过这个还不太够意思,太直感,不够理论,没有抽象。

顾: 语言形式是否是将语言用有限个确定元素进行表示的方法?

可以这么说,问题是词不能算有限的(finite)的单位。

穷举很难,而且即便列举了,也无法抽象,没有抽象,就没有掌握,人不可能学会语言,人脑不比电脑,记忆力可怜。所以,探究语言形式要研究词是个什么玩意儿。这就进入了语言学最基本分支了,叫 morphology,可以称 small syntax,就是一个词范围内的结构。对于有些语言,morphology 很繁复,譬如俄语,拉丁语。对于有些语言,morphology 很贫乏,或者可以说没有 morphology,譬如汉语,英语。

撇开这些语言的元件中的构造性差别,我们在研究“词“的时候,第一眼看到的差别是它的两大类别。一类叫实词(notional words,or open-ended vocabulary),原则上是一个开放的集合;一类是虚词或小词,即功能词(function words or closed vocabulary),是可枚举项。

这个分类很重要,因为作为语言形式,能够掌握的必须是 finite 的集合。对于功能词,因为数量有限,没有问题。功能词就是介词,连词,疑问词,感叹词之类,其实延伸一下也可以包括前缀、后缀等材料(叫语缀),在所有的语言中都是有限量的,出现频率高,可以死记的。它本身就是语言形式,原则上无需抽象(虽然也给他们简单分类),因为可以枚举。

黄: 所以也可以叫做闭类词
qj: 这个词分类对所有语言都适用吗?

对,所有语言都是这样的。欢迎毛老,这下可热闹了。

到此,我们至少得到了三个具体的语言形式了:1 词序; 2. 小词; 3 词缀。语言的不同不是形式的不同,而是形式的倚重和比例的不同,下面还要讲,这才是有趣的语言学。那么实词呢?实词当然是语言形式,但是因为是开放集,必须给他们分类才好形式化。除了成语和习惯表达法,一般来说,你总不能用枚举的办法为每一个实词写规则吧(真有这么做的,在很窄的领域),人脑也是在实词词类的基础上总结抽象的。实词于是有大类(Part of Speech), 名(noun)、形(adjective)、动(verb)三大类。副词(adverb)一般不算单独的大类,往往是形容词派生而来,或者与形容词同形。只有少部分原副词(original adverbs)属于小词的范畴,可以枚举。

实词三大类还是太粗,对于语言的抽象和掌握不够用,于是可以进一步再分类。特别是动词,有一种很重要的句型再分类叫 subcat(subcaegorization),是重要的语言手段,就是区别所谓单宾语子类,双宾语子类,宾语+补足语的不同子类,等等,所有的大辞典后面的附录都有的。再进一步,词汇的语义分类(lexical semantic classification,人啦,动物拉,家具,地点,机构等的分类)也可以加入进来,作为语义的形式化手段,可以用 WordNet 或者董老师的《知网》,这就把语义甚至常识偷偷引进句法了。

总结一下语言形式,1 词序, 2 小词, 3 词缀, 4 词类(包括子类)

张: 在吃火锅间隙,忍不住看了讨论
qj: 正好是晚饭时间。这些宾语子类都是limited的吗?

子类当然是有限的,分类的目的就是让理论上无穷的词汇,转变成有限的分类(包括子类),以便掌握和运用。朗曼词典列出的英语 subcat 类有30多个,牛津大辞典好像列出了20个左右。大同小异,颗粒度略有不同。其实常用的动词句型子类也就是不到10个。汉语的传统词典不列句型小类,但是语言所后来出的《动词用法词典》,还有《汉语800词》等,开始分子类,并标注了。

qj: 恩 英语的规则比汉语更加清晰简单

毛: @wei 这里正好是晚饭时间,你那已是凌晨3点,要不你先睡一觉,醒来再接着讲?你这个应该作为一个大课题开讲并讨论才好。

黄: 汉语800词不错

我睡醒了,才想到开讲的,没关系,你们吃饭。物质文明和精神文明并举。:)

语言形式这么一分,自然语言一下子就豁然开朗了,管它什么语言,不外乎是这四种形式的交错使用,比例搭配和倚重不同而已。所谓语法,也不外是用这四种形式对语言的现象及其背后的结构做描述而已。

白: 正在包饺子,很感兴趣伟哥会把枯燥的句法讲得多么生动。

白老师指正则个。

毛: 刚才@Sophia 说英语的规则比汉语清晰,这一点我觉得就值得讨论,因为我一直认为文言的规则不清晰和岐义在很大程度上阻碍了中国近代的科技进步。

对,毛老,英语确实比汉语清晰,德语法语又比英语(虽然英语是从的德语法语杂交而来的,“不幸” 的是后来走了汉语的道路)清晰。这里的所谓 ”清晰“, 是指这些语言有显性的形式来表达结构关系, 而汉语缺乏这种显性形式,因此做汉语自动分析就显得难。什么是显性的形式?譬如词法范畴的名词的性(gender)、数(number)、格(case),动词的时(tense)、体(aspect)、态(voice)。这些词法范畴是以显性的后缀(词尾)形式来表达的。但是汉语没有。

毛: 如果是跟白话文比呢?
qj: 我就是那种学起文言文大脑一片混沌的人。学过英文的语法结构 以后反过来看当代汉语 反而思路清晰一些
毛: 前几天也曾讲到过一个,文言除在古代可以降低成本以外,实际上仅对艺术有益,对于科技发展则害处极大。

文言更加缺乏显性形式。文言虚词就那么几个,不如现代汉语的小词丰富,因此比现代汉语更难(将来退休以后,准备就做文言 parsing 玩儿)。现代汉语的形式化相对容易一些。

黄: 语法在汉语中的作用不像英语规范(虽然英语也是soso),因此语义的研究尤为重要。

对。再回来看一下形式的分类:1 词序 2 小词 3 词缀 4 词的分类

黄: 有朋友在做文言机器翻译文到现代文的机器翻译。
毛: 由此又影响到中国的传统文化,也是艺术性强都科学技术逻辑都很欠缺。

凡是 morphology (各种词缀)复杂的语言,通常不需要运用词序的手段,也较少依赖小词。譬如俄语,还有世界语(Esperanto),“我爱你”,就三个词,可以用六种词序表达,排列组合。

黄: 世界语不能算是自然语言吧。

世界语算是准自然语言。诞生不自然,发展自然了。为什么语序自由呢,因为有宾格这样的后缀形式,跑到哪里都是动宾的关系。当然就不需要依赖语序的形式了。

回来谈为什么汉语不如西方语言严谨?因为汉语发展过程中,没有走语词综合(利用语缀)的道路,而是坚持在分析(利用小词)的道路上走到黑。从语言学的高度,语缀也好,小词也好,其实也都是差不多的材料(形式),但是,语缀的范畴化,比起小词,要发达得多,因此严谨得多,也冗余得多。可以举例说明。

毛: 有没有人研究过语言跟民族文化与民众性格之间的关系?

肯定有,不过我眼里只有语言和语言学,从来不敢发散。一辈子就想这一件事儿,搞得都有点条件反射了,跟洪爷似的,什么 input 都映射成诗歌,我是什么 input(语言形式)都自动转成树了。管它显性形式还是隐性的形式,全部映射成所谓逻辑形式(logical form),即带有丰富节点信息的结构树。

毛: @wei 你的条件反射就是通过有限自动机完成的。

什么是隐性形式?隐性形式就是词类和各种子类。为什么说是隐性,因为需要标注才能显性化、形式化。那些词本身并没有这些标记。如果用显性的后缀“标注”了,那就成显性了。譬如,“兄弟” 在汉语是名词(noun),这个是词典标注的,或者是 POS 程序标注的(如果有歧义的话),不是这词本身的印记。但是 frato (兄弟) 在世界语就不需要词典标注,因为有名词后缀 -o。再看 汉语的复数 “兄弟们”,这里用了小词“们”,世界语呢,用后缀 -j,fratoj。乍看,这不一样么,都是用有限的语言材料,都是显性的表达。但是,汉语的复数概念表达是有时候显性有时候隐性,这个“们”不是必需的,而有数这个范畴的西方语言(包括世界语)却是永远的显性,那个后缀是不能省略的。

“三个兄弟没水喝”

这里的兄弟就没有小词“们”,而且汉语文法规定了不允许在数量结构后面加复数的小词,硬把显性的表达转变成了隐性的表达。这样的语言是不严谨的,因为信息冗余度不够。换句话说,严谨的语言较少倚赖上下文来确定其结构语义,不严谨的语言离不开上下文,兄弟的复数意义需要上文的数量结构。

汉语的小词是从古汉语的实词虚化而成,这是语言的进步。

毛: 所以乔老爷的CFG解析更适合用于结构严谨的语言。

好了,今天大概就是讲透了一个主题,什么是语言形式。从这个基点,以后可以讨论很多话题,包括文言文与现代汉语,世界语美不美妙不妙,西方语言为什么更加严谨。

RW: 从文言文到白话文,有无语言形式变化?如果有,系统地体现在哪几点?
qj: 如果语言无比严谨没有歧义, 各位也就没有这工作机会了也没得争辩哈哈哈
北: 如果无比严谨, 那就是计算机语言了 世界上觉得程序比小说好看的人是有 但是太少了 根本无足轻重
毛: 语言没有变化和差异,是否正是能够更好更忠实地表达思想的变化和差异?

毛老思维太活跃, 跟不上您.  今天这一讲就完了,现在算是闲聊,借题发挥。

毛: 哈哈,多谢立委一觉醒来忽然心血来潮,这个话题太有趣了
顾: 是否所有的思想,皆可用一种语言表达?

本讲就讲了一点:形式有四种,语序,小词,词缀,分类。只要从这四点出发,很多现象就可以解释。语言大不了就是围绕实词的概念,用这些手段连接起来,表达概念之间的关系意义。

其实“语言形式”这个话题,还没引申来谈,谈起来还有很多有趣的东西,譬如语缀与小词之间的关系,相互补充和替代的作用,语言发展中倚赖语缀的综合道路,以及倚赖小词的分析道路,以及两条路线的斗争,等等,以后有闲再谈。

 

【相关】

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

【李白之41:Gui冒VP的风险】

白:
“这些国家的统治者必须变革,不然就是在冒被一脚踢开的风险。”
1、“冒……风险”,离合词;
2、“风险”属于“N/S”型的名词,不反填定语从句;
3、“被”由N+升格为N,占“一脚踢开”提供的两个坑中的一个;
4、先行成分“这些国家的统治者”填“一脚踢开”提供的另一个坑。

李:

【冒VP的风险】

汉语离合词 是框式结构之一种,离合词里面的 XP 是啥 离合词本身决定。可以认为是由该词的subcat模板所规定。 这个case里面规定是要 VP。离合词“冒-险”(“冒-之|的 险|风险”)本身也是(动宾式)VP,于是我们赶上了内外两个 VPs:“Gui 冒杀头之险”。Subcat 如是说:

1 Gui 冒险。

2 Gui 杀头: 实际上是被杀头。“杀-头”本身也是离合词 里面应该是要的NP。NP外化就成了句法主语和逻辑宾语,也就是所谓隐式被动:Gui杀头 == Gui被杀头 == 把Gui杀头 == 杀Gui的头 == 对Gui杀头。这才叫语言学,微观语言学, subcat 执导。subcat 是语言个性与共性的接口

3 两个 VPs 之间的关系: 当然也由外面这个离合词“冒-险”来决定。具体说就是,内VP是外VP的同位语,是给外VP填充“冒险”的内容:冒什么险?杀头之险。这个同位语来源于内VP是外VP里宾语的定语这种形式,是随着离合词动态合成为动宾合成词,由宾语的同位语定语,捎带过来的(定语转状语,主子单位是变大了,但mod本性不变)。这个现象是动宾离合词的共性,再如:洗个痛快的澡 == 痛快洗澡.

4 剩下一些句法语义的鸡零狗碎 也仍然是外VP的subcat决定的:包括内VP是非谓语VP,因此不能用句法(或词法)的时体形式,语义上表达的是不定式。至于外VP,它当然是谓语VP, 譬如可以有进行体:“Gui正在冒杀头之险”。

总结一下:subcat 可以有很丰富的内容,很复杂的规定,它连接句法形式(模式s)与其对应的语义。好在 subcat 都是词典词条决定的,所以再复杂琐碎,在词典主义(lexicalist)看来也不难把控。

理论上 subcat 的这种复杂性最好由subcat的复杂特征结构(SUBCATT typed feature structure)来描述。上面举的例子及其相关句法语义的约束及其与逻辑语义的接口,可以非常从容、非常精细地在诸如 HPSG 的复杂特征结构里面透明地表达出来。如果是象牙塔玩符号逻辑,可说是进入了符号逻辑的天国:个性共性 词典grammar, 句法语义 燕舞莺歌,太平世界 同此凉热,在在美景 处处和谐。这就是我以前说的 玩 HPSG 可以入迷的原因。下面给几个HPSG 的复杂特征结构的图示,展现一下其叠床架屋背后的合一(unification)风采:

但我们终究还是抛弃了复杂特征结构,为了线速,为了简略,为了多层,为了模块化和易维护。总之是为了现世的便利,挥别了理想的符号天国。

 

【相关】

【语义计算:李白对话录系列】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【李白之40:逻辑语义是语义核心,但不是全部】

李:
"不晓得是啥":不晓得[ ]是啥

不晓得【萝卜】是啥。
这个宾语从句中的主语的坑省略以后,萝卜哪里去了呢?

萝卜不晓得是啥
不晓得是啥的萝卜
一口可口可乐喝完, 吐出一块不晓得是啥的东西

白:
“拿一些自己都不晓得是啥的东西来糊弄别人。”
定语从句反而是自然的

李:
why not 不晓得 NP[是啥的东西]? “晓得”的 subcats 既可带宾语从句,也可带NP宾语的:

不晓得啥东西
不晓得这东西

then, why the parse [[不晓得是啥]的东西] is better than [不晓得[是啥的东西]]?回答清楚这个问题,貌似需要一点说法。

白:
“他是个连微积分都不晓得是啥的东西”
又回去了。“晓得”带小句宾时,不满足穿透性,就是说晓得的逻辑主语并不必然成为小句的逻辑主语。这样“不晓得是啥”作为一个整体进入定语从句的时候,就出现了两个坑,不知道反填哪一个,这是要避免的。

李:
是吗?
“我不晓得到哪里去” == 我不晓得【我】到哪里去。

白:
不一定,可自主决策类,可以穿透。一般性的动词,无法穿透。

李:
“不晓得是啥的东西” 与“狂吠的狗”应该是一个逻辑。

白:
狂吠是不及物的,一个坑。没有歧义。

李:
“不晓得是啥” 也是vp 也是不及物 或 宾语已经内部 saturated。

白:
不晓得是啥,两个坑:a不晓得b是啥。但“连微积分都不晓得是啥”,微积分填掉了一个坑,就没这个问题了。b锁定,只剩a了。“东西”必然指“晓得”的逻辑主语。只剩下这个可能。东西只有在负面情感时才可指人,虽然逻辑上包含人。连……都不晓得是啥,显然承载了这个负面情感。

李:
对。两个坑。但是 b 坑比 a 坑更具有必填性。

在“不知道是啥的东西”里,“东西” 与 “晓得” 没有直接关系, “东西” 微观上是 “是啥” 的主语,宏观上 是 “不晓得是啥” 的主语。“这玩意是大家都不晓得是啥的东西。”
这里“晓得”的主语是“大家”。

白:
有“大家”,先填掉了逻辑主语。“东西”拔不走了。

李:
“晓得”的第二个坑 是宾语子句。“东西” 显然与 “晓得” 没有直接关系,因为根本就没坑了, “晓得” 已经饱和了。如果引进短语结构ps,可以说 “不晓得是啥” 这个 vp,还有两个坑。有两个坑的 vp 听上去很奇怪。但在汉语的所谓 “双主语句式”中有可能存在。

白:
“是”的两个坑,“啥”占了一个

晓得的逻辑宾语是X,S比N优先,顺序比逆序优先。
“这玩意儿他们不晓得”。这种情况又可以了。晓得的逻辑主语跟另一个不兼容。又多出来一个。整体上还是相当于一个及物动词。

李:
大主语 topic,有可能是一个 arg 的坑 也有可能不占坑 那就是 mod。小主语必然填一个坑。

白:
双主语有两种情形,一种是大小主语,往往有part of联系;另一种是宾语提前或话题化,这种没有part of联系。有part of的,可以名词自带坑。没有的,只能消费里面的坑。名词自带坑的,里面就可以是不及物动词了。一个坑就够。另一个靠带坑的名词自吃自吐。自带坑的名词甚至可以传导到更遥远的补语。“他眼睛哭肿了”实际是:1、他哭;2、眼睛肿;3、眼睛是他身体的部分。眼睛,和哭,共享“他”这个萝卜。因为“肿”合并到“哭”,“肿”辖域内的残坑(谁的眼睛)获得免费额度。可以复用已填坑的萝卜。

李:
有 part of 这种特别有意思:“他身体不错”。

== 【他 身体】不错。
== 他 【身体 不错】

这两个看似水火不容的结构,都有各自的合理和优点,二者互补才反映全貌。

(1) “他的身体不错”:显性形式的小词“的”,让“他”降格为修饰语,属于填了“身体”所留的坑的修饰语。

白:
有“的”,修饰语辖域自然归并到被修饰语辖域,也获得免费额度。他,可以既填“的”本身的坑,也可以再填“身体”的坑。

李:
(2) 他身体方面不错:“身体”被降格,降格成后置词短语PP“身体方面”(Postpositional Phrase),类似状语。
(3) “他么,身体不错”,“他”降格为话题状语,用了口语小词“么”。
(4) “他身体好,又聪明” 可算是谓词“升格”(或“小句降格”)。从一元化领导升格为集体领导。本来谓词(譬如“聪明”)就是谓语,但现在“身体好”这个短语或小句整体变成了谓语,与另一个AP谓语“聪明”并列。

白:
“身体好”整体相当于一个不及物动词。两个带坑的成分级联,略去中间环节,还是吃N吐S。

李:
这些现象极端有趣,fascinating。表明 在基本相同的逻辑语义底层结构中,语言表达可以借助语言学的形式手段,给这个底层结构穿不同的衣服,打扮成不同的形象。进而对其语义做某种非核心的修饰。

白:
从填坑角度看只是初等的数学运算。免费额度算清楚了,其他都是小菜一碟。这又打破树的形态,真心不是树。

李:
但是 即便所有的坑都填妥了,那也只是逻辑语义的胜利,底层核心的被求解,表层的细微语义差别(nuances), 那些不同表达方式,那些“升格”、“降格”的不同语言形式。它们所反映的东西 严格地说 也应该被恰当的捕捉和表达。

白:
两件事情,谁和谁有什么关系是逻辑语义的事儿。用什么顺序表达是另一件事。后者也负载信息。

李:
对呀。

白:
比如听说双方之前各知道什么,强调什么,诸如此类。这些不在“主结构”框架内,但是是一些“环境变量”,需要的时候可以从里面捕捉这些信息。

李:
最典型的例子是 “我读书” 与 “我读的书”,二者语义的区别,虽然逻辑语义核心以及填坑关系是相同的。

白:
焦点不同、有定性不同,已然未然不同,甚至单复数也可能不同。我当下正在读的书可能标配是单数,我读过的书标配就是复数。

李:
这些语义 与 逻辑语义,处于不同的层面。逻辑语义是本体(ontoogy)作为模版, 这些语义与本体模版无关。所谓本体模版,说到底就是规定了坑与萝卜,及其 type appropriateness(相谐性),他不反映这些有待填充的模版之间的结构关系,也不反映关系中的节点上附加的语义或细微差别,诸如 强调、委婉、正式、非正式、语气 等。

白:
这些都可以抽象为:语境的坑,只不过这些是需要经常update和reshuffle的。做下一代人机对话不做这个的,都是耍流氓。

李:
不仅仅人机对话,机器翻译也要这个。
30年前,董老师强调要以语言之间的核心,即逻辑语义,作为机器翻译的基础。让我们脑洞大开 深受启蒙。然而 这只是翻译需要正确传达的一个方面,的确是最核心的一面,但不是全部。边缘意义和细微差别,在核心问题基本解决后,就成为需要着力的另一方面。典型的例子是被动语态的机器翻译。从逻辑语义的角度看,主动被动是表层的语言现象,在逻辑上没有地位。因此所有的被动语态都可以转变为逻辑等价的主动语态来翻译。这有合理、逻辑和简明的一面,但人不是这样翻译的:一个高明的译者懂得,什么时候被动可以翻译成主动,什么时候需要翻译成显式的被动,什么时候可以翻译成隐式的被动,什么时候改造成反身自动的表达方式(譬如在英语到法语的翻译中加 se)。

白:
视角选择,也是一个考量因素。有时,被动语态的采用,纯粹是为了视角的连贯。跟立场态度并无直接瓜葛。

李:
总之 逻辑语义是个纲 纲举目不一定张 对目下功夫是区别一个好的系统和一个很好的系统重要指针。

白:
纳入语境的坑,一个好处就是所有填坑的机制可以复用过来,无需另起炉灶。说话人、听话人、处所、时间、先序语段、先序焦点、相对阶位等等,都可以套用本体的subcat。

李:
这个方向探索不多。但现在是可以考虑的时候了。

白:
我考虑很久了。语义是船,语境是河。船有内部结构,但行进也受到河的左右。内部结构不能完全决定行进的选择。

白:
不知道“王冕死了父亲”算是交叉还是不交叉?
王冕游离在外,另一部分的中心词是死,但王冕却不填它的坑,而是去填“父亲”留下的残坑。成为“死了父亲”这个短语的事实上的逻辑主语。但是还原到二元关系,这个link还是在王冕和父亲之间。从形式上看,王冕(N)和父亲填坑后的残坑(/N)中间隔着中心谓词“死(S)”,但这个吃饱了的S对N和/N之间的眉来眼去是无感的。
乐见其成。

F:
如果是语义依存,是non-projective的,是有交叉的,"父亲"这个词的投射不连续。

白:
‘’倒是“父亲”填“死”坑的一刹那,让我们见证了“右侧单坑核心成分”比“左侧单坑核心成分”优先级高的现实。如果双坑,则是左侧核心成分优先级高,我把它们处理成句法上存在填坑关系了。

李:
“王冕死了父亲”的交叉与否的问题,这个以前想过。不交叉原则针对的是句法关系
这是句法关系的逻辑底线,交叉了逻辑上无法说通,所以判违规。还没见过例外:句法关系可以并列,嵌套,但不能交叉。但不交叉原则不适用于逻辑语义关系。其实,严格说,相对于逻辑语义的不应该叫句法关系,也包括词法关系(可以看成是小句法)。总之是形式层面的结构关系。形式层面的结构关系不允许交叉,这个原则是对的。有意思的是,语言中的不同层面的形式结构关系,戴上逻辑语义的眼镜,或映射到逻辑语义的表达的时候,就可能发现交叉现象。原因是昨天说过的,逻辑语义讲的是萝卜和坑的语义关系。逻辑语义的图(graph)中是不包含句法结构层次之间的关系语义的。换句话说,逻辑语义把“结构”打平了。譬如在句法中被局限在词法层面的萝卜,完全有可能去填句法层面的逻辑语义的坑。反之亦然:词法层面中的坑,完全有可能让句法层面的萝卜去填。用乔老爷的Xbar句法框架或概念来说就是,语言单位X的层次,在逻辑语义看来是不重要甚至不存在的,无论是 X 是 -1 (我把词法内部的层上标为负数),0(词一级),1(组一级),2(短语一级)。萝卜与坑可以在这些不同层次中继承或跳转,但是句法上却有层次之间的区别和禁忌。

这些层次以及层次间的关系和规定(譬如不交叉原则)是客观存在的反映,是逻辑语义以外的另一层结构语义。这种东西在重视层级的短语结构句法(PSG)及其表达中,体现得较好。在不重视层级的依存文法(DG)中就反映和表达得不好或不够。不管我多么喜欢DG,多么讨厌PSG表达的叠床架屋,我还是要指出DG的某些不足,正是PSG的长处。

回到白老师的例子,可以看得清晰具体一些:“王冕死了父亲”。PSG句法上,王冕 是NP,“死了父亲”是VP,构成S。VP里面“死了”是V-bar, “父亲”是NP宾语。这里面的结构不可能有任何交叉出现。“王冕”与“父亲”处于不同的层次,句法不允许一个单位钻进另一单位的里面去建立联系,这是违反了君臣父子的天条。一个句法结构,对外就是一个元素,里面是黑箱子,不透明(但可以利用某种机制传递某种东西)。唯此,才能维护结构的清晰。但是到了逻辑语义,这些条条框框都可以打破:一个儿子可以有n个老子,交叉也不是不可以。树(tree)是无法承载逻辑语义的任意性和结构扁平化了,于是需要用图(graph)。我早就说过,DG本性上比较亲近逻辑语义(深层核心结构),而PSG则亲近的表层句法结构。很多人以为它们是互换的或等价的,只是表达(reprentation)方式不同。其实不仅如此。在我们饭还吃不饱的时候,我们首先想到的肚子问题,核心问题。当我们衣食无忧的时候,我们就要讲究全面一些,核心和边缘都不放过。并不是不放过边缘,不放过表层结构语义,就一定要回到PSG,但是至少仅仅逻辑语义是不够的,还需要添加其他,就如白老师昨天提到的那些以及他的一些表达方案。

白:
这些所谓的句法,功劳不大,脾气倒是不小。比他多识别出有价值的二元关系,反而有毛病了。哪儿说理去。我认为这里面存在一个次序问题。

站在外层N的角度,它确实填了一个/N的坑。但不同粒度会看见不同的结果。“死了父亲”是一个联合体,这个联合体挖了一个名词坑,“王冕”填进去,天造地设、严丝合缝。既没有穿越也没有交叉。“他哭肿了眼睛”也是一样。“肿了眼睛”作为一个联合体挖了一个名词坑。和“哭”的名词坑一道,共享“他”这个萝卜。

中心词作为组块的代表,统一对外提供坑。这是对的。但是这坑未必是中心词自带的,可以是中心词在组块内部兼并而来的。把坑拘泥于中心词自带的坑,相当于用镣铐把自己锁起来。何苦自己为难自己?

李:
今天的对话,符号逻辑,参杂点黑话与绿色幽默,有点绕,烧点脑。管他呢,还是发了吧。

白:
“把字句”与补语所带坑的深度捆绑,也是受这个“联合体意义上的坑”规律所支配的。“他把眼睛哭肿了”单看“哭”和“肿”,没有坑可以共享萝卜,“哭”与human相谐,“肿”与body part相谐,二者尿不到一个壶里。但是“眼睛”恰恰在这里起到了“转换插头”的作用,吃human,吐human body。看这个“肿了眼睛”的联合体所带的坑,与“哭”所带的坑,完全相谐,恰恰是可以共享的了。所以,在PSG那里避之唯恐不及的穿越交叉,其实隐藏着重大玄机。恰如其分地把它请回句法,可以起到四两拨千斤的作用。我对什么该放在句法层面,其实只有一个标准,能描述谁和谁有关系。如果谁和谁就是交叉着发生关系,句法不仅不应该回避,而且应该忠实描述。更何况,大的方面,中心词代表所在组块对外发生关系方面,并无违反。只是“过继的坑”也可以代替“亲生的坑”而已。树状结构、亲生的坑,都不应该成为忠实描述“谁跟谁有关系”的障碍。如果有障碍,一定是障碍错了而不是关系错了。

退一步海阔天空。只要把“在你辖域里残留的坑”统统在名义上算作“你的坑”,什么都结了。

李:
说得不错。但估计乔老爷是不认账的。他在句法与语义之间打隔断,坚信不隔断 谁也做不好 做不纯粹和深入。何况 语义是全人类共同的 哪有句法有性格和多姿多彩又万变不离其宗呢。他的普遍文法(UG) 仍然基于句法独立于语义的根本原则。只有句法才是真正的语言学。到了语义,语言学就开始参杂逻辑的杂质了。

白:
我说的也都是句法,不是语义。只不过是能给语义省点事儿的句法。

李:
夹杂了本体,或本体的隐藏式 譬如 大数据中间件,就不能说是纯句法,因为常识揉进了形式系统。

白:
只是在控制(怎么做)层面引入了本体/大数据,在描述(是什么)层面无需引入。而老乔的语言学一样是不管控制层面的事儿的。也就是说,如果只是为了写一本句法书而不是为了做parser,本体连一句话都不需要提。那就在这个层面比,谁揭示了更多的结构性信息。

 

【相关】

【语义计算:李白对话录系列】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【李白郭52:单层、一锅烩、反悔】

Guo:
@白 你前几天提到“算符优先”,今天又提type,猜想你的二元相偕是离散(而不是连续)的。能问下你的运算符和类型大概的数目规模吗?

完全不用“复杂特征集”,把所有不同关系都拍平在同一层,感觉颗粒度不容易掌握。

白:
(1)type是贯穿于句法和语义的;(2)算符优先是仅适用于句法的;(3)二元相谐是仅适用于语义中间件(subcat+统计)的;(4)平拍是贯穿于句法和语义的。算符的数目几十;句法cat少得可怜;subcat目前1000多。

Guo:
几件不同的事情!谢了!

白:
神奇的是,少得可怜的句法cat,居然管了这么多事儿。勾画了毛毛虫的“包络”。subcat确定了毛毛虫的细节。

李:
平拍是what

白:
把萝卜和坑搁同一个桌面上。坑不再嵌套。就是单子化的意思。

李:
哦 扁平化。
我自己在扁平化过程中,也有很多机关很好玩的,我叫做原子化。原子了,但taxonomy还在。非常轻便利索,但一样容纳知识结构。

白:
taxonomy是框架定义,不是实例定义。具体到实例都是扁平化的。

李:
本体(ontology)里面的主线 ISA 就是 taxonomy. 社科院跟刘老师做MT的时候,就是我提议的扁平化,说话30多年了。刘老师当时很高兴,给起了一个高大上的名字叫背景知识库(BGKB)。与白老师现在的中间件处于同一个地位。

白:
一个词在说人,就犯不上扯猿猴啊灵长类什么的。

李:
问题在当那个说【人】的词填坑的时候,【灵长类】啥的需要参与。当然,用大数据中间件也许可以绕过去了。但传统的优选语义的约束必须要用到 taxonomy,具体说就是,如果是用到灵长类,语义相谐给满分。

白:
萝卜和坑的subcat不一致时需要借助taxonomy一致化,具体就是求格(lattice)的下确界。

李:
就是。
理论上taxonomy往上是满分,taxonomy 向下需要打个折扣。你要的是【人】,那遇到【职业】的话,是满分。你要的是【职业】,遇到了【人】,那需要打个折扣,因为并不是所有的人都有职业。

白:
但是所谓绕过去,只是在借助subcat解决parsing问题(例如伪歧义)的意义上绕过去,解决语义问题则是绕不过去的。也就是说,大数据可以部分替代subcat来确定谁跟谁有关系,但不能进一步确定是什么关系。确定是什么关系(落到哪个槽里)还得subcat出马。

Guo:
说到这,此毛毛虫已非彼毛毛虫了。

@wei 在模式匹配下的分层,我理解主要是为了方便(在nonterminal级)lookahead并引入有限的上下文相关。

其实顺着LR(k)的思路,对其稍加改造,也是可以对含有一定上下文相关规则的文法等价地单次无回溯做parsing的。

李:
等价这种东西理论上可以证明,实际上做起来就知道,模块化是怎样一个让人放心的开发策略了。哪个大型软件不是模块化的?为什么偏偏到了自然语言这个 monster,非要一锅烩呢?

这里面有一个坎儿,不是认知和策略层面的, 而是算法层面的。如果你的parsing算法的基因就是单层搜索,即便你接受模块化的好处,多层的从容和开发维护的便利,你可能还是难以改造成多层。

白:
拿具体例子说。哪个策略是算符优先做不到的。
算符优先碍着开发什么事儿了

李:
我说不过你,但你说不服我,=)
我是打死也不会回到单层去。

白:
我一张优先序大表,表上每个格子对应一个模块。

李:
对啊

白:
绝对是模块化的,但算法是按照优先序统一调度的。这没矛盾啊。

李:
事实上Brill tagger就是单层,但是里面的200条规则是有次序的,或优先级的,等价于200多个模块的多层pipeline。这个道理我懂。

白:
语言学家只需要关注一个一个模块的事情,只需要关心优先序的语言学合理性,不需要关心调度算法。这在开发上哪点不好了?

李:
也许吧,这要等到哪天我投奔白老师做个语言学码农的时候,才能体会到,是不是在单层里面也有模块化开发的感觉了。

白:
调度算法只有一锅煮才是最合理的。

李:
一锅煮合理的argument本来是立足于自然语言现象的相互纠缠,interdependency。

白:
不是的

李:
既然你一锅煮了 还是要补以休眠唤醒等机制,那么这个根基就动摇了。

Guo:
计算上不等价。算符优先,如算术表达式,计算复杂性与算符数无关。规则优先,如Brill Tagger,计算量随规则数目增加。

李:
一锅还是分层,最终都有个唤醒的问题。

白:
一锅煮是提炼了语言学无关的过程性控制策略的共性,语言学相关的,都封装在模块里了。唤醒也是语言学无关的。@Guo 我规则数为0。

李: 唤醒与语言学远距离句法有关。
可以反过来问:有什么一锅煮能解决的,分层解决不了或解决不好?

以前的例子是有的,譬如 hidden ambiguity, 尤其是汉语切词,在一锅烩中,理论上在理想状态下,这个问题是可以自然解决的。但是切词模块被分开后,这个问题就不能。解决只有靠休眠唤醒。

白:
不加反悔,都解决不好。

李:
不加反悔,理论上一锅烩的 parsing 是可以解决的。当然理论与实践有距离。所以白老师即便一锅烩,也不解决它。

白:
加了反悔,给分层带来多大架构上的冲击我不知道,但是给一锅煮+算符优先带来的架构上的冲击几乎为零。

李:
反悔与分层是天然亲密的。chemistry 很好。反悔不过看成是分层的延伸而已。不过是最后多加几层罢了。

白:
那大家殊途同归好了

李:
而且因为反悔都是在后期,条件成熟了,efficiency上极为合理优化。我现在做反悔,都是在结构上做,不在线性序列上做,那叫一个痛快,一打一个准。反悔从机制上几乎等价于抽取了。

白:
kick off也是在结构上做:一个萝卜出,一个萝卜进。坑还是原来的坑。

Guo:
分层并不天然地等价于模块化。Brill Tagger,改中间任何一条规则,后面全部规则都要重写。这是“负负得正”的负面。

李:
如果是 adaptive 目标驱动,就没有了这个负面。为什么我们多层开发的每一个模块的变动,都必须要通过目标驱动的 regression 测试呢。这些都是软件开发的老生常谈了。

白:
词典化的词负载结构框架下,没有改规则的问题,只有写词条的问题。

李:
模块化的好处是解析性好,可以理喻。一个bug来了,很容易找到出问题的模块,不会是隔靴搔痒。

白:
模块化所有人都没有意见,可以忽略。

李:
到了真地进入这个模块去debug的时候,情况就不再是局部模块了,而是全视野 目标驱动的。这样既保证了一打一个准,有保证了没有副作用。既埋头拉车,也抬头看路。所以Guo的那个顾虑不是问题。

白:
但,模块化并不必然推出分层,分层并不必然推出单向无反悔,模块化也并不必然推出算符优先哪里不work。算符优先相当于桶排序,而桶排序是线性的。

李:
撤了。今天有个 Tech Day。白老师也夜深了,good night

白:
至于目标驱动,这是软件工程的老生常谈。软件工程还说要做边界测试、压力测试、极限测试。

李:
的确是老生常谈。
“白老师也夜深了”

白:
好句

李:
这句里面,主语“白老师”,“也X了”是典型的谓语。句法主语与谓语是什么逻辑语义呢?

白:
顺杆爬,主语所在地。

李:
哈:白老师(那地儿)也夜深了。

白:
这是隔着时区说话才有的语义。

李:
这是同一个战壕战友的关切黑话

 

【相关】

【李白之37:分层与一锅煮的parsing机制探讨】

[转载]【白硕 – 穿越乔家大院寻找“毛毛虫”】

【立委科普:结构歧义的休眠唤醒演义】

【李白董铿锵行:说不完的subcat和逻辑语义】

【语义计算:李白对话录系列】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【李白董之51:说不完的subcat和逻辑语义】

【立委按:30年前,董老师就是我学逻辑语义的启蒙老师。30年后还可以拜技术所赐,与老师坐而论道,由衷感激。逻辑语义这个术语的命名和流行 源自董老师的论文。类似的术语有 Deep case (菲尔墨),Theta role(乔姆斯基), Semantic role , 但我还是最喜欢用董老师的逻辑语义。】

白:
【今天冲击30度,明天骤降6度伴随雷阵雨】
为啥30度是目标值,6度是差值?

李:
逻辑语义 与 句法角色 的主要差别就是,前者依存的老子是细颗粒的概念或语义,后者依存的老子是粗颗粒的子范畴(subcat)。“冲击” 与 “降” 的概念差别,决定了所带的逻辑语义角色的分别。从subcat看 这两个动词属于一类,因此句法儿子相同 都叫宾语,但是从语义角度 这两个动作概念有距离,查一下 hownet 就知道了。细颗粒到什么程度呢 要看系统的设计了。譬如 hownet 有将近 100 个逻辑语义角色,相对应的语义颗粒度或分辨度就显得相当细。【升降变化】 这类肯定要单列出来,也可以想象 逻辑语义压缩到 20 到 30 的样子 合并一些接近的角色,那么统领逻辑语义的谓词的概念颗粒度就可以粗一些。

总之逻辑语义不象句法角色那样抽象 独立和粗线条,逻辑语义是比较紧密地配合谓词语义概念去 make sense 的。【心理】谓词的主语 在逻辑语义叫 experiencer(体验者),但【行为动作】谓词的主语 则逻辑语义叫 agent(施事)。这种呼应除了有本体知识(ontology)体系内在的设计需要外,还有让人看着舒服、容易理解的考量,也就是我以前说的,语义表达带有某种人类自己与自己玩的色彩。

在董老师面前说这些 难免显得浅薄。我等董老师打板子 批评纠正。

董:
按知网的规定:冲击30度,30度的逻辑语义是“StateFin-终状态”;降6度,6度的逻辑语义是“QCompare-比较量”。但是知网的分析系统我预计它做不对。因为这样的区别要有更加专门化的知识,气象的常识来解决。知网没有如此细的常识表达。单靠两个动词的语义差别,我想不出来如何解决。

李维说的没错。是会有自己玩的色彩。每个人有自己对客观世界的自己的认识,研究有自己的风格,有自己的要求,或遇到的不同的需求。总觉得自己那个好,不要紧,是正常的,但不要总觉得别人的一定不好,那也许就不太好了。

李:
也有的语义表达体系走极端,觉得哪怕细颗粒度也不够好,100个逻辑语义根本不足以表达语义关系的细微差别。譬如 hpsg,它在语义表达上不喜欢任何抽象,agent呀,patient 呀,experiencer 呀,都太过抽象,就更甭提逻辑主语、逻辑宾语了。一不做二不休,他们的语义关系的命名变成了一个开放集。本体有多少谓词语义终结节点(石实践中常常就用那个谓词的词),就有多少个对应的语义关系。逻辑主语加后缀 -er,逻辑宾语加 -ee,这样来命名逻辑语义。因此,like 的 主语叫 liker,宾语 叫 likee;hit 的主语 叫 hitter,宾语叫 hittee。完全没有概括性了,我把这种设计叫做词汇主义极端派,有点走火入魔了。但有一个优点,人一看就明白是什么角色。

我觉得其所以语义表达有自己跟自己玩的色彩和空间,是因为一个知识体系是某种连续的存在。语义学家在模型这个体系的时候,必须抽象到离散的点去。这就需要切刀。切几刀 怎样切 比较合理 比较适应人的理解和应用,不同的设计家会有不同的考量。

董:
再者,上例中30度是个”点“;6度是个”量“,没有气象知识怕不容易分别了。

李:
“降6度” 感觉没有歧义。难的是 “冲击30度”。后者可能需要专业知识才能消歧。一个通用性常识本体的知识库,不足以做出这种区分。如果是 “降到 6度”,也没有歧义。

讲个故事:
“我们实验室是做低温实验的。我们设计了一个装置可以不断降低实验空间的温度。第一天我们成功降低了10度 只用了三秒钟。第二天我们降了20度。我们改进了设计以后 正全力冲击30度。”

这个故事说明歧义在特定场景是可以翻盘的。在气象领域 他的标配歧义消解了,根据的是气象里面的领域常识。但场景可能打败这个标配语义。

白:
都不需要术语来指定角色。完全可以说,1号角色,2号角色。这是本源。施事受事的,都是次生的。

李:
有不少文法就是这么叫的:arg1、arg2,然后可以提供一个词典查询来求解:like 的 arg1 就是逻辑主语体验者,相当于 liker。这样看语义表达,就更凸显了人类在逻辑和语义上有相当浓厚的自己玩的色彩。

董:
说实在的,就是主谓宾定状补都不能弄对呢?少了,多了,又能怎样?

白:
信息抽取的角度看,弄不对,就可能提取不出来想要的情报,或者提取出错误的情报。从群体舆情分析的角度看,错一个漏一个都无妨。从个体观点分析角度看,错了,可能认友为敌或者认敌为友。

李:
信息抽取的模板定义本身,也有不少自己玩的色彩,当然是要玩得让客户高兴。譬如【公司购并】事件,谓词是 acquire 或 buy,句法的主语,逻辑语义的施事,与信息抽取模板中的角色【购并公司】的对应,就是在玩命名的游戏。句法的宾语,逻辑语义的受事,模板里面叫【被购并公司】。

白:
当然,只要语义对,句法错甚至没句法,又如何?

李:
没有楼梯爬上三楼的绝技人也是有的。事实是,尽管有这样的绝技存在,生产楼梯的厂家却不会倒闭。

董:
按李维说的,其实是不用再搞一套施事、受事等。

李:
我觉得100个这个量级是太细了一点儿。另外,逻辑主语、逻辑宾语的概念感觉很好使。这样 experiencer 和 agent 的区别就不重要了。因为这种区别,如果某个应用需要的话,总是可以通过查询谓词是什么得出来。

董:
你是能少则少,能省一个是一个。

李:
可能我来了美国19年,一头扎进了信息抽取。从抽取好用这个角度,我不需要那么细的逻辑语义。换其他应用,我不敢说。

董:
嫌多,少用就是了;如果嫌少了可就不那么好办了。关键是要能自圆其说。多有多的道理,少有少的道理。再一个,就是多了,能否乱。计算机不是不怕多吗?

白:
编号不怕多。

李:
这是一方面,多了总可以合:或者用逻辑或,或者用taxonomy定义一个上位关系。问题不在这里。问题在多了以后,deep parsing那边就不得不费工。费了力气做了区分,发现用到的场合不多,就觉得不值了。关键还是,对于概念之间的依存关系,谁与谁发生关系是第一位的,老子儿子必须区分清楚。关系的种类粗一点无关大局。

白:
deep parsing的首要目标仍然是确定谁跟谁有关系,而不是确定是什么关系。所以角色再多,不应该影响deep parsing. 即便影响,也只是影响搂草打兔子的部分, 那本来就是天上掉馅饼, 可遇不可求的。

李:
因为语义是在句法图中决定的。有了依存关系图,有了节点的本体知识,粗线条关系随时可以细化, as needed,不必把这种细化搅合到parsing里面。

白老师讲的与我说的,是一样的呀。

白:
我是说,语义角色多了就导致deep parsing不得不费工,这样的设计是有问题的。

李:
多了一个 role labeling的细活。而这个细线条 roles 在落地时候大多不需要。认真说,也没那么多活,也不是不可以做,就是觉得没必要做。因为信息抽取的根本原理是词驱动。在词驱动的语义落地场景,语义关系的细化没有多少助益。

白:
语义角色第一不要设限,第二不要用跨词汇的概念绑死,第三不要跟句法绑死。需要的时候接的上就行,和句法松耦合。想多就多,不要影响句法。直接拿次范畴去玩。

李:
IE根本连次范畴都不要,就是词驱动。多用几个逻辑或就齐了。范畴集合如此之小,爱怎么枚举怎么枚举,管它的谓词本体概念属于哪个集合呢。

白:
IE和实体知识库的差别,实体知识库是照单全收,IE是只取自己那一瓢。只取自己那一瓢,当然不需要subcat;照单全收是不行的,必须有subcat。

董:
我看你们常说次范畴或subcat,谁是与之相对的主范畴呢?

李:
董老师,文法里面所谓subcat,其对应是cat或叫POS,尤其是POS里面的谓词:VB或JJ等,这些cat会进一步细分为subcats。

董:
那么subcat是诸如什么?

白:
cat那东西,各家也有不同

李:
当然白老师泛化了subcat,一切的词汇子集给个词典标签都叫subcat了。但是在HPSG这类文法里面,subcat是一个谓词句型规则的浓缩。里面是一个丰富的 feature structure,句型方面的某个子集。文法里面的 subcat典型代表是vt、vi这类。

董:
你给个具体例子吧?我都快被绕糊涂了?名词是cat,那么sub名词是什么?

李:
名词是cat,那么subcat可以有带宾语和宾语补足语的名词,譬如 translation:其subcat就是:"translate" of NP【受事】 from NP1【来源】 into NP2【目标】。对于这个subcat的句型潜力,给它取个标签,这个标签就是 subcat 的 atomic feature,譬如 vt、vi。

董:
懂了,谢谢。

李:
但是在复杂特征集的文法里面,subcat不取一个简单的标签,而是展开来写到数据结构里面去,这样一来这个数据结构几乎就是一个产生式规则,虽然理论上这个数据结构不是过程性的。所以所谓的HPSG没有规则,其实就是玩的这么个游戏。

发现,思想活跃的知识分子永远不显老,而蓝领老人就特别容易衰老。董老师冯老师都有这个特点,我老爸也是。可见信息也是一种养分,比营养更重要。

董:
不看或极少看“养生堂”之类的胡说八道的,多半可以长寿。

冯:
多动脑子有益健康。

董振东:
有道理。
昨晚的有关arg、subcat、等的讨论,我明白了。其实我们是不同路上的车,可能都是被英文parsing误导的,至少我是被误导了。大家的目标、方法、资源等都不一样。但不论如何环视对我们的研发很有帮助的。关于诸如逻辑语义等问题,等你们真的要关心时,你们可以看我们的专著《HowNet and the Computation of the Meaning》。

李:30年前,董老师就是我学逻辑语义的启蒙老师。30年后还可以拜技术所赐,与老师坐而论道,由衷感激。

 

【相关】

【语义计算:李白对话录系列】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【李白之39:探究自然语言的毛毛虫机制】

白:
定义subcat很有讲究的,后面有强大的数学。什么类型填什么类型的坑,结果是什么类型,数学早给我们准备好工具了。不知道这种数学,只能“自发”地做。知道了,就有条件“自觉”地做。type theory,带类型的lambda演算,早就给我们准备好了工具。为什么说小词也可以负载结构,原理是同样的。不是心血来潮,不是头疼医头,不是工程上的取巧,是有数学支持的。

李:
以前流行的那些 unification grammars or constraint based grammars 都是建立在 typed feature structures 之上的: CFG GPSG HPSG.  对于 type hierarchy and it's inheritance, 对于 attribute value 的 type appropriateness 都有说法, Typed feature structure 是这些文法的形式化基础。不知道这是不是就是所指的背后的数学或逻辑。

白:
type化最彻底的就是categoral grammar,但是CG最大的问题就是不实用。我已经把CG改造成了非常实用的程度,但是底子还是CG的底子。十多年前,我的学生@赵章界 (也在本群)的博士论文已经对中心词的继承特性在CG当中的形式化机制做了刻画。我最近的工作,进一步把这种继承性和修饰关系做了无缝对接。

李:
CG 没钻研过。其他那些文法的 typed feature structure 主要就是一种表达语言信息的数据结构,与软件工程里面 object-oriented class hierarchy 有很多相通之处。涉及到“演算”的似乎主要在表达语义的那部分feature structure (SEM)。自然语言的语义有一个总的原则是composionality, 就是用有限的语言材料(词,成语)组合成无限的句义。于是当一个单位与另一个单位在parsing中结合的时候,就有个怎样从简单的词义一步步“演算”成短语和句子语义来的课题。但这个演算过程,也带有浓厚的自己跟自己玩逻辑的成分。那些精心构造出来的句子的“语义”表达,显得繁琐、繁复,逻辑上好看,但实际语义落地其实并不一定需要这种。

白:
一眼看现状不中用就扔掉是一种策略。把它改造成中用是另一种策略。

李:
在feature structure unification based的系统中,这种演算就是通过structure sharing 让信息在feature结构中跳来跳去。跟玩游戏似的。如果某个语义在SEM整体的表达中没安排妥帖,或者缺乏合适的地方去表示,就挖尽心思改造那个 SEM structure,结果弄得越来越烦琐哲学。眉毛胡子一把抓,为语义而语义,忘记了语义落地的初衷。玩过一遍这类游戏以后,就开始删繁就简。

白:
化腐朽为神奇,有窍门的。单子化(singleton)是关键。废弃多层结构,把萝卜和坑摆到同一个桌面上。世界顿时清明。这里面藏着一个大秘密。

李:
你这也是删繁就简。那些复杂feature结构,都是那么的侯门深似海。错综复杂,各种嵌套,逻辑上能讲出很多道道来。

白:
但是singleton这是一个最有意思的子集。逻辑上一样有道理。只不过躲开了复杂结构而已。但那些复杂结构本来就是添乱的。本质上有用的,singleton足够了。

李:
同意应躲过复杂结构。我的系统是基于 atomic features 的。

白:
毛毛虫假设下,singleton is enough,所以,叠床架屋的结构已经事实上废掉,但数学上仍是严谨的。去掉其他冗余,只剩下唯一一种可以还原为singleton的结构。这是毛毛虫的最大贡献。所以我面对的不是通用的CG,不是通用的复杂特征集,而是专为毛毛虫准备的singleton类型演算。好像人类的语言从遗传上就是只为singleton准备的。换了任意定义的一个CFG,还不一定能占到这个便宜呢。

singleton就是萝卜和坑只有一层,不嵌套。所有嵌套都可以简化为修饰和合并。修饰是继承的简化形式,合并是括号下分配律的简化形式。还原了都是填坑。本质上只有填坑一种运算。但是通过用修饰和合并来重写(rewrite)某些填坑,整个体系就完全扁平化了。这个工作,写论文也是拿得出手的,不过我目前还真顾不上。

李:
白老师有时间举几个例子就好了,说明怎么扁平化。

白:

李:
怎么讲?

白:
左面是CG,右面是我的简化

李:
上面是:形+名。逻辑上,形是谓词,名填坑:beautiful(girl)。结构上,形在前,修饰名。形被名吃掉:[(beautiful) girl]。

白:
在CG,是 名 被 形 吃掉,再吐出一个 名。在坑论,是 名 吸收掉 形。
关键是输出的路径,一个在形,一个在名。

李:
名是head。逻辑上,名被形吃掉没有问题。但是结构上的head怎么办呢?吐出一个名不能解决head的问题,因为head涉及的不仅仅是POS,而是一套 head features(包括本体及其taxonomy)以及head token,包括词形。

beautiful girl == girl  (who is) beautiful

白:
当初为了解决这个矛盾,设计了CG输入输出之间的绑定机制,但是仍然不够直接。

李:
修饰与填坑的关系不是在一个平面。

白:
现在的表示最直接:修饰是填坑+绑定的简化。简化以后,就都变成singleton了,俗称“捋直了”,

李:
修饰是句法关系(是反映结构上的主与次),而填坑是逻辑关系,反映的是谓词与arg?左边CG的表达,没看明白。右边倒是显得简单了:作为 singleton , N+ 就是一个 atomic POS,等价于JJ,他右边遇到N(就是POS NN),就被吃掉。JJ被NN吃掉,算是绑定?那NN填JJ的坑,表现在哪里呢?

白:
已经重定向了。JJ可以认为没有坑了。

李:
这种逻辑关系与结构关系在语义表达上的纠缠,在ING词表现更明显:
ING做修饰语的时候,譬如 running dog,一方面是一个被吃掉的可有可无的修饰语,另一方面 running 作为逻辑谓词,需要一个逻辑主语来填坑。结构上的 head 这时候屈尊成了填坑的萝卜(arg)。

白:
了,也是一样。逻辑上,了 是(S/N)/(S/N),但我们把它简化成+S

李:
+S 就是吃一个S 吐一个S?
吃一个 Aspect unspecified S,吐一个 Aspect=Perfect的S。

白:
@wei 然

刚才ing,如图:两个S消掉了,剩下两个N。在汉语里,如同“这本书的出版”。

李:
ing怎么就成了 N/S
可以把词尾看成小词,所谓小词负载结构。

白硕:
上图是CG:吃一个S,吐一个N。我现在的做法见下图:

+N结构强制分子上的S到N,分母上的N不变。填动词的坑变为填名词的坑了,因为被修饰语被修饰语强制了。

李:
N/N不就是 N+吗?N+ == JJ

白:
不是。二者不等价。这是一个真的坑,没有绑定机制。
这本书的出版,输出的是出版,不是这本书

李:
这本书 结构上是可有可无的修饰语,“的”来引导,逻辑上是arg,这双重身份(mod and arg),赶巧挂靠的都是相同的老子。“出版”的arg(宾语)是“这本书”;“出版”的mod也是“这本书”。比较:“这本书的出版” vs “出版的这本书”。

白:
我在说英语的ing,谈到“的”只是类比。英语的ing,从右侧修饰动词原形,把动词强制为名词,把动词带的坑也强制转为名词带的坑:their publishing the book

李:
这个CG好玩,吃啊吐啊的,当年怎么没注意它。

白:
没有绑定机制的CG,语言学意义是有限的,更像是数学而不像语言学。我的学生@赵章界 引入绑定机制后,才像语言学了。但是赵的工作许多人没有注意到它的核心价值。

李:
当年看过一点那啥 蒙氏文法,形式语义,这个演算那个演算的,被绕糊涂了。没看懂。

白:
Montago

李:
对,里面有Lambda演算啥的,对我太抽象了。记得Montago看不懂,就找中文的来看。原文看不懂的,中文就更看不懂了。就拉倒了。

什么叫绑定机制?

白:
就是吃的和吐的,具有同一性。如果将来吐的参与任何操作,都要把吃的带上。吃的所携带的任何语义特征,也都被传导给吐的。绑定机制基本就是这个意思。

李:
这个听上去就是HFP(Head Feature Principle)。大白话就是一个短语,头词是其代表,头词决定一切。坚持党的一元化领导不动摇。真正实现的时候,根本就不需要像HPSG那种,把 features 定义到嵌套的HEAD结构去,然后上下传来传去的。麻烦。还是我导师刘老师简单直接,head就是直接把修饰语吃掉,是真地吃掉了,看不见了。这么一来信息,就无需传送了。

白:
但是用原教旨的CG,即使引进了绑定机制,仍然是叠床架屋。我现在的方案就极为简单了,就是吃掉。但是理论上它是CG的简化形式。CG的所有严谨性都包含在里面。但是省去了传递。

李:
那些叠床架屋,主要是为了鸡零狗碎的一些边边角角的所谓 non-head features,为此不得不把 HEAD features 嵌套起来。真是为了芝麻,挤压了西瓜。

白:
叠床架屋的缺点去掉,优点保留。毛毛虫的毛刺。很多可以通过中间件摆平,就不需要这些边边角角了。

李:
这个中间件相谐,的确是个好东西。动态隐含地引进了常识,却没有了常识管理的负担。这是亮点和创新。以前的优选语义学(Preference Semantics)一直就困扰在尺寸无法掌握,现在用大数据解决了这个困扰。

白:
而且中间件只管二元关系,不需要涉及复杂结构。所有复杂结构都被singleton填坑化解了。只剩下扁平的二元关系。

李:
常识的基础形式就是二元的,即便牵连到多元,也可以用多个二元来近似:【animate】吃【food】,这个三元常识,不就是两个二元关系吗。

白:
用我的话说,就是“吃”挖了两个坑。两个坑和萝卜摆在一个货架上。这就是singleton。

李:
蛮好。
当然二元近似可能不完全等同它,但实践中的些微偏差,从效果上看,已经可忽略不计了。

白:
所以,我的方法,贯穿着CG的原理,但外部表现很像DG。在对小词的处理上比DG更为彻底,所有小词都纳入二元关系。而二元关系的背后有类型演算的数学作为基础。绝不是随意的或者为了工程而武断设定的。

李:
其实我们的做法和策略,有很多殊途同归的地方。不是高攀。都是各自思索多年,不约而同的决定舍弃什么,采纳什么。我现在缺的是大数据中间件,你那边还是单层,当然,你在单层里面加了优先啥的,近似了多层。

白:
有算符优先,单层也相当于多层

李:
但我还是觉得单层伸展不开,有点凑合事儿的味道。多层符合软件工程的标准做法,模块化。真正是把语言学当工程去做。

白:
但是如果引入kick of,单层+优先更轻便。

李:
对于复杂结构的舍弃或扬弃,我们思路是一致的:atomic features or singlton
当然严格说,singlton的subcat标注,比起复杂特征的SUBCAT 的精细描述以及里面体现的句法语义一体化,也显得有些伸展不开。但问题不大了,得大于失。

白:
语义那边自有知识图谱来承担更加复杂结构的表示。对接的途径都在,不会跑到途径外面去。句法的目标极为有限。伸展得开与否,要相对于这个有限目标来评估。不存在绝对的标准。这无非是二楼和三楼的分工问题。

李:
还有一点风格上的差异或美感因素在。
据说写 Unix 的人与写 Windows 的人,是两种人。互相看不上。后者嫌前者小家子气,前者不能忍受后者的挥霍。

白:
都很伟大。

 

【相关】

[转载]【白硕 – 穿越乔家大院寻找“毛毛虫”】

【语义计算:李白对话录系列】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【李白之38:叫NLP太沉重】

没有规则的文法是怎么回事儿?

白:
“这件事非他莫属”,这种情况下“他”填谁的坑?

李:
填坑,从句法角度没有疑问,“这件事”是句法主语,“非他莫属”是谓语。如果主语是行为,采纳董老师的处理,把句法主语转为逻辑谓语,把句法谓语中的“他”提出来作为其逻辑语义的施事。如果主语不是行为,那么可以相应做一些逻辑语义表达(semantic representation)的调整,其中之一是,把该名词的“标配”动词作为省略成分提出来,“事儿”的标配就是“处理”或“做”(DO)。然后逻辑施事照旧。

“这件事非他莫属”
==(只有)他(能)DO(这件事儿)

这些个鸡零狗碎的处置,说到底都是自己跟自己玩儿。这里的所谓语义表达和语义落地,在pattern确定之后,我们其实心里都明白其涵义了,只不过需要用一种容易记忆容易处理的方式把“语义”表达出来,让人类看着舒服。其实这都是小事儿,属于 parsing 的 side effects,怎么方便怎么来,无一定之规,系统内部自足即可。关键不在作为 side effects 的 output,而在于什么样的 pattern 、什么样的条件与 input 匹配合适,匹配完了既然并无歧义,总能找到一个语义表达的出路。后面的考量也就是为了“好看”而已(就好比软件工程中很多内部数据结构表达出来要pretty print一样)。

白:
“拉小提琴他最拿手了”“去北京他最合适了”“喝白酒他二两就醉了”
这是一种很常见的格式,不是因熟语而发明的,熟语只不过往这上面靠而已。

李:
看电影他爱打瞌睡
做报告他出口成章
举样例他偷梁换柱。

白:
在我的体系里,这是一种已经在局部填了坑的萝卜,在满足一定条件的更大范围内又被再利用而已。

冯:
这是紧缩复句。

白:
在我这里是merge的一种。两个互不隶属的谓词的坑共享萝卜,都是merge。

冯:
merge也就是紧缩了。

白:
如果前面只是NP,就降格为状语:“这件事他最拿手了”当中“这件事“为状语。N降格为S+

李:
白老师的句法里面,“填坑”对应的是文法的arg,“修饰”对应的是mod,“合并”貌似对应的是conj或者comp,其余两个针对token自己的操作,不对应dependency的结构关系。这与词驱动HPSG有相当的吻合之处。

白:
可以认为有一个隐性的token

李:
HPSG 也声称只有词的结构表达,没有一条条文法规则,只有几个 schemata 或叫 Principles,其中一个是针对 arg 的 连接原则。另一个针对的是 mod。

白:
他还是用PSG作拐棍儿。我连小词都是负载结构的。

李:
如果仔细看那个根据原则而来的schemata,基本没啥内容,就是一点最抽象的关系限制。说的是,如果一个 token 要填另一个 token 在词典的 subcat pattern 里面规定的坑,除了所有规定的 features 必须能 unify 外(这个可以比喻为情投意合的自由恋爱),另外还有一点原则性限制(这个可以比喻为婚姻原则:譬如传统的婚姻原则必须是异性之间的结合,否则不发证书,也就是原则层面不允许结合,即便双方情投意合),加上一些子结构数据的 sharing 的规定。这个跟白老师声称没有规则,只有子范畴,以及根据子范畴的 parsing-runner 的抽象算法是同样的精神。当然,HPSG叠床架屋的数据结构以及PSG与生俱来的组合爆炸低效率以及伪歧义困扰,也许已经被白老师解决了。

白:
我没有组合爆炸。复杂特征集不是好东西,扔。

李:
我同意。可是一开始用会入迷。逻辑上很清晰、细致和美丽。可以把语言的任何单位模型成一个非常飘逸的玉人一般。

白:
严格限定只解决谁跟谁有关系,若非搂草打兔子顺手,绝不碰是什么关系。逻辑主宾语分不出来是本分,分出来是情分。

李:
这个分不分就是一个阶段的问题。本质上是所有的 args 都是 arg,这个上位概念是一致的,arg1 还是 arg2,还是 arg3,subcat 可以进一步去规约。

白:
隐性介词不知道什么格是本分,顺手安一个非他莫属的格标记是情分。

李:
到了语义层面,必须去进一步去区分。

白:
在检查相谐性的时候,有些角色已经跑不了了。这就叫搂草打兔子但是还有漏网之鱼,句法层面不 应该care。

比如“这场火多亏了消防队来得及时”里面,“这场火”前面有个隐性介词,知道这一点就够了。是啥介词管他呢。

李:
有人问,没有规则怎么能叫文法呢?这里面的trick就在,并不是没有规则,而是规则隐藏在词典里面了。本质上是词驱动的规则集,构成了词典主义的文法。如果这种规则的隐藏,不以大家通常习惯的显性的产生式(productions)的形式表现,而是以一套 lexical features 来表达,无论是 HPSG 那种非常精细繁复的 typed feature structure(表达形式是所谓 AVM, Attribute Value Matrix),还是白老师那种简省的原子化(atomic)的 cat 或 subcat的标注,那么就给人一个本文法无规则的“假象”。

没研究过这类parsing的人可能还是疑惑:无论如何,没有规则,只有features,那怎么做parsing呢?这事儿说玄也玄,说白了就是一层窗户纸。任何一个 parser 都是要对input文句做操作的,这是无论声称有规则还是无规则的系统,都必须要有的一个部分,我们通常称之为runner,可以形象地比喻成一个scanner。诀窍就在这个runner是怎样在run(parse)文句呢?在产生式的显性符号规则体系里,靠的就是对这些规则的解释(interpretation)或编译(compilation)。这个过程比较直观、可解析。在隐藏了过程性产生式规则的体系里面,runner怎么工作呢?回答是靠文法或模型自然不错,但太笼统。说就是靠词典里那些features的标注,先判你一个不及格,因为你没说明标注怎么转化为解析器(或自动机)的,里面还缺了啥。

歇口气儿,群里面的后学(NLP的fresh博士啊博士后啊啥的)不妨当成一个家庭作业,试着回答一下这个问题。不要以为NLP就是神经,或深度神经。除了神经,就没有NLP了。Parsing 是 NLP 的皇冠,如果只懂神经,不懂 parsing的基本原理和理论,你可能在工作市场上大卖,你也可能确实用神经做过parsing的工作,但AI这股热浪过后,你会发现叫自己是NLPer太沉重。

当然,我们这些还没神经的人,其实也是叫NLP太沉重,不过是倚老卖老罢了,反正我们终归是要退场的人。现如今不神经的话,都不好意思说自己是AI圈的人。认真说,隔行如隔山,行内也隔山,这是AI里面的真实写照。不隔山的全能的人有没有?肯定有,群主白老师就是。但90+%的大牛都不是,这也是事实。

Nick:
伟哥这是被人欺负了吗?

李:
哈,欺负个球啊。信笔写 想到哪里写到哪里,神经=NLP的感慨而已。炼到我这功夫早已百毒不侵了,谁欺负谁呀。把一个算法上升到一个领域,这是概念混乱。这种怪相你学AI历史的应该给个说法。

邓:
我觉得咱们开放心态看待会比较好,一个算法如果让一个行业上了一个大台阶,是会在一个历史时期称为这个行业的代名词的。听其言察其行。

阮:
要么理论上碾压,要么实验或系统验证。要么更有权有势。。三点都不占,就只能忍了。

马:
不为了深度而深度,也不不为了深度而不深度。我们组基本没有神经。

李:
我脑袋是parse不过来了,这口令绕的。

当然可以为神经欢呼 鼓吹 毕竟人家有实绩在那儿(图像、语音、机器神译)。问题不在其崇高的行业地位,而在于这种地位所带来的一种默认意识:(1) 只要是AI和NLP的任务,神经不仅仅是首选,而是是必需;(2) 甚至是,如果你不神经,就会异样地看着你:怎么可以不神经呢?(3) 还有很多问题,根本没有任何证明,神经可以work,但是行内和行外的压倒意识是:(i) 神经一定work,(ii) 而且非神经一定不work,或不值一提。

陈:
讨论的人也很神经

李:
这种观念是如此之深厚顽固,以至于你即便可以证明非神经也一样工作,或者工作得更好,也基本没有人听。这时候你才知道所谓科学家,其实一大半不如没文化的暴发户,因为暴发户至少有常识,懂得白猫黑猫,暴发户没有被洗脑。这个观察不是从神经流行才有的,至少20多年的体会了。

阮:
科学,越年轻越好,大家喜欢看到新方法而已,目前确实没看到其他新方法。

李:
一个人不可能抗拒一个世界。所以生存之道不是试图说服、试图证明,这些基本都没用。生存之道就是:(1)与暴发户为伍,不问姓社还是姓资。挖煤给钱就行。(2)另一个生存之道就是:挂羊头卖狗肉,努力靠拢,不管真心还是假意。无论是否真能融合,永远把羊头当成菩萨

 

【相关】

《朝华午拾:在美国写基金申请的酸甜苦辣》 

围脖:一个人对抗一个世界,理性主义大师Lenat 教授 ..

【语义计算:李白对话录系列】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

 

【李白之37:分层与一锅煮的parsing机制探讨】

白:
话说,分层针对的是token间的二元关系,而token本身是不长眼睛的。所以一个token理论上可以喂给多层,此其一。随着各层的动态演化,可能会临时生出之前扫描不到的新的高优先级关系,甚至这种关系会把之前已经填好坑的萝卜再连根拔起。此其二。这样,虽然还可保持“线速”,但极端场景可能就是2N,而不是N。kick off的机制是一定要的。数理不一定等距,反而可以更细微地反映不等距。

李:
白老师今天的话起了个头,可以展开看看。其一其二说了分层面对的问题。但不足以否定分层。另外,2N有啥关系?可忽略不计吧。

分层多层是法宝。法宝到我其实不应该去宣扬,更不要去argue,自个儿得了好处一边偷着乐不好吗。粗话说,属于嘴欠。唯一的 catch 是,并不是承认或向往多层好处的人,都可以几刀就切干净。这时候语言学经验开始发力。

kick off机制点解?

白:
所谓kick off,可参见一排单摆,最后一个进来,第一个出去,其他纹丝不动。
“他死去多年的战友”“他死去多年的消息”前者启动kick off,后者不启动。“他不务正业、整天游手好闲的发小”;“他生前被人深深误解、死后被人广为称道的施政方针”。根本就不用勉强一定要看多远,远到不能错。先将错就错,占住坑再说,对的来了把我踢走就是了。可万一没错呢?再厉害的播音员也有buffer overflow的时候。“他不务正业、整天游手好闲的毛病”;“他生前被人深深误解、死后被人广为称道的传奇故事”。有kick off兜底,再长也不怕了。短的如“王冕死了父亲”也照用不误。当然,稍微加点条件就少一次折腾。lookahead什么的。

李:
嗯。
听上去就是休眠唤醒之一种。

白:
不是词法级,而是句法级。不预设无限大窗口,当前有限窗口里优先级最高的先处理掉。等到动态过程中优先级更高的来到,已处理的结果可以废掉。废掉是一对一的,不是全局性的redo。被set free的成分重新等待新的结合机会。具体到一个一个pair ,语言学知识的重要性毋庸置疑。但是local犯错误必须global来纠正的情况永远是存在的。这个时候,仍然寄希望于语言学知识来纠正,一定会按下葫芦起来瓢,而某种语言学无关的算法上的安排才是真正的出路。

李:
感觉主要还是语言学,不过是远距离的结构起作用罢了。句法级的休眠唤醒说到底就是修正local的关系(注意,local指的是短距离,不等于浅层关系,它可以在浅层,也可以在深层,可以是结构图的任意局部),对应的自然是局部修正 哪里化脓哪里上紫药水。所谓“推倒重来”就是除旧布新,最多是个 subtree,不会是全局革命。 全局推倒重来不 make sense,多层分层的路线决定了每一层绝大多数的关系是对的 要远距离唤醒和改正的必定是少数。如果不是大多数是对的 这只能说明层次的刀切错了 是语言学模块化的失败。模块化照顾的是步步为营多数受益的依存关系。在多层看来是一致的。

白:
语言学对与错都是数据的问题,不需要涉及算法。远距离唤醒需要的是算法而不是数据。算法不接受多数暴政。如果不想错得太难看,即使是小概率也要兜底。

李:
所谓远距离不过是顶层或接近顶层而已。到了接近顶层,再远距离 都变成 local tree.  天涯若比邻。

白:
分层和单向是两个概念,单向是不许后悔。分层不排斥后悔。

李:
对呀。
很多问题源自单层算法。多层以后 问题就没了。每一层的算法不必变,最多是增加一些 config而已 允许以可控的不同方式去处置。那是文法的running,不是文法的编译问题。

白:
如果在被语言学知识选中的pair之间加一些虚拟运算符,这个问题就像乘法比加法优先一样自然。

李:
哈。
怎么玩都可以。

白:
分层和算符优先是多么等价啊……

李:
分层更厉害。厉害就鲁莽。好在可以悔棋。因此多层与休眠唤醒是天然合作的。维持了线性,也维持了模块化和可维护。

白:
固定长度滑动窗口的算符优先,也需要悔棋配合。这是同样道理。而悔棋是一个算法问题,独立于具体的语言学知识。语言学知识都体现在算符里了。优先窗口计算算术表达式,也是会错的。窗口之外,是加号还是乘号,结果完全不同。有限窗口,加法乘法乘幂,这是领域知识。确定了谁比谁优先,这就是一个算法问题。限定了窗口有限,改错同样是一个算法问题。不是领域知识问题。不同点是,算术表达式中的算符是输入的一部分,而作为分析器输入的token序列中,没有算符。算符是local进行前后条件匹配后动态虚拟插入的。所以,对输入的扫描遍数不一样,极端情况下就是“两遍”。昨天说的2N就是这么来的。把语言学知识隐藏在算符后面,算法就可以一锅煮了。

李:
嘿嘿
算法机制化。不是要在算法上动手术 ,而是在算法的操作层面研究灵活性。

白:
所以,分层和算符优先真的是互通表里的。一锅煮不是错,一锅煮背后没有优先机制才是错。

李:
一锅煮要是等于单层 就难以恭维。

白:
优先机制中体现领域知识也是应有之义。有优先级的一锅煮等于变相分层。

李:
还是放不开,不够伸展。

白:
规则都没有了怎么会放不开

李:
而且优先级弄多了也麻烦,跟密电码似的,加强了规则之间的纠缠。

白:
跟层一样多就够了,又不是人去读

李:
规则与规则适度分开 是很讲分寸的

白:
不在一个优先级的pair不会纠缠。我们只看见pair,看不见规则。

李:
不是人去读?总得人调试呀。没有可读性 无法调试和维护。除非是神经。

白:
人调试,只需要调试一个优先级总表。语言学家完全看得懂,完全是数据。不是程序也不是算法,把算符搬来搬去而已。算符可以理解为特定类别的pair标签,比如<N+, N>这种pair,可能有几种,分别是什么标签,什么优先级,如此而已。单音节形容词修饰的定中结构、区别词修饰的定中结构、多音节形容词修饰的定中结构、的字结构修饰的定中结构、数量短语修饰的定中结构、核心角色介词(把、被、拿、将)构成的介词短语等等。它们的优先级不尽相同。有了这些做后盾,根本就不怕一锅煮。该先做的不会后做,因为窗口所限先做做错了的,随着窗口的滑动还会被踢掉,而且踢是点对点的,不会伤及无辜。语言学家完全不用关注kick off的实现,如果发生了kick off,语言学家是完全看得懂的。

总结一下观点:1、语言学知识用在局部;2、语言学知识转化为pair优先级、可作为虚拟算符纳入算符优先机制一锅煮;3、在窗口受限场景,可以引入kick off机制,支持句法级的休眠唤醒;4、因为输入token序列并不包含虚拟算符,虚拟算符的插入在极端情况下需要多浪费一遍扫描。

李:
虚拟算符是什么东东?

白:
可以理解为给一个二元关系在语言学上定性的标签。二元关系的两端token即使一样,语言学标签仍然可能不同,需要根据优先级区分和前后条件判据的需要加以细分。

李:
句法关系细类。

白:
我的大类只有填坑、合并、修饰、升格、降格,细分是必须的。但句法层面仅限于“控制优先顺序所必须”,绝不扩大化。五大类中,二元关系只有前三类,后两类只涉及自己,
一元。

所谓“绝不扩大化”,比如逻辑主谓,是不需要分的。但是萝卜来自坑的左方还是右方,这个区分可以有。因为,右方萝卜填谓词的坑,优先级高于左方。

白:
一个算术表达式,有加减,有乘除,有乘幂,还有括号。我们怎么确定对表达式的解析是一锅煮的还是分层的?在设定优先级的时候,事实上已经分层了,叫不叫分层纯属个人爱好。

李:
这个比喻贴切。

 

【相关】

【语义计算:李白对话录系列】

【立委科普:结构歧义的休眠唤醒演义】

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【语义计算:"被二奶搞成少数几个男的开会被嫌弃的车型"】

刘:
【在中国被二奶搞成少数几个男的开会被嫌弃的车型之一】哪个句法分析器能把这个长定语分析清楚我就服我自己都看了好半天才明白过来

董:
别说分析,这句子看着就已经服了。

梁:
我看了好半天也没明白。

白:
关键是“开会”分词错误会干扰。

董:
“知识图谱实际有国界说”的例子耶!我想在别处,没有那么多二奶的过度,就完全不理解了。所以是有国界的。就算没有了句法上的别扭,没有二奶的国度的人一定也会莫名其妙的。

白:
这句子的坑,一是分词错误的干扰,二是“开”与“车”的远距离强关联被紧密结合成词的“车型”所冲淡。

刘:
【在中国被二奶搞成少数几个男的开会被嫌弃的车型之一】几个陷阱:1.“开会”应该切开成两个词;2.“开“的受事是车,离得太远;3.”几个男的“,几个是指车型,跟男的没有关系;4."被嫌弃的车型”,被嫌弃的是男的,不是车型。
太复杂了。

白:
看见了“车型”,有多少分析器还能同时看见“车”?
还有一个干扰,就是男的被谁嫌弃。“二奶”是先行词,而且是“男的”的相对词,所以产生“男的被二奶嫌弃”的短暂错觉。其实句中的意思是,买了送二奶开简直成了标配,男的自己开反而成了异类,受到其他人的嫌弃,
各种干扰,谁攒出来的,牛啊

“在中国被丈母娘搞成少数几个男的不送房就结不成婚的大城市之一。”

刘:
微博上真实的语言例子

严:
@刘 【在中国被二奶搞成少数几个男的开会被嫌弃的车型之一】,除了你说的四个陷阱,此句在“车型”之前还达到了七块临界。1搞成2少数3几个4男的开5会6被7嫌弃8的

刘:
七块临界我理解是指理解句子的时候记忆负担的一个阈值,应该只是心理学上的经验值吧,不知道有没有理论依据?这个句子如果画依存树我怀疑可能是非投射的

严:
陆丙甫教我的,发现遵循得很好。那些难懂的法律条款常有此通病。

梁:
我体会翻译或写作时,应该尽量把长句子 breakdown 成若干短句子,尽量把头重脚轻的句子变成 balance 的,尽量把一层一层嵌套的从句简单化。 语言表达的简洁清晰,应该是一种追求。数学语言,无非是表达方式之美。文化基因,如果想让它们容易传播出去,一定是简单的和自明的。做科学传播的,也许应该注意这个。

白:
@严 “被”,和“嫌弃”,是可以结合的,被,在省略介宾的情况下直接做状语。所以数目可能没超。

Me:
数目超不超 那都是一个极端的例子 离开 “不是人话” 不远了 不值得花太大力气。

白:
一顺手就灭了也未可知

Me:
遇到此类句子 我通常采这个态度:

1 看看极端例子能有什么功能性启发
可以实现新功能或加强已有功能 但不必一定要灭了它

2 现有的parser 做一遍 结果错了 但错得 “有理” 就好。

所谓有理 是按照系统设计 所走路径 是预期之内。譬如“开会”的强搭配距离近,系统就不给远距离的“开-车(型)”以机会。这类“错误”就是预期中的正常表现,如果不这样“错”,反而要警觉了。总体来说,对这两个“人也觉得很绕”的句子,分析器表现要正常。原则上不需要为这些outliers特地去“改进”:不仅是费功问题,更主要的是要严防弄巧成拙。关键是 预期之外隐藏一种危险,无论结果好坏。其实很多乍看出乎预期的好的表现,其实还是预期内的,可预期性是符号系统的本性吧。狗屎运是玩笑话 多数狗屎运 心里明白不是狗屎 也不是运。稍微思索两分钟 其实还是在预期之内的。符号主义的实质是 系统可解析。不能解析的符号主义行为 表明系统处于失控的边缘。

姜:
请教一下李老师何谓“符号主义”?

Me:
nlp 是 ai 之一种,nlp 所谓规则系统,归类到ai的符号主义,当然 ai 里面有一个重要成分是推理,nlp 系统较少需要推理。另一个重大区别是,在貌似已经没落的 ai 逻辑符号派诸流中,多层nlp规则系统是少有的最接地气和靠谱,在不少nlp关键应用领域(譬如 named entity tagging, shallow parsing, deep parsing, information extraction, sentiment analysis and question answering)可以胜过或匹敌深度学习质量的流派,虽然已经不在学界主流的视野之中。

白:
这里面有这么一个方法论:1、站在后知后觉立场上,当这个谜底揭晓,它是一个在系统所依据的句法理论下合理的解析吗?2、如果是,那么它一定会被暴力搜索出来,没搜出来一定是系统做了剪枝,可以评估剪枝策略是否合理。3、如果不是,可以评估系统所依据的句法理论是否合理。4、如果改进句法理论,系统是否要推倒重来。
好的句法框架可以容纳这种改进,坏的句法框架容纳不下这种改进。我可以肯定地说,CFG容纳不下。

句子有“不确定性过剩”和“不确定性稀缺”两种情况。过剩时好使的剪枝策略,用在稀缺的场景,很可能会栽。为了应对稀缺,过剩时又搞不定了。所以好的剪枝策略应该是随着不确定性的程度而动态自适应的。不确定性稀缺时,并不害怕暴力搜索。

Me:
白老师说的极是。不愧为山中高人。

白:
“张三的分数和李四的分数的差是李四的分数的两倍。”
只有一个正解,其余都是伪歧义。这是不确定性过剩,大胆剪枝。但到了“人话”的边缘,如果还是人话,还是暴力搜索管用。

Me:
为难之处在于百利一弊的策略。因为百利 不能轻易动它 但是那一弊就是那啥脚后跟,一旦出现了 或者容忍它 或者补救它 终归不能动大手术。此句的关键在 “开会” 这个词条 是个伪词。一切传统的词典查询都是最大匹配,这就断了补救的路子。

在应对了离合词的系统,这个 “开-会” 倒是从词典层面被当成两个词,因为有 “开什么会”、 “开个鸟会”、 “会开得一塌糊涂” 等变式。这似乎给解决这个问题留下了可能性。但是,即便是内嵌了离合词处理的系统,也难以抵制把 “开会” 提早处理的诱惑(这就是白老师说的“剪枝”,排除了远距离“开车”的可能性)。这种诱惑是实用主义的,是的的确确的百利,但难免一弊。

白:
真凶在休眠

Me:
英雄所见。对,真要补救 机制上可以是休眠唤醒。“开-会” 作为动宾合成词,从词典得来,可保留。但词典内部可以预留被唤醒拆分的种子,这从休眠唤醒机制上可以实现。

董:
一句破小编写的破句子,让我们这么讨论,太抬举他了。

Me:
哈。而且还不像人话。
借题发挥罢。

白:
还是有启发。比如“车型”这样的复合词怎么承载词素“车”的特征,跟“开”远距离搭配,这样的机制应该不是个案。

“空客380是他这么多年来坐过的最豪华的机型。”

“坐”和“机型”。前两天说的“增长率超过了联想”,是相反方向的脑补。

Me: “开会” 的问题 是早已熟知的最大匹配原则的百利一弊 以及 hidden ambiguity 的休眠唤醒机制 的体现(如果真要解决的话)。

白:
“机型”是“飞机”的属性名,“车型”是“车”的属性名,“增长率”是“指标”的属性名,“指标”是“公司”的属性名。“联想”是“公司”的instance。空客380是“机型”的instance。如果“顺杆儿爬”或者“顺杆儿滑”能够找到相谐的搭配词,也是一种广义的相谐。早有人提过使用图而不是线性序列的方式作为分词的输出。如果输入是词图,WSD结合当前已分析结果和后续待分析词语,作出动态优选,比直接分词算法说了算,会进一步。

Mo是修饰关系,Ma是填坑关系,Me是合并关系,Up是升格(修饰语提升为被修饰语),Sh是shift(移进,暂不处理)。

这个分析结果还有一点不满意的地方,就是“车型”填了“嫌弃”的坑。按说“男的”填这个坑最理想。

Me:
“坐过” 与 “380” 相谐呀 无需借助“机型”,无论大数据 还是通过本体。再者 这里还有一个 等价结构:o 是 s vt 过的 n。

白:
坐-机型 vs 搭乘-机型,无关380

Me:
380 是我坐过的。
380 是我坐过的玩意儿
这澡是我洗过的最糟的
这澡是我洗过的最糟的一次体验

“坐过” 与 “玩意儿” 很难说 谐不谐 还是要落实到380。

白:
“我坐过的最豪华的机型非空客380莫属。”

Me:
一个道理。有些词 譬如 玩意儿 机型 体验,可以作为类似指代词,它要从抽象落实到具体 然后才可以验证本体关系的 appropriateness。

白:
从结构看不能绕过,而且具体不是必然具体:“这是他坐过的最豪华的机型”

Me:
这句擦边

白:
不能说“这”的相关性比“机型”还高。

Me:
严格说这句有点犯规 除非认为是 有类似 380 的实体被省略

白:
句法没毛病。这就是,不确定性稀缺,不相谐的猴子称大王 犯不上在稀缺的时候进行严格的相谐性检查。

Me:
所谓语义犯规 本来就可以是合乎句法的,不然就没有乔老爷的绿色思想了。

白:
1、句法OK。2、本体里顺杆儿爬可以爬到相谐的节点。3、相谐的节点是真正想要的。
这比绿色思想还有意义得多,“增长率超过了联想”也是同理。

Me:
逻辑上是:这个机型是他坐过的飞机中的属于最豪华的机型。
逻辑啰嗦的时候 语言就偷懒 走捷径,语言表达偷逻辑的懒 案例比比皆是。惰性是人类的基础本性。

白:
前提是稀缺,如果伪歧义密集,再偷懒,就要自讨苦吃了

“男的”和“车型”争夺“嫌弃”仅剩的一个坑的逻辑:“车型”是基于定语从句所修饰的名词的反填;“男的”是基于“会”作为情态动词对填入自己的谓词宾语“嫌弃”的穿透。通常穿透的是逻辑主语(我之前也是这么理解的),但是这个例子里,逻辑主语已经被“被”的无名介宾所捷足先登,实际是穿透到逻辑宾语,所以穿透踩空了。

看来穿透的只是一道墙,不要绑死在墙里面的特定标签上。如果墙里面两个坑,逻辑主语可以优先;如果墙里面只有一个坑,那就逮谁算谁。

这算语义?已经是言外之力的层次了。以言行事。
语言三境界:以言指事、以言行事、以言成事。

郭:
@白【在中国被二奶搞成少数几个男的开会被嫌弃的车型之一】 "我可以肯定地说,CFG容纳不下",可否展开说说? 很想知道那个G在你心目中的样子。也只有知道了那个G,才能判断是不是CFG。

你以前举过一个例子: “张三、李四、王五的年龄分别是25岁、32岁、27岁,出生地分别是武汉、成都、苏州”。

我理解你心目中的G是那有名的(a^n b^n c^n)for any n, which is well known to be outside of CFG。

同样的话,在@wei 那里,我理解就是三型文法有限状态机,因为他有个“事不过三” “超过三个就不是人话”的trick。就算三步太少,那个“七块临界”限制,也把那个G带回正则文法。总之,只要那个n有个上界,就可穷举。

白:
这里面被定语从句修饰的中心语反填回定语从句中的动词所挖之坑的机制,一个成分多个爹,首先它长的样子就不是树。既然不是树,就谈不上CFG了。反填其实造成了“环”,即:名词-动词-的-名词。七块是栈的深度限制。至于放在栈里的东西怎么用,不同的G差别很大。不是说它一被常数界定,就肯定是三型文法了。这套机制的外面,还有语义中间件,把基于subcat的和基于统计的相谐性检验封装起来。面对伪歧义,这个中间件会做出筛选。这个CFG也没有。

Me:
PCFG (probabilistic CFG)是不是就带有了中间件的意味?@白
那玩意儿一度呼声很高。从我的角度看 是大锅烩的一层parsing 还是多层 parsing才是关键。

白:
@wei 有点。

Me:
一层去做cfg 不仅爆炸 没有线性算法 而且很难做深。螺蛳壳里怎么做得出一个像样的道场来。

白:
分析结果长什么样决定了格局。在这个大框架下,数据改变不了格局。

Me:
parsing 的尴尬在 自然语言现象太复杂 千丝万缕 分而治之吧 不知道这几刀怎么切。一锅烩吧 根本就顾不过来周全。

白:
太松,伪歧义就溜进来;太紧,就不robust

Me:
分而治之是显然的上策 只是没有一点经验和功力 往往不会分。我觉得。伪歧义的问题在多层系统中几乎就不是挑战,原因就是 松紧掌控也被分而治之了。每一个可能的剪枝行为可单独去调,数据驱动 假以时间 偏差就会从一个一个局部解决 ,从而获得全局最优。

白:
话说,形容词向左做补语和向右做定语,在你那里谁优先?
比如“做好男人”:

Me:
除了 定中合成词在词典外,词典的下一层是 “一字”补语,再下一层才是定语,现在是这样切的刀。因此 假如 “好男人” 不进词典,目前的分析是 【做好 男人】,但是如果一字以上 就不了。

白:
到处可见标配-例外的逻辑。
补语与时态助词呢?“哭肿了”是“哭肿-了”还是“哭-肿了”?

Me:
无所谓。爱谁谁。

白:
同级?

Me:
我是说对这种不预先特别设计,赶上哪个算哪个。

白:
分层,了总有个落脚之处吧……

Me:
目前是 “哭肿” 在先,因为 汉语有双音趋势:

白:
又不做语音合成

Me:
两个汉字的组合 看成是词典的延伸 处于非常底层

白:
照此说来,“折腾惨了”就该是“折腾-惨了”?

Me:
没问题呀,但遇到小词的时候(譬如“惨-了”的“了”),也不绝对。然而,“哭-肿” chunk 成(open)合成词了,但“折腾”-“惨”则仅仅是补语联系,而不是合成词。

白:
有点以貌取人啊……

Me:
必须滴。这个世界有完全不以貌取人的吗?何况句法乃是关于形式的系统,以貌取人,理所当然。 只是在句法语义的理解过程中,“貌”占多大比重的问题。 句法当然不仅仅追求心灵美,心灵美理应是语义的追求。当然,句法的最终目标还是语义(理解),所以句法语义接口的时候,外表美与心灵美需要一个平衡才好顺利过渡到自然语言的理解。

白:
“东西放忘了地方”,合法吗?经常有人这么说。但是“放忘”似乎没有因二字组合而产生成词的倾向。东西-放-地方,忘-地方。忘了-地方。

Me:
成词的趋向在 只是这个 bigram 的频度还不够高,用的人多了 就成词了 。

白:
这个不是大问题,皆可。吃光、用光,俨然就是词了。动结式动词

Me:
不太一样:

放x忘y
吃x x 光

动结的逻辑宾语常常出现在主语位置 不需要用显式的被动小词 “被”,这是共性。不同的是 ............

白:
“打疼了手”
别人的手疼,“打疼”是紧组合;自己的手疼,“打疼“是松组合?如果打xx疼和打xy疼能决定这个区别的话.

Me:
“打疼了手”,默认是自己的手

打他打疼了手 不是他的手。
伤透了心 是自己的心
伤透了脑筋 也是自己的脑筋

除非“操中南海的心”。把标配给冲了。

白:
这个问题在于手、心、脑筋都是部件,有坑的

郭:
“这里面被定语从句修饰的中心语反填回定语从句中的动词所挖之坑的机制,一个成分多个爹,首先它长的样子就不是树。既然不是树,就谈不上CFG了。”“反填其实造成了“环”,即:名词-动词-的-名词。”

撇开“句法制导的语义分析”,也撇开具体的句法分析过程,就纯句法描述而言,这无非就是: X -: N V 的 N

具体的“相谐”判断,用基于挖坑填坑的一致,或基于特征的合一,或基于统计的搭配,或基于经验的标配,只有分析的颗粒度和精度的差别而已,无关语言表达力。有了 X -: N V 的 N,怎样画内部的依存结构,是个“句法制导的翻译”问题。我们大可以说“在这样这样的坑/特征/统计/搭配/标配下”“V既是N的儿子又是它的老爸”,但这都不影响这个N作为X的代表一致对外。

我想探讨的是,如果把过程性的具体剖析方法从语言表达分离开,这个“描述性的”“纯”语言长什么样子。我是在找类似上面的 (a^n b^n c^n),如果这里的n是个任意值,它就是上下文相关语言,如果n是一个有界的值,它就是一个正则语言。这是一个纯描述性的语言,无关其分析方法,也无关其语义解释。

白:
先说“分别”这件事,也有粗粒度的处理方法,就是使用“列表”。不管长度,只管收拢。收拢对收拢。还有,如果描述指的是大边界。里面的小细节都归功于语义,那我指定一个全集岂不更痛快?功夫全在细节啊。我这里用的不是句法制导的方法,而是词负载结构的方法。一条显性的句法规则都没有。还有,仅就{x^ny^nz^n}这个形式语言实例而言,它的判定可以有线速算法,跟一般二型语言的判定复杂度是完全不在一个量级的。

 

 

【相关】

【语义计算:李白对话录系列】 

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

 

【李白之36:汉语可以裸奔,不可能无法】

白:
“他拿了你不该拿的东西。”谁不该拿?

Me: 妙句。

他拿了他不该拿的东西。
他拿了人不该拿的东西。
他拿了不该拿的东西。

默认主语是 “人”, 其次是 “他”。这个 “人” 指的是 一般的人,正常的人,有底线的人 (decent human)。当默认主语的位置出现了 “你” 字,奇异的事儿发生了:

1 按照常理 “你” 取默认主语而代之, 这就造成了 “你” 与 默认的 decent human 或 “他” 的下意识比照。言下之意可以是:他拿了你不该拿(但他可以拿)的东西。这是一解,或可以想象的场景。

2 根据法律或规章面前人人平等的普世原则 上面的解读虽然合语言学的法 但不合现代社会的法。这就迫使默认主语 继续有效,“你” 于是不能雀占鸠巢, 不得不另寻他途。 于是“你”的定语角色 instead of 主语的可能进入理解:

他拿了你(的)不该拿的东西
== 他拿了他不该拿的属于你的东西。

3 一时想不通1与2的语义落地场景的人 会觉得这是个病句。

白:
其实,“拿”有三坑。谁,拿谁的,什么。
如果“你”进入定语从句,就少了一个萝卜,坑不饱和。所以,“完形优先”的策略会倾向于使坑饱和的分析结果。

Me:
我觉得“拿” 有两坑,通常不认为作为孙子的 “谁的” 可以提上来做儿子。

【谁】 拿 【什么】

【什么】有没有定语的坑 要看是什么名词。一般专名(如人名机构名) 材料(如 石头 钢铁)或产品种类(如智能手机 数字电视等)就无坑。但产品专名(如iPhone)可以有拥有者 算是有坑:“我拿石块”。石块不能算有坑,没有预期。如果强加了定语,那个定语是随机性的,不是语义必需的:“我拿了他家的石块”。

我拿iPhone7
默认是:我拿我的iPhone7。要是拿别人的,那可能就是窃了。

白:
拿人东西手短

Me:
还是有儿孙之别,长幼有序:

[human] take [thing]
[human] 's [thing]

“[human] take [human] 's [thing]” seems a bit too flat,cf: buy

[human] buy [thing]
I bought an iPhone7

of course we can say: I bought Apple's iPhone7,but Apple does not need to associate with "buy" directly

白:
表“取得”义有一大批动词,拿、捡、取、抢、夺、偷、窃、娶、借、买……,都有三个月坑,无需搞两层。间接宾语就是原所有者,逻辑主语就是新所有者。

Me:
定语一直很灰色(介于arg坑与随机mod之间)。如果这么说坑,也可以有四个坑五个坑:

【1 谁】 【2 从哪里】 拿 【3 谁的】 【4 什么】
【1 谁】 【2 从哪里】 拿 【3 谁的】 【4 什么】 【5 到哪里: 目标地】

白:
“所有”义由动词自带,无需借助其他手段。到哪里不是标配,谁的和哪里合并。给予类,给谁是标配。

Me:
从双宾 “给予” 开始,带两个实体的坑就逐渐处于灰色。“给予” 的 【接受者】 是公认的坑。到了另一种间接宾语 【为谁】 买 【什么】:
buy sb sth --》 buy sth for sb
就有点从arg的坑向mod的随机成分移动了。

白:
自洽、能产就好。

Me:
其他的实体角色几乎都可以或者看成是 mods,或者是孙子辈。arg struture,除了这两种间接宾语,宾语以外的坑通常是非谓语动词,也就是动词的右嵌套或者是形容词做补足语。当然这多少受欧洲语言句法框架的影响。如果超越句法,还是看 HowNet 的坑怎么定义的比较靠谱。这样一来,句法的args不过三,就需要突破了。

所谓“坑”,根子源自常识语义的本体,体现却在各个语言的句法。由于句法体系有个语言学共性,即我所谓args不过三的普世原则,结果,有些常识语义的“坑”在句法就被降格成 mods 了。这里面自有上帝造语言的玄机在,我以为。幸亏有上帝在,自然语言乱中有静,冥冥之中自有其不变之法。语言学家就是法师,可以直接与上帝对话,而普罗 native speakers 呢,只是下意识遵循,或试图不遵循:但也还是逃不过如来佛的手掌。你可以偶然违规,你不能永远违法,也不能连续不断地违规。语言可以灰色,但不可以黑色。社会媒体可以乱象丛生,但还是可以捕捉到舆情。中文可以裸奔,但不能无法。不管怎么裸奔,也还是个人形。无法的裸奔,那就成怪物了。汉语无文法论,可以休矣。无法,人如何把握,又如何能理解?

白:
怎么可能无法,最多就是一叶障目

 

【相关】

泥沙龙笔记:汉语就是一种“裸奔” 的语言
【李白之21:萝卜多坑不够咋办】 

【语义计算:李白对话录系列】 

中文处理

Parsing

【置顶:立委NLP博文一览】

《朝华午拾》总目录

【李白王56:与上帝同在和对话的学问】

【立委按】“真心说,语言学虽然不是显学,乍看颇落寞穷酸,但的确是最有趣的学问之一,是少有的能与上帝同在和对话的“科学”。要不世界几千年美国几百年不世出的千古学霸乔老爷能以此扬名立万呢。” 当然,乔老爷的天下无敌的引用数与崇高名声,只能说最多一半是语言学的功劳,另一半是他的左派社会主义的独立知识分子情怀及其犀利的现实批判精神。

王:
这本书把我看晕了。
这本书把我砸晕了。

N1 把 N2 V1 V2 了。

V2和哪个N发生语义关系、发生什么样的语义关系好像比较好确定;但是对V1来说,如果不看具体的句子,好像就不能确定,当N1 N2与V1结合后,各自的论元角色是什么。
李:
不确定这个句法树画得对不对……

白:
要用次范畴
但是,如果句法的目的仅仅是确定“谁跟谁有关系”而不在乎“是什么关系”,是主是宾,根本无须过问。“看”和“砸”都有两个坑,“我”填一个,剩下的N填另一个。句法的任务就完成了。所以这两句的分析在我的体系里长得没差别:

王:
谢谢白老师!下一步确定哪个萝卜进哪个坑,是不是就是知识本体的工作了。
就是您说的次范畴设计,是不是就是在词库里设定一些语义相谐的规则,萝卜只能进和它语义相谐的坑。

白老师,您的体系里只有两种pos tag?

白:
利用subcat可以确定“我看书”
但“书砸我”并不典型。
“我砸书”也不是不可以。
N、S、X 三种 X意思是“可N可S”。真正排除“我砸书”需要常识或者统计,subcat并不能做出这样的区分。通常是“硬砸软”而不会“软砸硬”,人体属于“标配软”,书则“标配硬”,也不排除硬的人体(冻僵了那种)和软的书(帛书)。

王:
谢谢白老师指点!

白:
语义相谐不一定要通过规则,也可以通过统计。
subcat只对词条标注,不对短语标注。
注意到我画的图里,“我”一个萝卜填了“看/砸”“晕”两个坑。这是因为补语动词并入谓语动词,相应的坑不占同一个萝卜的额度。

王:
对,李维老师上周推的文章里好像也说了,本体是人编的,知识图谱是统计出来的,都可以用来判断语义相谐。

李:
本体(ontology)也可以从大数据统计学出来 叫习得(acquisition),但跨领域的一般性本体不值得费劲儿去学。一来有现成的高质量的本体在 如董老师的 hownet,语义大师几十年打造的。跨领域跨语言的基本放之四海而皆准,仅次于上帝的工作。二来 学了半天 也难系统化 。但是 本体自动习得还是有一席之地,主要在,习得可以对领域 对数据有自动调适能力。更主要的是 习得可以包含本体常识的相谐的程度和或然性比较,这是人工标注 哪怕是大师的工作 所难以达到的。最终 常常是二者的结合。以专家本体框架为指导 以数据为对象 学出领域本体。

白:
相对标记,并不是每个本体都有的:“你打了他不该打的朋友。” 打,二价,但“朋友”自身仍有坑。

李:
当然 玩本体 这种 元层次语义 需要一些修为 非新手可玩 玩了也不会用 。但是 玩知识图谱这种 倒是相对人人可为 基本就是个力气活,砸的是人力和计算资源,不需要一定有语义全局的高度。

白:
标注种子词条,习得种子关联,推荐更多词条,推荐更多关联。所谓bootstrap。

李:
另外 所谓相谐(semantic coherence, or, attribute-value appropriateness) 是元知识 是本体的属性和功能 与一般的知识图谱无大干系。如果硬要 argue,在碎片化信息抽取整合成知识图谱的过程中,领域概念之间的相谐蕴含在图谱中,也不是没道理。但是关键在,相谐是作为一个软条件帮助语言分析理解,从而帮助抽取挖掘图谱的。图谱是结果,达到结果了 相谐已然过去式了。过河不必拆桥,但桥是为过河而设置,过了河就没桥什么事儿了。

另,“subcat只对词条标注,不对短语标注”,白老师这话不错。不过短语也可以继承词条的 subcat,继承的时候 已经填坑的要“折算”。换句话说 短语的 subcat 坑减少了。减少为0的时候 就功德圆满了 就没有了 subcat,譬如 s,那是最高的短语。

白:
坑的subcat没了,自身作为萝卜的还有

李:
当然 譬如右嵌套:s 可以作为子句 作宾语,是VP的右嵌套。这时候不圆满还不行 不圆满就做不了所要求的宾语子句。语言学理论里面 把这种条件叫做 configurational constraints, 也就是乔老爷的 x bar 的条件。如果这个条件要求的是尚未圆满(not fully saturated, or partially saturated) 的短语,就带着未填满的坑前行,各种好玩的语言逻辑的戏就开场了。

白:
如果词负载结构,这一切都在填坑中自然完成,无需另外的句法来“制导”。

李:
譬如 【书砸我】 还是 【我砸书】 这样的公案就出现了。到了 【书看我】 还是 【我看书】,本体常识或本体统计可以发力,当然 这种强搭配也可以不劳驾本体,而是当成词法或词典与句法的交互和接口,但是不强的搭配太柔软,句法就无计可施了,只能 identify 可能性 不能确认语义的唯一性。本体或反映本体的大数据 不得不上场。如果由于数据稀疏 上场了也不能解决 ,那只能保留歧义 有可能本来的语言表达就是双关。

真心说,语言学虽然不是显学,乍看颇落寞穷酸,但的确是最有趣的学问之一,是少有的能与上帝同在和对话的“科学”。要不世界几千年美国几百年不世出的千古学霸乔老爷能以此扬名立万呢。

 

【相关】

【语义网笔记:本体与知识图谱之辨】

语义三巨人

《泥沙龙笔记:知识习得对本体知识,信息抽取对知识图谱》

【泥沙龙笔记:再谈知识图谱和知识习得】

中文处理

Parsing

【立委科普:信息抽取】

【关于知识图谱】

【置顶:立委NLP博文一览】

《朝华午拾》总目录